27
1 EE462L, Fall 2011 DC−DC Buck/Boost Converter

EE462L, Fall 2011 DC − DC Buck/Boost Converter

  • Upload
    kisha

  • View
    141

  • Download
    2

Embed Size (px)

DESCRIPTION

EE462L, Fall 2011 DC − DC Buck/Boost Converter. + v C1 –. + v L1 –. i. I. in. out. C. +. + v L2 –. L1. C1. V. V. out. in. C. L2. –. + v C1 –. + v L2 –. C1. L2. Boost converter. + v L1 –. i. I. out. in. +. L1. V. V. out. in. –. Buck/Boost converter. - PowerPoint PPT Presentation

Citation preview

Page 1: EE462L, Fall 2011 DC − DC Buck/Boost Converter

1

EE462L, Fall 2011DC−DC Buck/Boost Converter

Page 2: EE462L, Fall 2011 DC − DC Buck/Boost Converter

2

Boost converter

+ Vout

Iout

CVin

iin

L1

+ v L1 –

Buck/Boost converter

+

v L2

C1

+ v C1 –

L2

Vin

iin

L1

+ v L1 –

+

v L2

C1

+ v C1 –

L2

+ Vout

Iout

C

Page 3: EE462L, Fall 2011 DC − DC Buck/Boost Converter

3

Buck/Boost converter

This circuit is more unforgiving than the boost converter, because the MOSFET and diode voltages and currents are higher

• Before applying power, make sure that your D is at the minimum, and that a load is solidly connected

• Limit your output voltage to 90V

Vin

iin

L1

+ v L1 –

+

v L2

C1

+ v C1 –

L2

+ Vout

Iout

C

Page 4: EE462L, Fall 2011 DC − DC Buck/Boost Converter

4

+ Vout

Iout

CVin

I in

L1

+ 0 –

+ 0

KVL and KCL in the average sense

0

0

Iout

I in

C1

L2

Iout

+ Vin –

KVL shows that VC1 = Vin

Interestingly, no average current passes from the source side, through C1, to the load side, and yet this is a “DC - DC” converter

Page 5: EE462L, Fall 2011 DC − DC Buck/Boost Converter

5

Switch closed

Vin

iin

L1

+ Vin –

+

v L2

C1

+ Vin –

L2

+ Vout

Iout

C

assume constant

+ v D –

KVL shows that vD = −(Vin + Vout),

so the diode is openThus, C is providing the load power when the switch is closed

Vin

iin

L1 –

Vin

+

C1 + Vin –

L2

+ Vout

Iout

C

– (Vin + Vout) +

Iout

iL1 and iL2 are ramping up (charging). C1 is charging L2.

C is discharging.

+ Vin –

Page 6: EE462L, Fall 2011 DC − DC Buck/Boost Converter

6

Switch open (assume the diode is conducting because, otherwise, the circuit cannot work)

Vin

iin

L1

– Vout +

C1

+ Vin –

L2

+ Vout

Iout

C

C1 and C are charging. L1 and L2 are discharging.

+ Vout

KVL shows that VL1 = −Vout

011 outinavgL VDVDV

inout VDDV )1(

D

DVV inout

1

The input/output equation comes from recognizing that the average voltage across L1 is zero

assume constant

Page 7: EE462L, Fall 2011 DC − DC Buck/Boost Converter

7

Inductor L1 current rating

inrmsL II3

21

Use max

During the “on” state, L1 operates under the same conditions as the boost converter L, so the results are the same

Page 8: EE462L, Fall 2011 DC − DC Buck/Boost Converter

8

Inductor L2 current rating

22222 3

42

12

1outoutoutrmsL IIII

outrmsL II3

22

2Iout

0Iavg = Iout ΔI

iL2

Use max

+ Vout

Iout

CVin

I in

L1

+ 0 –

+ 0

0

0

Iout

I in

C1

L2

Iout

+ Vin –

Average values

Page 9: EE462L, Fall 2011 DC − DC Buck/Boost Converter

9

MOSFET and diode currents and current ratings

0

2(Iin + Iout)

0

Take worst case D for each

Vin

iin

L1

+ v L1 –

+

v L2

C1

+ v C1 –

L2

+ Vout

Iout

C

MOSFET Diode iL1 + iL2

outinrms III 3

2

Use max

switchclosed

switchopen

2(Iin + Iout)

iL1 + iL2

Page 10: EE462L, Fall 2011 DC − DC Buck/Boost Converter

10

Output capacitor C current and current rating

inCrms II3

2 outCrms II

2Iin + Iout

−Iout

0

As D → 1, Iin >> Iout , so

iC = (iD – Iout)

