110
electronic structure, density- functional theory, plane waves Stefano Baroni Scuola Internazionale Superiore di Studi Avanzati and DEMOCRITOS National Simulation Center Trieste - Italy a quick overview of terms and concepts

electronic structure, density- functional theory, plane waves

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: electronic structure, density- functional theory, plane waves

electronic structure, density-functional theory, plane waves

Stefano BaroniScuola Internazionale Superiore di Studi Avanzati and

DEMOCRITOS National Simulation CenterTrieste - Italy

a quick overview of terms and concepts

Page 2: electronic structure, density- functional theory, plane waves

the saga of time and length scales

10-15 10-12 10-9 10-6 10-3

time [s]

length [m]

10-9

10-6

10-3

nano scale! = 1

! = 0macro scale

Page 3: electronic structure, density- functional theory, plane waves

the saga of time and length scales

10-15 10-12 10-9 10-6 10-3

time [s]

length [m]

10-9

10-6

10-3

nano scale! = 1

! = 0macro scale

hic sunt leones

Page 4: electronic structure, density- functional theory, plane waves

the saga of time and length scales

10-15 10-12 10-9 10-6 10-3

time [s]

length [m]

10-9

10-6

10-3

nano scale! = 1

! = 0macro scale

hic sunt leones

thermodynamics& finite elements

kinetic Monte Carlo

electronic structure methods

classical moleculardynamics

Page 5: electronic structure, density- functional theory, plane waves

size vs. accuracy

quantum many-body methods quantum Monte Carlo MP2, CCSD(T), CI GW, BSE

accuracy

size

/du

rati

on

classical empirical methods pair potentials force fields shell models

quantum empirical methods tight-binding embedded atom

quantum self-consistent methods density Functional Theory Hartree-Fock

Page 6: electronic structure, density- functional theory, plane waves

size vs. accuracy

quantum many-body methods quantum Monte Carlo MP2, CCSD(T), CI GW, BSE

accuracy

size

/du

rati

on

classical empirical methods pair potentials force fields shell models

quantum empirical methods tight-binding embedded atom

quantum self-consistent methods density Functional Theory Hartree-Fock

Page 7: electronic structure, density- functional theory, plane waves

ab initio simulations

i!∂Φ(r,R; t)∂t

=(− !2

2M

∂2

∂R2− !2

2m

∂2

∂r2+ V (r,R)

)Φ(r,R; t)

Page 8: electronic structure, density- functional theory, plane waves

MR = −∂E(R)∂R(

− !2

2m

∂2

∂r2+ V (r,R)

)Ψ(r|R) = E(R)Ψ(r|R)

ab initio simulations

The Born-Oppenheimer approximation (M≫m)

i!∂Φ(r,R; t)∂t

=(− !2

2M

∂2

∂R2− !2

2m

∂2

∂r2+ V (r,R)

)Φ(r,R; t)

Page 9: electronic structure, density- functional theory, plane waves

density-functional theory

V (r,R) =e2

2ZIZJ

|RI −RJ | −ZIe2

|ri −RI | +e2

21

|ri − rj |

Page 10: electronic structure, density- functional theory, plane waves

density-functional theory

V (r,R) =e2

2ZIZJ

|RI −RJ | −ZIe2

|ri −RI | +e2

21

|ri − rj |

Page 11: electronic structure, density- functional theory, plane waves

density-functional theory

DFT

V (r,R) =e2

2ZIZJ

|RI −RJ | −ZIe2

|ri −RI | +e2

21

|ri − rj |

V (r,R)→ e2

2ZIZJ

|RI −RJ | + v[ρ](r)

Page 12: electronic structure, density- functional theory, plane waves

ρ(r) =∑

v

|ψv(r)|2

density-functional theory

DFT

V (r,R) =e2

2ZIZJ

|RI −RJ | −ZIe2

|ri −RI | +e2

21

|ri − rj |

V (r,R)→ e2

2ZIZJ

|RI −RJ | + v[ρ](r)

Page 13: electronic structure, density- functional theory, plane waves

ρ(r) =∑

v

|ψv(r)|2Kohn-Sham Hamiltonian

density-functional theory

DFT

V (r,R) =e2

2ZIZJ

|RI −RJ | −ZIe2

|ri −RI | +e2

21

|ri − rj |

V (r,R)→ e2

2ZIZJ

|RI −RJ | + v[ρ](r)

(− !2

2m

∂2

∂r2+ v[ρ](r)

)ψv(r) = εvψv(r)

Page 14: electronic structure, density- functional theory, plane waves

functionals

G[f ] : f !→ R

Page 15: electronic structure, density- functional theory, plane waves

functionals

G[f ] : f !→ Rexamples:G[f ] = f(x0)

