30
Electrochemical Camp 2012 Chapter 6 Potential Sweep Method Speaker : Yu-Yan Li Advisor : Kuo-Chuan Ho Aug, 6 th , 2012 1 Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

Electrochemical Camp 2012 Chapter 6 Potential Sweep Method Speaker : Yu-Yan Li Advisor : Kuo-Chuan Ho Aug, 6 th, 2012 1 Electro-Optical Materials Lab.,

Embed Size (px)

Citation preview

1

Electrochemical Camp 2012

Chapter 6Potential Sweep Method

Speaker : Yu-Yan LiAdvisor : Kuo-Chuan Ho

Aug, 6th, 2012

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

2

Outline

•Introduction to Linear Sweep Method (LSV) and Cyclic Voltammetry (CV)

•Three cases (rev, quasi-rev, irrev)•Detection limit of LSV•Multi-component system•Electrode reaction coupled with chemical

reaction (Chapter 12)•Application

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

3

6.1 Introduction•What is Linear Sweep voltammetry (LSV)?

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

Cottrell eq. (i-t)

Voltage ramp

Limiting Current Plateau (i-E)

Linear sweep voltammetry (LSV)

4

Linear Sweep Method (LSV)

•Why there is a peak?

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

Surface concentration

E→ Ep+

Co(0,t) → 0

E→ Ep-

Depletion effect results in small i

5

Linear Sweep Method (LSV)

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

Reduction begins and current starts to flow

A +e- →A‧

Mass transfer of A reaches maximum rate

Nonfaradaic current flowCo approaches to zero and

diffuse layer grows

6

Cyclic Voltammetry (CV)

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

Reverse the potential scan Reduction

Oxidation

7

6.2 Nernstian (Reversible) Systems

•Scanning potential•Planar electrode

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

(5.4.2)(5.4.3)(5.4.4)(5.4.5)(5.4.6)

8

Reversible Systems

•Time-dependent form

•Laplace transform → Convolution theorem

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

(6.2.2)

(6.2.3)

9

Reversible Systems

•The current

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

Find the maximum

(6.2.17)

(6.2.16)

10

Reversible Systems

•Peak current (at 25 )℃

•Peak potential

•Half-peak potential

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

ipA

A cm2

Co* mol/cm3

Docm2/sec

ν V/sec

(6.2.19)

(6.2.20)

(6.2.21)

11

Reversible Systems

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

(6.2.22)

ip ∝ ν1/2

i ∝ ν1/2

Ep ≠Ep(ν)

For reversible rxn

12

Detection limit of LSV• [Definition] The ratio of charging to Faradaic current

•<Assumption> Absence of adsorption/desorption influence either double

layer or Faradaic process

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

Faradaic current

Chargingcurrent

13

Detection limit of LSV•Capacitance of double layer

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

For DME

noise

signal

14

Detection limit of LSV•Effect of double layer charging at different sweep

rate

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

ν ↑ → ic /ip ↑Co* ↓ → ic /ip ↑The noise grows!

15

6.3 Totally Irreversible Systems

• Irreversible reaction•Boundary condition

•The current

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

(6.3.1)

(6.3.6)

16

Totally Irreversible Systems

•Peak current

•Peak potential

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

ip ∝ ν1/2

i ∝ ν1/2

Ep =Ep(ν)

For totally irrev.

(6.3.8)

(6.3.10)

(6.3.11)

17

6.4 Quasi-reversible Systems

•Boundary condition

•Parameter Λ

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

Do=DR=D

Λ ↑ , easy to reach equilibrium ( k0 ↑)

(6.4.4&5)

(6.4.2)

18

Quasi-reversible Systems

•Peak current

•Peak potential

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

For quasi-rev

ip ∝ ν1/2 (6.4.7)

(6.4.7)(6.4.8)

19

Summary

•Zone boundary for LSV

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

Reversible (Nernstian)Λ ≥ 15

k0 ≥0.3 ν1/2 cm/s

Quasi-reversible15 ≥ Λ ≥ 10-2(1+ )𝝰

0.3 ν1/2≥ k0 ≥2x10-5ν1/2 cm/s

Irreversible10-2(1+ ) 𝝰 ≥ Λ

k0 ≤ 2x10-5ν1/2 cm/s

Λ = Λ(ν)

20

6.5 Cyclic Voltammetry

•Scanning potential

•Two parameters•1. Ep,a – Ep,c 2. ip,a / ip,c

•ΔEp=| Ep,c – Ep,a| Formal potential

• approaching to E0’= (Ep,c + Ep,a)/2

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

(6.4.1)(6.4.2)

21

Reversible System

•Find• ip,a & ip,c

• If no ip,a / ip,c

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

(6.5.4)

22

Quasi-reversible System

•Wave shape & ΔEp f(∝ ν, α,k0,Eλ)

•Equivalent parameter

•For 0.3 <α< 0.7 the ΔEp is nearly

independent of α

•Ψ↑ as k0 ↑ or ν ↓ then ΔEp ↓

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

(6.5.5)

23

6.6 Multicomponent Systems and Multistep Charge Transfers

•For independent reactions

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

O +ne- →RO’ +n’e- →R’

O +n1e- →R1

R1 +n2e- →R2

For stepwise reduction

24

Peak Search

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

Method for obtaining baseline for measurement of ip’ of second wave

Method of allowing current of first wave to decay before scanning second wave

25

Electrode reaction coupled with chemical reaction (Chapter 12)

1. O +ne- R 5. ⇌2. O +ne- →R3. 6. 4. 7. 8.

O +ne- R⇌R Z⇌

O +ne- R⇌R → Z

O +ne- R⇌R +Z →O

O +ne- → RR +Z →O

Z O ⇌O +ne- R⇌

Z O ⇌O +ne- → R

Er

Ei

CrEr

CrEi

ErCr

ErCi

ErCi’

EiCi’

Electro-Optical Materials Lab., Dept. Chem. Eng., NTUCatalytic

26

CV Application –Diffusion control or Kinetic control

•Diffusion control

•Surface reaction control

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

(6.2.19)

(14.3.12)

For diffusion control ip ∝ ν1/2

For surface reaction controlip ∝ ν

27

CV Application – Surface reaction control

•PEDOT/FAD Electrode (達人‘ s work)

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

0 40 80 120 160 200-300

-200

-100

0

100

200

300

Ipa

Y=1.15X, R2= 0.998 Ipc

Y=-1.34X, R2= -0.998

Curr

ent den

sity

(A

cm

-2)

Scan rate (mV s-1)-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

3.125 to 200 mV s-1

3.125 to 200 mV s-1

Cur

rent

den

sity

(m

Acm

-2)

E (V vs. Ag/AgCl/sat'd KCl)

Modified electrode – surface reaction control

28

CV Application – Diffusion control

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

Diffusion control

29

Homework

•1. Bard Ch6 Problem 6.6

•2. Search a paper including the CV method (1) Introduce the materials briefly (2) Explain the graph ( ex: redox reaction, formal potential, reversible/irreversible……)

TPTA and BP system

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

30

Reference1. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals

and applications, 2nd ed., John Wiley & Sons, Inc., New York (2001).

2. Applied Electrochemistry Notes (嘉筠、仲偉)

3. Handout of Ch 6 (瑋翰)

4. Joseph Wang, Analytical

Electrochemistry, 3rd ed., John Wiley

& Sons, Inc., (2006)

5. 達人學長’ s work

6. M. Y. Yen et al., RSC Adv., 2012, 2, 2725-2728.

Electro-Optical Materials Lab., Dept. Chem. Eng., NTU

Thanks for your attention!