Electrical Design of Overhead power Transmission lines

Embed Size (px)

Citation preview

  • 8/18/2019 Electrical Design of Overhead power Transmission lines

    1/9

    Electrical  Design  of

    Overhead   Power

    Transmission   Lines

    Masoud  Farzaneh

    Shahab   Farokhi

    William  A.   Chisholm

    Mc

    Graw

    Hill

    New   York Chicago   San   Francisco

    Lisbon   London   Madrid Mexico City

    Milan   New   Delhi   San   Juan

    Seoul Singapore   Sydney   Toronto

  • 8/18/2019 Electrical Design of Overhead power Transmission lines

    2/9

    Contents

    Preface   xiii

     Acknowledgments   xv

    Chapter   1   Introduction   1

    1.1 History   of Electric   Power Systems   1

    1.2 Organization   of   Modern Electric

    Power Systems   2

    1.3   Modern Transmission System   Alternatives   ...   3

    1.4 Components   of   Overhead   Transmission   Lines   6

    1.5 Organization   of   the   Book   8

    1.5.1   The  Learning  Objective   Initiative 8

    1.5.2   Links   to Industrial   Resources   and

    Standards   9

    1.5.3   Level   of Treatment   9

    1.5.4 Chapter   1:   Introduction   101.5.5 Chapter 2:  AC Circuits  and Sequence

    Circuits   of   Power Networks   10

    1.5.6 Chapter 3:   Matrix   Methods   in

     AC   Power System  Analysis   11

    1.5.7 Chapter 4:   Overhead  Transmission

    Line Parameters   11

    1.5.8 Chapter 5: Modeling   of

    Transmission   Lines   11

    1.5.9 Chapter   6:  AC   Power-Flow  Analysis

    Using   Iterative   Methods   11

    1.5.10 Chapter   7: Symmetrical   Faults 12

    1.5.11 Chapter   8: Unsymmetrical   Faults 12

    1.5.12 Chapter 9:   Control   of Voltage   and

    Power   Flow   12

    1.5.13   Chapter   10:   Stability   in  AC   Networks   ..   12

    1.5.14 Chapter   11: HVDC   Transmission   12

    1.5.15 Chapter   12:   AC-Corona   Effects   13

    1.5.16 Chapter   13 Lightning   Performance

    of Transmission   Lines   13

    1.5.17 Chapter   14:   Transmission Line

    Insulation  and   Coordination   13

    1.5.18 Chapter   15:  Ampacity   of

    Overhead   Line Conductors   14

    V

  • 8/18/2019 Electrical Design of Overhead power Transmission lines

    3/9

    yj   Electrical Design   of   Overhead   Power   Transmission   Lines

    Chapter   2   AC   Circuits  and Sequence   Circuits   of

    Power   Networks   15

    2.1   Introduction   15

    2.2 Single-Phase   Circuits   152.2.1   Power   in Single-Phase   Circuits   15

    2.2.2 Complex   Power   19

    2.3   Three-Phase   Circuits   22

    2.3.1   Balanced   Three-Phase   Circuits   22

    2.3.2   Unbalanced   Three-Phase  Circuits   27

    2.4 Single-Line  Diagram  and   Per-Phase

    Equivalent Circuit   Presentation   33

    2.5   Per-Unit

    Representation  35

    2.5.1   Definition   35

    2.5.2  Advantages   of   Per-Unit Presentation   ...   362.6 Symmetrical  Sequence  Impedance   of

    Power System   Components   39

    2.6.1 Symmetrical   Load Impedances   39

    2.6.2 Synchronous   Generators   44

    2.6.3   Power   Transformers   46

    2.6.4   Transmission   Lines   49

    2.7 Sequence Networks   50

    Problems   52

    References   53

    Chapter   3   Matrix   Methods   in  AC   Power  System

     Analysis   55

    3.1   Introduction   55

    3.2 Representation   of Generators

    and Impedances   55

    3.3   Bus  Analysis   and  Bus-Admittance

    Matrix, Ybus   56

    3.4 Loop  Analysis   and Bus-ImpedanceMatrix,   Z.   60' bus

    3.5   Node  Elimination by   Kron   Reduction   63

    3.6   Thevenin's Equivalent  Impedance  and

    Elements   of   Z.   Matrix   64^>us

    3.7   Modifications   of Z.   70^>U5

    3.8  Algorithm   for   Direct   Construction   of Zbus   73Problems   79

    References   80

    Chapter   4   Overhead   Transmission   Line   Parameters   81

    4.1   Introduction   81

    4.2   Resistance   81

    4.2.1   DC   Resistance   82

    4.2.2  Alternating-Current   (AC)   Resistance   ...   83

    4.3   Inductance   84

    4.3.1   Two-Wire   Solid-Conductor   Line   88

  • 8/18/2019 Electrical Design of Overhead power Transmission lines

    4/9

    Contents   vii

    4.3.2   Composite   Conductor UsingGeometric   Mean   Radius   90

    4.3.3   Three-Phase   Lines   with EqualConductor Spacing   93

    4.3.4   Three-Phase   Lines   with Unequal

    Conductor Spacing   94

    4.3.5   Lines   with Groups of Conductors   96

    4.3.6   Double-Circuit   Lines   98

    4.3.7   Earth   Return   101

    4.4 Capacitance   101

    4.4.1   Two-Wire   Solid-Conductor   Line   103