G[f ] =∫ b

af2(x)dx

G[f ] =∫ b

a|f ′(x)|2dx

· · ·

Page 16: electronic structure, density- functional theory, plane waves

functionals

x1

f(x)

x2 ... xi xN

f1f2

... fi

fN

G[f ] ≈ g(f1, f2, · · · , fN )G[f ] ≈ g(c1, c2, · · · , cN )

approximations:

G[f ] : f !→ Rexamples:G[f ] = f(x0)

G[f ] =∫ b

af2(x)dx

G[f ] =∫ b

a|f ′(x)|2dx

· · ·

Page 17: electronic structure, density- functional theory, plane waves

functionals

x1

f(x)

x2 ... xi xN

f1f2

... fi

fN

f(x) ≈∑

n

cnφn(x)

G[f ] ≈ g(f1, f2, · · · , fN )G[f ] ≈ g(c1, c2, · · · , cN )

approximations:

G[f ] : f !→ Rexamples:G[f ] = f(x0)

G[f ] =∫ b

af2(x)dx

G[f ] =∫ b

a|f ′(x)|2dx

· · ·

Page 18: electronic structure, density- functional theory, plane waves

functional derivatives

G[f0 + εf1] = G[f0] + ε

∫f1(x)

δG

δf(x)

∣∣∣∣f=f0

dx +O(ε2

)

Page 19: electronic structure, density- functional theory, plane waves

functional derivatives

G[f0 + εf1] = G[f0] + ε

∫f1(x)

δG

δf(x)

∣∣∣∣f=f0

dx +O(ε2

)

δG

δf(x)

∣∣∣∣f=f0

≈ 1h

∂g

∂fix1

f(x)

x2 ... xi xN

f1f2

... fi

fN

Page 20: electronic structure, density- functional theory, plane waves

functional derivatives

δG

δf(x)“ = ” lim

ε→0

G[f(•)− εδ(•− x)]−G[f(•)]ε

G[f0 + εf1] = G[f0] + ε

∫f1(x)

δG

δf(x)

∣∣∣∣f=f0

dx +O(ε2

)

δG

δf(x)

∣∣∣∣f=f0

≈ 1h

∂g

∂fix1

f(x)

x2 ... xi xN

f1f2

... fi

fN

Page 21: electronic structure, density- functional theory, plane waves

the Hellmann-Feynman theorem

E(λ) = minΨ

〈Ψ|H(λ)|Ψ〉

〈Ψ|Ψ〉 = 1

Page 22: electronic structure, density- functional theory, plane waves

the Hellmann-Feynman theorem

H(λ)Ψλ = E(λ)Ψλ

E(λ) = minΨ

〈Ψ|H(λ)|Ψ〉

〈Ψ|Ψ〉 = 1

Page 23: electronic structure, density- functional theory, plane waves

the Hellmann-Feynman theorem

g(λ) = minx

G[x, λ]

H(λ)Ψλ = E(λ)Ψλ

E(λ) = minΨ

〈Ψ|H(λ)|Ψ〉

〈Ψ|Ψ〉 = 1

Page 24: electronic structure, density- functional theory, plane waves

the Hellmann-Feynman theorem

g(λ) = minx

G[x, λ]

H(λ)Ψλ = E(λ)Ψλ

E(R) = minΨ

(E[Ψ, R]

)

E(λ) = minΨ

〈Ψ|H(λ)|Ψ〉

〈Ψ|Ψ〉 = 1

Page 25: electronic structure, density- functional theory, plane waves

the Hellmann-Feynman theorem

g(λ) = minx

G[x, λ]∂G

∂x

∣∣∣∣x=x(λ)

= 0

H(λ)Ψλ = E(λ)Ψλ

E(R) = minΨ

(E[Ψ, R]

)

E(λ) = minΨ

〈Ψ|H(λ)|Ψ〉

〈Ψ|Ψ〉 = 1

Page 26: electronic structure, density- functional theory, plane waves

the Hellmann-Feynman theorem

g(λ) = minx

G[x, λ]∂G

∂x

∣∣∣∣x=x(λ)

= 0

g(λ) = G[x(λ), λ]

H(λ)Ψλ = E(λ)Ψλ

E(R) = minΨ

(E[Ψ, R]

)

E(λ) = minΨ

〈Ψ|H(λ)|Ψ〉

〈Ψ|Ψ〉 = 1

Page 27: electronic structure, density- functional theory, plane waves

the Hellmann-Feynman theorem

g(λ) = minx

G[x, λ]∂G

∂x

∣∣∣∣x=x(λ)

= 0

g(λ) = G[x(λ), λ] g′(λ) = x′(λ)∂G

∂x

∣∣∣∣x=x(λ)

+∂G

∂λ

H(λ)Ψλ = E(λ)Ψλ

E(R) = minΨ

(E[Ψ, R]