As D → 0, Iin << Iout , so

D

IDI

D

DII in

outout

in

1

,1

outinCrms III ,3

2max

switch closed

switch open

Page 11: EE462L, Fall 2011 DC − DC Buck/Boost Converter

11

Series capacitor C1 current and current rating

Switch closed, IC1 = −IL2

Vin

iin

L1 –

Vin

+

C1

+ Vin –

L2

+ Vout

Iout

C

– (Vin + Vout) +

Iout

+ Vin –

Vin

iin

L1

– Vout +

C1

+ Vin –

L2

+ Vout

Iout

C

+ Vout

Switch open, IC1 = IL1

Page 12: EE462L, Fall 2011 DC − DC Buck/Boost Converter

12

Series capacitor C1 current and current rating

inrmsC II3

21

2Iin

−2Iou

t

0

As D → 1, Iin >> Iout , so

iC1

As D → 0, Iin << Iout , so

outinrmsC III3

2,

3

2max1

switch closed

switch open

outrmsC II3

21

Switch closed, IC1 = −IL2

Switch open, IC1 = IL1

Page 13: EE462L, Fall 2011 DC − DC Buck/Boost Converter

13

Worst-case load ripple voltage

Cf

I

C

TI

C

QV outout

The worst case is where D → 1, where output capacitor C

provides Iout for most of the period. Then,

−Iout

0

iC = (iD – Iout)

Page 14: EE462L, Fall 2011 DC − DC Buck/Boost Converter

14

Worst case ripple voltage on series capacitor C1

2Iin

−2Iou

t

0

iC1

fC

IV out

1

switch closed

switch open

1

1

11 C

TDI

C

DTI

C

QV inout

Then, considering the worst case (i.e., D = 1)

Page 15: EE462L, Fall 2011 DC − DC Buck/Boost Converter

15

Voltage ratings

MOSFET and diode see (Vin + Vout)

• Diode and MOSFET, use 2(Vin + Vout)

• Capacitor C1, use 1.5Vin

• Capacitor C, use 1.5Vout

Vin

L1 C1

+ Vin –

L2

+ Vout

C

– (Vin + Vout) +

Vin

L1

– Vout +

C1

+ Vin –

L2

+ Vout

C

Page 16: EE462L, Fall 2011 DC − DC Buck/Boost Converter

16

Continuous current in L1sec/

1A

L

Vout

fL

DVTD

LD

DV

TDL

VI

boundary

in

boundary

in

boundary

outin 1

11

111

2

fI

DVL

in

inboundary 2

1

2Iin

0Iavg = Iin

iL

(1 − D)T

fI

VL

in

in

21 guarantees continuous conduction

Then, considering the worst case (i.e., D → 1),

use max

use min

Page 17: EE462L, Fall 2011 DC − DC Buck/Boost Converter

17

Continuous current in L2

sec/ 2A

L

Vout

fL

DVTD

L

VI

boundary

out

boundary

outout 2

)1()1(

22

2Iout

0

Iavg = Iout

iL

(1 − D)T

fI

DVL

out

outboundary 2

)1(2

fI

VL

out

out

22 guarantees continuous conduction

Then, considering the worst case (i.e., D → 0),

use max

use min

Page 18: EE462L, Fall 2011 DC − DC Buck/Boost Converter

18

Impedance matching

out

outload I

VR

equivR

load

out

out

out

out

in

inequiv R

D

D

I

V

D

D

D

DID

VD

I

VR

22 11

1

1

DC−DC Boost Converter

+

Vin

+

Iin

+

Vin

Iin

Equivalent from source perspective

Source D

DVV inout

1

D

DII inout

1

Page 19: EE462L, Fall 2011 DC − DC Buck/Boost Converter

19

Impedance matching

load

out

out

out

out

in

inequiv R

D

D

I

V

D

D

D

DID

VD

I

VR

22 11

1

1

For any Rload, as D → 0, then Requiv → ∞ (i.e., an open circuit)

For any Rload, as D → 1, then Requiv → 0 (i.e., a short circuit)

Thus, the buck/boost converter can sweep the entire I-V curve of a solar panel

Page 20: EE462L, Fall 2011 DC − DC Buck/Boost Converter

20

Example - connect a 100Ω load resistor

PV Station 13, Bright Sun, Dec. 6, 2002

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45

V(panel) - volts

I - a

mp

s

D = 0.80

6.44Ω equiv.

100Ω equiv.

D = 0.50

D = 0.88

2Ω e

quiv

.

With a 100Ω load resistor attached, raising D from 0 to 1 moves the solar panel load from the open circuit condition to the short circuit condition

Page 21: EE462L, Fall 2011 DC − DC Buck/Boost Converter

21

Example - connect a 5Ω load resistor

PV Station 13, Bright Sun, Dec. 6, 2002

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45

V(panel) - volts

I - a

mp

s

D = 0.47

6.44Ω equiv.