    4.4.2   Three-Phase   Lines   with EqualConductor Spacing   104

    4.4.3   Three-Phase   Lines   with UnequalConductor Spacing   105

    4.4.4   Bundled Conductor Using GMR   106

    4.4.5   Transmission   Lines   with Neutral

    Conductor   and   Earth   Return   107

    4.4.6   Double-Circuit   Lines   115

    Problems   116

    References   117

    Chapter   5 Modeling   of Transmission   Lines   119

    5.1   Introduction   119

    5.2   Transmission Line Representation   as   a

    Two-Port   Network   119

    5.3   Short   Transmission   Lines   121

    5.4   Medium   Transmission   Lines   126

    5.5 Long   Transmission   Lines   130

    5.5.1 Exponential  Form   130

    5.5.2   Hyperbolic   Form   133

    5.5.3 Equivalent  n-Circuit   140

    5.6   Power   Flow through   a   Transmission   Line   ....   141

    5.6.1   Maximum  Power   Flow   141

    5.6.2 Surge-Impedance   Loading   143

    5.6.3   Ferranti   Effect   146

    5.6.4   Transmission   Line Loadability   148

    Problems   151

    References   152

    Chapter   6   AC Power-Flow  Analysis   Using  Iterative

    Methods   153

    6.1   Introduction   153

    6.2   Power-Flow   Problem   153

    6.3   The Gauss-Seidel   Method   156

    6.4   The  Newton-Raphson  Method   168

    6.5 Decoupled  Newton-Raphson  Power   Flow

      ....   179

  • 8/18/2019 Electrical Design of Overhead power Transmission lines

    5/9

    vijj   Electrical   Design   of   Overhead   Power Transmission   Lines

    6.6   Fast Decoupled Newton-RaphsonPower   Flow   181

    Problems   184

    References   185

    Chapter   7 Symmetrical   Faults 187

    7.1   Introduction   187

    7.2   Fault   in   a   Series   R-L  Circuit   188

    7.3   Fault   in   an   Unloaded   Transmission

    Line with   a Single   Synchronous   Machine   193

    7.4   Fault   in   a   Loaded   Transmission   Line

    with   a Single   Synchronous   Machine   200

    7.5   Fault   in   a   Network   2037.5.1   Fault Calculation Using  Synchronous

    Machine   Internal Voltage   203

    7.5.2   Fault  Calculation Using   the Thevenin

    Equivalent  Circuit   206

    7.5.3   Fault   Calculation Using   the   Bus

    Impedance   Matrix Zbus   208

    Problems   217

    References   218

    Chapter   8   Unsymmetrical   Faults   219

    8.1   Introduction   219

    8.2 Types   of Unsymmetrical   Faults   219

    8.3   Fault   Calculation Using   Interconnection   of

    Sequence   Networks   221

    8.3.1 Single   Line-to-Ground   (L-G)   Fault   224

    8.3.2   Line-to-Line  (L-L)   Fault   230

    8.3.3   Double  Line-to-Ground (L-L-G)

    Fault   233

    8.3.4 Open-Conductor  Fault   236

    Problems   240

    References   241

    Chapter   9   Control of Voltage   and   Power Flow   243

    9.1   Introduction   243

    9.2   Generation   and  Absorption   of Reactive

    Power   243

    9.2.1   Loads   244

    9.2.2   Overhead   Transmission   Lines   244

    9.2.3 Underground   Cables 244

    9.2.4   Power   Transformers   244

    9.2.5 Capacitor   Banks   244

    9.2.6   Shunt Reactors   244

    9.2.7 Synchronous   Machines   244

    9.3   Series Compensation   246

    9.4   Shunt Compensation   2519.4.1   Shunt Capacitors   251

  • 8/18/2019 Electrical Design of Overhead power Transmission lines

    6/9

  • 8/18/2019 Electrical Design of Overhead power Transmission lines

    7/9

    X   Electrical   Design   of   Overhead   Power   Transmission   Lines

    Problems   340

    References   341

    Chapter   12   Corona and   Electric   Field   Effects   of

    Transmission   Lines   343

    12.1   Introduction   343

    12.2   Corona  Characteristics   344

    12.3   Calculation   of Corona Inception   on

    Single   Conductors   345

    12.4   Calculation   of Surface   Gradient   on

    Bundle  Conductors   351

    12.5   Power   Loss   355

    12.6   Electromagnetic   Interference   35712.6.1   Radio   Interference   359

    12.6.2   Television Interference   360

    12.6.3   Interference   with Digital

    Radio Systems   362

    12.7   Audible   Noise   362

    12.8   Corona   Wind   and   Vibration   Effects   364

    12.9   Corona Testing   364

    12.10   Evolution   of  EHV   and UHV

    Transmission Systems   366

    Problems   367

    References   367

    Chapter   13 Lightning   Performance   of   Transmission

    Lines   369

    13.1   Introduction   369

    13.2   Lightning  Characteristics   369

    13.3   Statistics   of Lightning   Stroke

    Peak Currents 372

    13.4 Interception   of   Flashes by   Transmission