)

E(λ) = minΨ

〈Ψ|H(λ)|Ψ〉

〈Ψ|Ψ〉 = 1

Page 28: electronic structure, density- functional theory, plane waves

the Hellmann-Feynman theorem

g(λ) = minx

G[x, λ]∂G

∂x

∣∣∣∣x=x(λ)

= 0

g(λ) = G[x(λ), λ] g′(λ) = x′(λ)∂G

∂x

∣∣∣∣x=x(λ)

+∂G

∂λ

H(λ)Ψλ = E(λ)Ψλ

E(R) = minΨ

(E[Ψ, R]

)

E(λ) = minΨ

〈Ψ|H(λ)|Ψ〉

〈Ψ|Ψ〉 = 1

Page 29: electronic structure, density- functional theory, plane waves

the Hellmann-Feynman theorem

g(λ) = minx

G[x, λ]∂G

∂x

∣∣∣∣x=x(λ)

= 0

g(λ) = G[x(λ), λ] g′(λ) = x′(λ)∂G

∂x

∣∣∣∣x=x(λ)

+∂G

∂λ

E′(λ) = 〈Ψλ|H ′(λ)|Ψλ〉

H(λ)Ψλ = E(λ)Ψλ

E(R) = minΨ

(E[Ψ, R]

)

E(λ) = minΨ

〈Ψ|H(λ)|Ψ〉

〈Ψ|Ψ〉 = 1

Page 30: electronic structure, density- functional theory, plane waves

conjugate variables & Legendre transforms

E = E(V, x)

V

Page 31: electronic structure, density- functional theory, plane waves

conjugate variables & Legendre transforms

E = E(V, x)

V

P = −∂E

∂V

V

Page 32: electronic structure, density- functional theory, plane waves

conjugate variables & Legendre transforms

E = E(V, x)

V

P = −∂E

∂V

V

Legendre transform: H(P,X) = E + PV

Page 33: electronic structure, density- functional theory, plane waves

properties: • E convex⇒ V ! P

• H(P,X) = maxV

(E(V,X) + PV

)

• Hellmann-Feynman:∂H

∂x=

∂E

∂x• H concave

• E(V,X) = minP

(H(P,X)− PV

)

conjugate variables & Legendre transforms

E = E(V, x)

V

P = −∂E

∂V

V

Legendre transform: H(P,X) = E + PV

Page 34: electronic structure, density- functional theory, plane waves

properties: • E convex⇒ V ! P

• H(P,X) = maxV

(E(V,X) + PV

)

• Hellmann-Feynman:∂H

∂x=

∂E

∂x• H concave

• E(V,X) = minP

(H(P,X)− PV

)

conjugate variables & Legendre transforms

E = E(V, x)

V

P = −∂E

∂V

V

Legendre transform: H(P,X) = E + PV

Page 35: electronic structure, density- functional theory, plane waves

properties: • E convex⇒ V ! P

• H(P,X) = maxV

(E(V,X) + PV

)

• Hellmann-Feynman:∂H

∂x=

∂E

∂x• H concave

• E(V,X) = minP

(H(P,X)− PV

)

conjugate variables & Legendre transforms

E = E(V, x)

V

P = −∂E

∂V

V

Legendre transform: H(P,X) = E + PV

Page 36: electronic structure, density- functional theory, plane waves

properties: • E convex⇒ V ! P

• H(P,X) = maxV

(E(V,X) + PV

)

• Hellmann-Feynman:∂H

∂x=

∂E

∂x• H concave

• E(V,X) = minP

(H(P,X)− PV

)

conjugate variables & Legendre transforms

E = E(V, x)

V

P = −∂E

∂V

V

Legendre transform: H(P,X) = E + PV

Page 37: electronic structure, density- functional theory, plane waves

properties: • E convex⇒ V ! P

• H(P,X) = maxV

(E(V,X) + PV

)

• Hellmann-Feynman:∂H

∂x=

∂E

∂x• H concave

• E(V,X) = minP

(H(P,X)− PV

)

conjugate variables & Legendre transforms

E = E(V, x)

V

P = −∂E

∂V

V

Legendre transform: H(P,X) = E + PV

Page 38: electronic structure, density- functional theory, plane waves

Hohenberg-Kohn DFT

H = − !2

2m

i

∂2

∂r2i

+12

i !=j

e2

|ri − rj | +∑

i

V (ri)

Page 39: electronic structure, density- functional theory, plane waves

Hohenberg-Kohn DFT

H = − !2

2m

i

∂2

∂r2i

+12

i !=j

e2

|ri − rj | +∑

i

V (ri)

E[V ] = minΨ

〈Ψ|K + W + V |Ψ〉

= minΨ

[〈Ψ|K + W |Ψ〉 +

∫ρ(r)V (r)dr

]