100Ω equiv.

D = 0.18

D = 0.61

2Ω e

quiv

.

Page 22: EE462L, Fall 2011 DC − DC Buck/Boost Converter

22

Worst-Case Component Ratings Comparisons for DC-DC Converters

Converter Type

Input Inductor

Current (Arms)

Output Capacitor Voltage

Output Capacitor Current (Arms)

Diode and MOSFET Voltage

Diode and MOSFET Current (Arms)

Buck/Boost inI

3

2

1.5 outV

outin II ,

3

2max

)(2 outin VV outin II 3

2

5.66A p-p 200V, 250V 16A, 20A

Our components

9A 250V

10A, 5A10A 90V 40V, 90V

Likely worst-case buck/boost situation

10A, 5A

MOSFET M. 250V, 20A

L1. 100µH, 9A

C. 1500µF, 250V, 5.66A p-p

Diode D. 200V, 16A

L2. 100µH, 9A

C1. 33µF, 50V, 14A p-p

BUCK/BOOST DESIGN

Page 23: EE462L, Fall 2011 DC − DC Buck/Boost Converter

23

Comparisons of Output Capacitor Ripple Voltage

Converter Type Volts (peak-to-peak) Buck/Boost

Cf

Iout

5A

1500µF 50kHz

0.067V

MOSFET M. 250V, 20A

L1. 100µH, 9A

C. 1500µF, 250V, 5.66A p-p

Diode D. 200V, 16A

L2. 100µH, 9A

C1. 33µF, 50V, 14A p-p

BUCK/BOOST DESIGN

Page 24: EE462L, Fall 2011 DC − DC Buck/Boost Converter

24

Minimum Inductance Values Needed to Guarantee Continuous Current

Converter Type For Continuous

Current in the Input Inductor

For Continuous Current in L2

Buck/Boost

fI

VL

in

in

21 fI

VL

out

out

22

40V

2A 50kHz

200µH

90V

2A 50kHz

450µH

MOSFET M. 250V, 20A

L1. 100µH, 9A

C. 1500µF, 250V, 5.66A p-p

Diode D. 200V, 16A

L2. 100µH, 9A

C1. 33µF, 50V, 14A p-p

BUCK/BOOST DESIGN

Page 25: EE462L, Fall 2011 DC − DC Buck/Boost Converter

25

Additional Components for Buck/Boost Converter

Series Capacitor

Voltage

Series Capacitor (C1)

Current (Arms)

Series Capacitor (C1)

Ripple Voltage (peak-to-peak)

Second Inductor (L2)

Current (Arms)

1.5 inV

outin II

3

2,

3

2max

fC

Iout

1 outI

3

2

MOSFET M. 250V, 20A

L1. 100µH, 9A

C. 1500µF, 250V, 5.66A p-p

Diode D. 200V, 16A

L2. 100µH, 9A

C1. 33µF, 50V, 14A p-p

10A 5A40V

Likely worst-case buck/boost situation

5A

5A

33µF 50kHz3.0V

BUCK/BOOST DESIGN

Our components 9A14A p-p50V

Conclusion - 50kHz may be too low for buck/boost converter

Page 26: EE462L, Fall 2011 DC − DC Buck/Boost Converter

26

Worst-Case Component Ratings Comparisons for DC-DC Converters

Converter Type

Input Inductor Current (Arms)

Output Capacitor Voltage

Output Capacitor Current (Arms)

Diode and

MOSFET Voltage

Diode and MOSFET

Current (Arms) Buck

outI3

2

1.5 outV outI

3

1

2 inV outI

3

2

Boost inI

3

2

1.5 outV outI 2 outV inI

3

2

Buck/Boost inI

3

2

1.5 outV

outin II ,

3

2max

outin VV 2 outin II 3

2

Additional Components for Buck/Boost Converter

Series Capacitor

Voltage

Series Capacitor (C1)

Current (Arms)

Series Capacitor (C1) Ripple

Voltage (peak-to-peak)

Second Inductor (L2) Current

(Arms)

1.5 inV

outin II

3

2,

3

2max

fC

Iout

1 outI

3

2

Page 27: EE462L, Fall 2011 DC − DC Buck/Boost Converter

27

Comparisons of Output Capacitor Ripple Voltage Converter Type Volts (peak-to-peak)

Buck

Cf

Iout4

Boost

Cf

Iout

Buck/Boost

Cf

Iout

Minimum Inductance Values Needed to Guarantee Continuous Current

Converter Type For Continuous Current in the Input Inductor

For Continuous Current in L2

Buck

fI

VL

out

out

2

Boost

fI

VL

in

in

2

Buck/Boost

fI

VL

in

in

21 fI

VL

out

out

22