# EE462L, Fall 2011 DC − DC Buck/Boost Converter

• View
113

2

Embed Size (px)

DESCRIPTION

EE462L, Fall 2011 DC − DC Buck/Boost Converter. + v C1 –. + v L1 –. i. I. in. out. C. +. + v L2 –. L1. C1. V. V. out. in. C. L2. –. + v C1 –. + v L2 –. C1. L2. Boost converter. + v L1 –. i. I. out. in. +. L1. V. V. out. in. –. Buck/Boost converter. - PowerPoint PPT Presentation

### Text of EE462L, Fall 2011 DC − DC Buck/Boost Converter

• EE462L, Fall 2011DCDC Buck/Boost Converter

• Boost converter + Vout Iout Vin iin L1+ v L1 Buck/Boost converter

• Buck/Boost converter This circuit is more unforgiving than the boost converter, because the MOSFET and diode voltages and currents are higherBefore applying power, make sure that your D is at the minimum, and that a load is solidly connectedLimit your output voltage to 90V

• + Vout Iout CVinIin L1+ 0 + 0 KVL and KCL in the average sense00IoutIinC1L2Iout+ Vin KVL shows that VC1 = VinInterestingly, no average current passes from the source side, through C1, to the load side, and yet this is a DC - DC converter

• Switch closedVin iin L1+ Vin + v L2 C1+ Vin L2assume constant+ v D KVL shows that vD = (Vin + Vout),so the diode is openThus, C is providing the load power when the switch is closedVin iin L1 Vin +C1+ Vin L2+ Vout Iout C (Vin + Vout) +IoutiL1 and iL2 are ramping up (charging). C1 is charging L2.C is discharging.+ Vin

• Switch open (assume the diode is conducting because, otherwise, the circuit cannot work)Vin iin L1 Vout +C1+ Vin L2+ Vout Iout CC1 and C are charging. L1 and L2 are discharging.+ Vout KVL shows that VL1 = VoutThe input/output equation comes from recognizing that the average voltage across L1 is zeroassume constant

• Inductor L1 current ratingUse maxDuring the on state, L1 operates under the same conditions as the boost converter L, so the results are the same

• Inductor L2 current rating2Iout0Iavg = IoutIiL2Use max+ Vout Iout CVinIin L1+ 0 + 0 00IoutIinC1L2Iout+ Vin Average values

• MOSFET and diode currents and current ratings02(Iin + Iout)0Take worst case D for eachVin iin L1+ v L1 + Vout Iout CMOSFETDiodeiL1 + iL2Use maxswitchclosedswitchopen2(Iin + Iout)iL1 + iL2

• Output capacitor C current and current rating2Iin + IoutIout0As D 1, Iin >> Iout , soiC = (iD Iout)As D 0, Iin
• Series capacitor C1 current and current ratingSwitch closed, IC1 = IL2Vin iin L1 Vin +C1+ Vin L2+ Vout Iout C (Vin + Vout) +Iout+ Vin Vin iin L1 Vout +C1+ Vin L2+ Vout Iout C+ Vout Switch open, IC1 = IL1

• Series capacitor C1 current and current rating2Iin2Iout0As D 1, Iin >> Iout , soiC1As D 0, Iin
• Worst-case load ripple voltageThe worst case is where D 1, where output capacitor C provides Iout for most of the period. Then,Iout0iC = (iD Iout)

• Worst case ripple voltage on series capacitor C12Iin2Iout0iC1switch closedswitch openThen, considering the worst case (i.e., D = 1)

• Voltage ratingsMOSFET and diode see (Vin + Vout)Diode and MOSFET, use 2(Vin + Vout)Capacitor C1, use 1.5VinCapacitor C, use 1.5VoutVin L1C1+ Vin L2+ Vout C (Vin + Vout) +Vin L1 Vout +C1+ Vin L2+ Vout C

• Continuous current in L12Iin0Iavg = IiniL(1 D)Tguarantees continuous conductionThen, considering the worst case (i.e., D 1),use maxuse min

• Continuous current in L22Iout0Iavg = IoutiL(1 D)Tguarantees continuous conductionThen, considering the worst case (i.e., D 0),use maxuse min

• Impedance matching

DCDC Boost Converter

+Vin+

Iin+VinIinEquivalent from source perspectiveSource

• Impedance matchingFor any Rload, as D 0, then Requiv (i.e., an open circuit)For any Rload, as D 1, then Requiv 0 (i.e., a short circuit)Thus, the buck/boost converter can sweep the entire I-V curve of a solar panel

• Example - connect a 100 load resistorD = 0.806.44 equiv.100 equiv.D = 0.50D = 0.882 equiv.With a 100 load resistor attached, raising D from 0 to 1 moves the solar panel load from the open circuit condition to the short circuit condition

• Example - connect a 5 load resistorD = 0.476.44 equiv.100 equiv.D = 0.18D = 0.612 equiv.

• BUCK/BOOST DESIGN

Worst-Case Component Ratings Comparisons

for DC-DC Converters

Converter Type

Input Inductor Current (Arms)

Output Capacitor Voltage

Output Capacitor Current (Arms)

Diode and MOSFET Voltage

Diode and MOSFET Current (Arms)

Buck/Boost

1.5

_1221762425.unknown

_1221796271.unknown

_1221796297.unknown

_1221796206.unknown

_1150520753.unknown

• 5A1500F50kHz0.067VMOSFET M. 250V, 20AL1. 100H, 9AC. 1500F, 250V, 5.66A p-pDiode D. 200V, 16AL2. 100H, 9AC1. 33F, 50V, 14A p-pBUCK/BOOST DESIGN

Comparisons of Output Capacitor Ripple Voltage

Converter Type

Volts (peak-to-peak)

Buck/Boost

_1221762523.unknown

• 40V2A50kHz200H90V2A50kHz450HMOSFET M. 250V, 20AL1. 100H, 9AC. 1500F, 250V, 5.66A p-pDiode D. 200V, 16AL2. 100H, 9AC1. 33F, 50V, 14A p-pBUCK/BOOST DESIGN

Minimum Inductance Values Needed to

Guarantee Continuous Current

Converter Type

For Continuous Current in the Input Inductor

For Continuous Current in L2

Buck/Boost

_1221797668.unknown

_1221797692.unknown

• MOSFET M. 250V, 20AL1. 100H, 9AC. 1500F, 250V, 5.66A p-pDiode D. 200V, 16AL2. 100H, 9AC1. 33F, 50V, 14A p-pBUCK/BOOST DESIGNConclusion - 50kHz may be too low for buck/boost converter

Series Capacitor Voltage

Series Capacitor (C1) Current (Arms)

Series Capacitor (C1) Ripple Voltage (peak-to-peak)

Second Inductor (L2) Current (Arms)

1.5

_1150520774.unknown

_1150520776.unknown

_1191217316.unknown

_1150520773.unknown

Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Documents