Page 40: electronic structure, density- functional theory, plane waves

Hohenberg-Kohn DFT

H = − !2

2m

i

∂2

∂r2i

+12

i !=j

e2

|ri − rj | +∑

i

V (ri)

properties: • E[V ] is convex (requires some work to demonstrate)

• ρ(r) =δE

δV (r)(from Hellmann-Feynman)

E[V ] = minΨ

〈Ψ|K + W + V |Ψ〉

= minΨ

[〈Ψ|K + W |Ψ〉 +

∫ρ(r)V (r)dr

]

Page 41: electronic structure, density- functional theory, plane waves

Hohenberg-Kohn DFT

H = − !2

2m

i

∂2

∂r2i

+12

i !=j

e2

|ri − rj | +∑

i

V (ri)

properties: • E[V ] is convex (requires some work to demonstrate)

• ρ(r) =δE

δV (r)(from Hellmann-Feynman)

E[V ] = minΨ

〈Ψ|K + W + V |Ψ〉

= minΨ

[〈Ψ|K + W |Ψ〉 +

∫ρ(r)V (r)dr

]

consequences: • V (r) ! ρ(r) (1st HK theorem)

• F [ρ] = E −∫

V (r)ρ(r)dr is the Legendre transform of E

• E[V ] = minρ

[F [ρ] +

∫V (r)ρ(r)dr

](2nd HK theorem)

Page 42: electronic structure, density- functional theory, plane waves

Hohenberg-Kohn DFT

H = − !2

2m

i

∂2

∂r2i

+12

i !=j

e2

|ri − rj | +∑

i

V (ri)

properties: • E[V ] is convex (requires some work to demonstrate)

• ρ(r) =δE

δV (r)(from Hellmann-Feynman)

E[V ] = minΨ

〈Ψ|K + W + V |Ψ〉

= minΨ

[〈Ψ|K + W |Ψ〉 +

∫ρ(r)V (r)dr

]

E[V ] = minρ

[F [ρ] +

∫V (r)ρ(r)dr

]

consequences: • V (r) ! ρ(r) (1st HK theorem)

• F [ρ] = E −∫

V (r)ρ(r)dr is the Legendre transform of E

• E[V ] = minρ

[F [ρ] +

∫V (r)ρ(r)dr

](2nd HK theorem)

Page 43: electronic structure, density- functional theory, plane waves

Kohn-Sham DFT

F [ρ] = T0[ρ] +e2

2

∫ρ(r)ρ(r′)|r− r′| drdr′ + Exc[ρ]

Page 44: electronic structure, density- functional theory, plane waves

Kohn-Sham DFT

F [ρ] = T0[ρ] +e2

2

∫ρ(r)ρ(r′)|r− r′| drdr′ + Exc[ρ]

δT0

δρ(r)+ e2

∫ρ(r′)

|r− r′|dr′ +

δExc

δρ(r)+ V (r) = µ

Page 45: electronic structure, density- functional theory, plane waves

Kohn-Sham DFT

F [ρ] = T0[ρ] +e2

2

∫ρ(r)ρ(r′)|r− r′| drdr′ + Exc[ρ]

δT0

δρ(r)+

vKS [ρ](r)︷ ︸︸ ︷

e2

∫ρ(r′)

|r− r′|dr′ +

δExc

δρ(r)+ V (r) = µ

Page 46: electronic structure, density- functional theory, plane waves

Kohn-Sham DFT

F [ρ] = T0[ρ] +e2

2

∫ρ(r)ρ(r′)|r− r′| drdr′ + Exc[ρ]

(− !2

2m∇2 + vKS [ρ](r)

)ψv(r) = εvψv(r)

δT0

δρ(r)+

vKS [ρ](r)︷ ︸︸ ︷

e2

∫ρ(r′)

|r− r′|dr′ +

δExc

δρ(r)+ V (r) = µ

ρ(r) =∑

v

|ψv(r)|2θ(εv − µ)

Page 47: electronic structure, density- functional theory, plane waves

KS equations from functional minimization

E[ψ,R] = − !2

2m

v

∫ψ∗

v(r)∂2ψv(r)

∂r2dr +

∫V (r,R)ρ(r)dr+

e2

2

∫ρ(r)ρ(r′)|r− r′| drdr′ + Exc[ρ]

Page 48: electronic structure, density- functional theory, plane waves

KS equations from functional minimization

E[ψ,R] = − !2

2m

v

∫ψ∗

v(r)∂2ψv(r)

∂r2dr +

∫V (r,R)ρ(r)dr+

e2

2

∫ρ(r)ρ(r′)|r− r′| drdr′ + Exc[ρ]