    Lines   376

    13.5 Lightning   Protection Concepts   379

    13.6   Overhead   Ground wire Shielding   of

    Transmission   Lines   382

    13.6.1   Overhead   Groundwire   Conductors  ...

      384

    13.6.2 Computation   ofShielding

    Failure   Rate   385

    13.6.3 Computation   of Shielding   Failure

    Flashover  Rate 390

    13.6.4   Arrester Mitigation   ofShieldingFailure   Flashover   Rate   391

    13.7 Grounding   ofSupporting  Structures   395

    13.7.1 Step   and   Touch  Potentials   395

    13.7.2   Three-Terminal   Earth   Resistance

    Testing:  Fall of  Potential   Method   397

  • 8/18/2019 Electrical Design of Overhead power Transmission lines

    8/9

    Contents   xi

    13.7.3   Three-Terminal   Earth   Resistance

    Testing:   Oblique   Method   399

    13.7.4   Relation   between   Soil  Resistivity

    and   Resistance   400

    13.8   Computation   of Back-Flashover   Rate 403

    13.8.1   Calculation   of Coupled  Voltage

    on   Insulated   Phases   404

    13.8.2   Calculation   of Voltage  Rise from

    Tower   Inductance   405

    13.8.3   Calculation   of Voltage   Rise   from

    Tower Footing  Impedance   406

    13.8.4   Calculation   of  Back-Flashover   Rate   ...   409

    Problems   411

    References   412

    Chapter   14   Coordination   of Transmission-Line

    Insulation   415

    14.1   Introduction   415

    14.2   Statistical  Distributions   for  Insulation

    Coordination   416

    14.2.1   Classification   ofa   Distribution   of Data   416

    14.2.2   The  Normal   Distribution   for

    Flashover   of   a Single   Insulator   419

    14.2.3   The   Normal   Distribution   for

    Flashover   of Any   of Several

    Insulators   in   Parallel   422

    14.2.4   The Log-Normal   Distribution   423

    14.2.5   The   Weibull   Distribution   426

    14.2.6   The   Gumbel   Distribution   428

    14.3   Statistical Properties   of

    Electrical Strength   429

    14.3.1   The   Flashover   Process   in Air   429

    14.3.2 Switching Impulse   Flashover

    Strength   across   Air Gaps   431

    14.3.3   Power System  Voltage   Flashover

    Strength   across  Air Gaps   435

    14.3.4 Lightning  Impulse  Flashover

    Strength  across   Insulators   436

    14.3.5   The  AC   Flashover   Process   across   a

    Wet,   Polluted   Insulator   Surface   438

    14.3.6   The  AC   Flashover   Process   across   an

    Iced,   Polluted   Insulator Surface   443

    14.4   Statistical Properties   of  Electrical   and

    Environmental Stresses   445

    14.4.1 Switching Surge   445

    14.4.2 Lightning  Surge  447

  • 8/18/2019 Electrical Design of Overhead power Transmission lines

    9/9

    Electrical Design   of   Overhead   Power   Transmission   Lines

    14.4.3   Insulator   Surface Contamination   451

    14.4.4 Precipitation  Conductivity   452

    14.4.5   Climate   Factors   452

    14.5   Insulation   Coordination 453

    14.5.1   Deterministic Method:   Insulator

    Leakage   Distance   in   Polluted   Areas   ...   453

    14.5.2   Statistical   Method   with   One   Stress

    Variable: Switching  Surge   456

    14.5.3  Deterministic/Statistical   Method

    for   Two  Variables:  Wind Swing,

    Switching Surge   459

    14.5.4   StatisticalMethod

      forTwo

    Uncorrelated   Variables:

    Ground   Resistance   and LightningPeak  Current   464

    14.5.5   Statistical   Method   for Three

    Uncorrelated   Variables:   Insulator

    Pollution,   Ice Conductivity,   and   Ice

     Accretion  Thickness 468

    Problems   470

    References   471

    :er   15  Ampacity   of  Overhead   Line   Conductors   473

    15.1   Introduction   473

    15.2   Conductor   Materials  for   Overhead

    Transmission   Lines   474

    15.3   Stranded  Conductors   for

    Transmission   Lines   475

    15.4   Cross-Sections   of  ACSR  Conductors   477

    15.5   DC   Resistance   of ACSR Conductors   481

    15.6   AC   Resistance   of ACSR Conductors   482

    15.7   Mechanical Properties   of

     ACSR Conductors   485

    15.8 Sag-Tension   Behavior   in   a Single Span   492

    15.9   Effect   of Temperature   on Sag   and  Tension   ...   495

    15.10 Sag-Tension   Behavior   in Multiple  Spans   498

    15.11   The   Line Condition Surveyand   Line Rating   504

    15.12   Calculation   of Ampacity   506

    15.13   Conductors   for Improved   Ampacity   512

    Problems   513

    References   515

    List   of Symbols   and   Abbreviations   517

    Index   527