E(R) = minψ

(E[ψ,R]

)

∫ψ∗

u(r)ψv(r)dr = δuv

Page 49: electronic structure, density- functional theory, plane waves

KS equations from functional minimization

E[ψ,R] = − !2

2m

v

∫ψ∗

v(r)∂2ψv(r)

∂r2dr +

∫V (r,R)ρ(r)dr+

e2

2

∫ρ(r)ρ(r′)|r− r′| drdr′ + Exc[ρ]

E(R) = minψ

(E[ψ,R]

)

∫ψ∗

u(r)ψv(r)dr = δuv

δEKS

δψ∗v(r)

=∑

uv

Λvuψu(r)

Page 50: electronic structure, density- functional theory, plane waves

KS equations from functional minimization

E[ψ,R] = − !2

2m

v

∫ψ∗

v(r)∂2ψv(r)

∂r2dr +

∫V (r,R)ρ(r)dr+

e2

2

∫ρ(r)ρ(r′)|r− r′| drdr′ + Exc[ρ]

E(R) = minψ

(E[ψ,R]

)

∫ψ∗

u(r)ψv(r)dr = δuv

(− !2

2m∇2 + vKS [ρ](r)

)ψv(r) = εvψv(r)

δEKS

δψ∗v(r)

=∑

uv

Λvuψu(r)

Page 51: electronic structure, density- functional theory, plane waves

solving the Kohn-Sham equations

ψv(r) ! c(v, j)

ψv(r) =∑

j

c(j, v)ϕj(r)

Page 52: electronic structure, density- functional theory, plane waves

solving the Kohn-Sham equations

ψv(r) ! c(v, j)

ψv(r) =∑

j

c(j, v)ϕj(r)

δEKS

δψ∗v(r)

=∑

uv

Λvuψu(r)

Page 53: electronic structure, density- functional theory, plane waves

solving the Kohn-Sham equations

ψv(r) ! c(v, j)

j

hKS [c](i, j)c(j, v) = εvc(i, v)

ψv(r) =∑

j

c(j, v)ϕj(r)

δEKS

δψ∗v(r)

=∑

uv

Λvuψu(r)

Page 54: electronic structure, density- functional theory, plane waves

solving the Kohn-Sham equations

ψv(r) ! c(v, j)

j

hKS [c](i, j)c(j, v) = εvc(i, v)

c(i, v) = −∑

j

hKS [c](i, j)c(j, v)+

u

Λvuc(i, v)

ψv(r) =∑

j

c(j, v)ϕj(r)

δEKS

δψ∗v(r)

=∑

uv

Λvuψu(r)

Page 55: electronic structure, density- functional theory, plane waves

requirements

Page 56: electronic structure, density- functional theory, plane waves

requirements

‣ (effective) completeness easily checked and systematically improved

Page 57: electronic structure, density- functional theory, plane waves

requirements

‣ (effective) completeness easily checked and systematically improved

‣ matrix elements easy to calculate and/or Hψ products easily calculated on the fly

Page 58: electronic structure, density- functional theory, plane waves

requirements

‣ (effective) completeness easily checked and systematically improved

‣ matrix elements easy to calculate and/or Hψ products easily calculated on the fly

‣ Hartree and XC potentials easy to represent and calculate

Page 59: electronic structure, density- functional theory, plane waves

requirements

‣ (effective) completeness easily checked and systematically improved

‣ matrix elements easy to calculate and/or Hψ products easily calculated on the fly

‣ Hartree and XC potentials easy to represent and calculate

‣ orthogonality is a plus

Page 60: electronic structure, density- functional theory, plane waves

plane waves

periodic boundary conditions

ϕj(r) =1√Ω

eiqj ·r !2

2mq2

j ≤ Ecut

ϕ(x + ") = ϕ(x)→ qn =2π

"n

Page 61: electronic structure, density- functional theory, plane waves

plane waves

periodic boundary conditions

ϕj(r) =1√Ω

eiqj ·r !2

2mq2

j ≤ Ecut

ϕ(x + ") = ϕ(x)→ qn =2π

"n

q = G

finite systems (! = a)

Page 62: electronic structure, density- functional theory, plane waves

plane waves

periodic boundary conditions

ϕj(r) =1√Ω

eiqj ·r !2

2mq2

j ≤ Ecut

ϕ(x + ") = ϕ(x)→ qn =2π

"n

q = G

finite systems (! = a)

ψvk(r) = eik·rukv(r)k ∈ BZ u(x + a) = u(x)

infinite crystals (! = L)

Page 63: electronic structure, density- functional theory, plane waves

using plane waves

−∇2ψ(r) #−→ |k + G|2cnk(G)

V (r)ψ(r) #−→∫

e−iG·rV (r)unk(r)dr

ρ(r) =∑

vk

|uvk(r)|2

Vxc(r) = µxc

(ρ(r)

)

VH(r) = e2

∫ρ(r′)

|r− r′|dr′

= e2∑

G"=0

eiG·r 4π

G2ρ(G)

Page 64: electronic structure, density- functional theory, plane waves

PWs: pros & cons

Page 65: electronic structure, density- functional theory, plane waves

PWs: pros & cons

approach to completeness easily and systematically checked (|k+G|2<Ecut)

Page 66: electronic structure, density- functional theory, plane waves

PWs: pros & cons

approach to completeness easily and systematically checked (|k+G|2<Ecut)

basis set independent of nuclear positions (no Pulay forces)

Page 67: electronic structure, density- functional theory, plane waves

PWs: pros & cons

approach to completeness easily and systematically checked (|k+G|2<Ecut)

basis set independent of nuclear positions (no Pulay forces)

matrix elements and Hψ poducts easily calculated

Page 68: electronic structure, density- functional theory, plane waves

PWs: pros & cons

approach to completeness easily and systematically checked (|k+G|2<Ecut)

basis set independent of nuclear positions (no Pulay forces)

matrix elements and Hψ poducts easily calculated

density, Hartree, and XC potentials easily calculated

Page 69: electronic structure, density- functional theory, plane waves

PWs: pros & cons

approach to completeness easily and systematically checked (|k+G|2<Ecut)

basis set independent of nuclear positions (no Pulay forces)

matrix elements and Hψ poducts easily calculated

density, Hartree, and XC potentials easily calculated

orthonormality

Page 70: electronic structure, density- functional theory, plane waves

PWs: pros & cons

approach to completeness easily and systematically checked (|k+G|2<Ecut)

basis set independent of nuclear positions (no Pulay forces)

matrix elements and Hψ poducts easily calculated

density, Hartree, and XC potentials easily calculated

orthonormality

basis set depends on volume shape/size (Pulay stress)

Page 71: electronic structure, density- functional theory, plane waves

PWs: pros & cons

approach to completeness easily and systematically checked (|k+G|2<Ecut)

basis set independent of nuclear positions (no Pulay forces)

matrix elements and Hψ poducts easily calculated

density, Hartree, and XC potentials easily calculated

orthonormality

basis set depends on volume shape/size (Pulay stress)

uniform spatial resolution (no core states!)

Page 72: electronic structure, density- functional theory, plane waves

treating core states

1

2

3

4

5

6

7

Perio

d

* The systematic names and symbols for elements greater than 110 will be used until the approval of trivial names by IUPAC.

A team at Lawrence Berkeley National Laboratories reported the discovery of elements 116 and 118 in June 1999.The same team retracted the discovery in July 2001. The discovery of elements 113, 114, and 115 has been reported but not confirmed.

HydrogenSemiconductors(also known as metalloids)

MetalsAlkali metalsAlkaline-earth metalsTransition metalsOther metals

NonmetalsHalogensNoble gasesOther nonmetals

Key:6

CCarbon12.0107

Atomic number

Symbol

Name

Average atomic mass

Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9

Group 1 Group 2 Group 14 Group 15 Group 16 Group 17

Group 18

Group 10 Group 11 Group 12

Group 13

6.941

22.989 770

39.0983

85.4678

132.905 43

(223)

140.116

232.0381

140.907 65

231.035 88

144.24

238.028 91

(145)

(237)

150.36

(244)

9.012 182

24.3050

40.078

87.62

137.327

(226)

44.955 910

88.905 85

138.9055

(227)

47.867

91.224

178.49

(261)

50.9415

92.906 38

180.9479

(262)

51.9961

95.94

183.84

(266)

54.938 049

(98)

186.207

(264)

55.845

101.07

190.23

(277)

58.933 200

102.905 50

192.217

(268)

1.007 94

151.964

(243)

157.25

(247)

158.925 34

(247)

162.500

(251)

164.930 32

(252)

167.259

(257)

168.934 21

(258)

173.04

(259)

174.967

(262)

58.6934 63.546 65.409 69.723 72.64 74.921 60 78.96 79.904 83.798

26.981 538 28.0855 30.973 761 32.065 35.453 39.948

12.0107 14.0067 15.9994 18.998 4032 20.1797

4.002 602

106.42 107.8682 112.411 114.818 118.710 121.760 127.60 126.904 47 131.293

195.078

(281) (272) (285) (284) (288)(289)

196.966 55 200.59 204.3833 207.2 208.980 38 (209) (210) (222)

10.811Lithium

Sodium

Potassium

Rubidium

Cesium

Francium

Cerium

Thorium

Praseodymium

Protactinium

Neodymium

Uranium

Promethium

Neptunium

Samarium

Plutonium

Beryllium

Magnesium

Calcium

Strontium

Barium

Radium

Scandium

Yttrium

Lanthanum

Actinium

Titanium

Zirconium

Hafnium

Rutherfordium

Vanadium

Niobium

Tantalum

Dubnium

Chromium

Molybdenum

Tungsten

Seaborgium

Manganese

Technetium

Rhenium

Bohrium

Iron

Ruthenium

Osmium

Hassium

Cobalt

Rhodium

Iridium

Meitnerium

Hydrogen

Europium

Americium

Gadolinium

Curium

Terbium

Berkelium

Dysprosium

Californium

Holmium

Einsteinium

Erbium

Fermium

Thulium

Mendelevium

Ytterbium

Nobelium

Lutetium

Lawrencium

Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton

Aluminum Silicon Phosphorus Sulfur Chlorine Argon

Carbon Nitrogen Oxygen Fluorine Neon

Helium

Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon

Platinum

Darmstadtium Unununium Ununbium Ununtrium UnunpentiumUnunquadium

Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon

Boron

Eu

Am

Gd

Cm

Tb

Bk

Dy

Cf

Ni Cu Zn Ga Ge As Se Br Kr

Al Si P S Cl Ar

C N O F Ne

He

Pd Ag Cd In Sn Sb Te I Xe

Pt

Ds Uuu* Uub* Uut* Uup*Uuq*

Au Hg Tl Pb Bi Po At Rn

Ho

Es

Er

Fm

Tm

Md

Yb

No

Lu

Lr

BLi

V

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Sc

Y

La

Ac

Ti

Zr

Hf

Rf

Nb

Ta

Db

Cr

Mo

W

Sg

Mn

Tc

Re

Bh

IrOs

Ce

Th

Pr

Pa

Nd

U

Pm

Np

Sm

Pu

Fe

Ru

Hs

Co

Rh

Mt

H

3

11

19

37

55

87

4

12

20

38

56

88

21

39

57

89

22

40

72

104

23

41

73

105

24

42

74

106

25

43

75

107

26

44

76 77

108

27

45

109

1

58

90

59

91

60

92

61

93

62

94

63

95

64

96

65

97

66

98

67

99

68

100

69

101

70

102

71

103

28 29 30 31 32 33 34 35 36

13 14 15 16 17 18

6 7 8 9 10

2

46 47 48 49 50 51 52 53 54

78

110 111 112 113 115114

79 80 81 82 83 84 85 86

5

The atomic masses listed in this table reflect the precision of current measurements. (Values listed in parentheses are the mass numbers of those radioactive elements’ most stable or most common isotopes.)

1

2

3

4

5

6

7

Perio

d

* The systematic names and symbols for elements greater than 110 will be used until the approval of trivial names by IUPAC.

A team at Lawrence Berkeley National Laboratories reported the discovery of elements 116 and 118 in June 1999.The same team retracted the discovery in July 2001. The discovery of elements 113, 114, and 115 has been reported but not confirmed.

HydrogenSemiconductors(also known as metalloids)

MetalsAlkali metalsAlkaline-earth metalsTransition metalsOther metals

NonmetalsHalogensNoble gasesOther nonmetals

Key:6

CCarbon12.0107

Atomic number

Symbol

Name

Average atomic mass

Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9

Group 1 Group 2 Group 14 Group 15 Group 16 Group 17

Group 18

Group 10 Group 11 Group 12

Group 13

6.941

22.989 770

39.0983

85.4678

132.905 43

(223)

140.116

232.0381

140.907 65

231.035 88

144.24

238.028 91

(145)

(237)

150.36

(244)

9.012 182

24.3050

40.078

87.62

137.327

(226)

44.955 910

88.905 85

138.9055

(227)

47.867

91.224

178.49

(261)

50.9415

92.906 38

180.9479

(262)

51.9961

95.94

183.84

(266)

54.938 049

(98)

186.207

(264)

55.845

101.07

190.23

(277)

58.933 200

102.905 50

192.217

(268)

1.007 94

151.964

(243)

157.25

(247)

158.925 34

(247)

162.500

(251)

164.930 32

(252)

167.259

(257)

168.934 21

(258)

173.04

(259)

174.967

(262)

58.6934 63.546 65.409 69.723 72.64 74.921 60 78.96 79.904 83.798

26.981 538 28.0855 30.973 761 32.065 35.453 39.948

12.0107 14.0067 15.9994 18.998 4032 20.1797

4.002 602

106.42 107.8682 112.411 114.818 118.710 121.760 127.60 126.904 47 131.293

195.078

(281) (272) (285) (284) (288)(289)

196.966 55 200.59 204.3833 207.2 208.980 38 (209) (210) (222)

10.811Lithium

Sodium

Potassium

Rubidium

Cesium

Francium

Cerium

Thorium

Praseodymium

Protactinium

Neodymium

Uranium

Promethium

Neptunium

Samarium

Plutonium

Beryllium

Magnesium

Calcium

Strontium

Barium

Radium

Scandium

Yttrium

Lanthanum

Actinium

Titanium

Zirconium

Hafnium

Rutherfordium

Vanadium

Niobium

Tantalum

Dubnium

Chromium

Molybdenum

Tungsten

Seaborgium

Manganese

Technetium

Rhenium

Bohrium

Iron

Ruthenium

Osmium

Hassium

Cobalt

Rhodium

Iridium

Meitnerium

Hydrogen

Europium

Americium

Gadolinium

Curium

Terbium

Berkelium

Dysprosium

Californium

Holmium

Einsteinium

Erbium

Fermium

Thulium

Mendelevium

Ytterbium

Nobelium

Lutetium

Lawrencium

Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton

Aluminum Silicon Phosphorus Sulfur Chlorine Argon

Carbon Nitrogen Oxygen Fluorine Neon

Helium

Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon

Platinum

Darmstadtium Unununium Ununbium Ununtrium UnunpentiumUnunquadium

Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon

Boron

Eu

Am

Gd

Cm

Tb

Bk

Dy

Cf

Ni Cu Zn Ga Ge As Se Br Kr

Al Si P S Cl Ar

C N O F Ne

He

Pd Ag Cd In Sn Sb Te I Xe

Pt

Ds Uuu* Uub* Uut* Uup*Uuq*

Au Hg Tl Pb Bi Po At Rn

Ho

Es

Er

Fm

Tm

Md

Yb

No

Lu

Lr

BLi

V

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Sc

Y

La

Ac

Ti

Zr

Hf

Rf

Nb

Ta

Db

Cr

Mo

W

Sg

Mn

Tc

Re

Bh

IrOs

Ce

Th

Pr

Pa

Nd

U

Pm

Np

Sm

Pu

Fe

Ru

Hs

Co

Rh

Mt

H

3

11

19

37

55

87

4

12

20

38

56

88

21

39

57

89

22

40

72

104

23

41

73

105

24

42

74

106

25

43

75

107

26

44

76 77

108

27

45

109

1

58

90

59

91

60

92

61

93

62

94

63

95

64

96

65

97

66

98

67

99

68

100

69

101

70

102

71

103

28 29 30 31 32 33 34 35 36

13 14 15 16 17 18

6 7 8 9 10

2

46 47 48 49 50 51 52 53 54

78

110 111 112 113 115114

79 80 81 82 83 84 85 86

5

The atomic masses listed in this table reflect the precision of current measurements. (Values listed in parentheses are the mass numbers of those radioactive elements’ most stable or most common isotopes.)

ε1s ∼ Z2 a1s ∼1Z

Ecut ∼ Z2

Page 73: electronic structure, density- functional theory, plane waves

treating core states

1

2

3

4

5

6

7

Perio

d

* The systematic names and symbols for elements greater than 110 will be used until the approval of trivial names by IUPAC.

A team at Lawrence Berkeley National Laboratories reported the discovery of elements 116 and 118 in June 1999.The same team retracted the discovery in July 2001. The discovery of elements 113, 114, and 115 has been reported but not confirmed.

HydrogenSemiconductors(also known as metalloids)

MetalsAlkali metalsAlkaline-earth metalsTransition metalsOther metals

NonmetalsHalogensNoble gasesOther nonmetals

Key:6

CCarbon12.0107

Atomic number

Symbol

Name

Average atomic mass

Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9

Group 1 Group 2 Group 14 Group 15 Group 16 Group 17

Group 18

Group 10 Group 11 Group 12

Group 13

6.941

22.989 770

39.0983

85.4678

132.905 43

(223)

140.116

232.0381

140.907 65

231.035 88

144.24

238.028 91

(145)

(237)

150.36

(244)

9.012 182

24.3050

40.078

87.62

137.327

(226)

44.955 910

88.905 85

138.9055

(227)

47.867

91.224

178.49

(261)

50.9415

92.906 38

180.9479

(262)

51.9961

95.94

183.84

(266)

54.938 049

(98)

186.207

(264)

55.845

101.07

190.23

(277)

58.933 200

102.905 50

192.217

(268)

1.007 94

151.964

(243)

157.25

(247)

158.925 34

(247)

162.500

(251)

164.930 32

(252)

167.259

(257)

168.934 21

(258)

173.04

(259)

174.967

(262)

58.6934 63.546 65.409 69.723 72.64 74.921 60 78.96 79.904 83.798

26.981 538 28.0855 30.973 761 32.065 35.453 39.948

12.0107 14.0067 15.9994 18.998 4032 20.1797

4.002 602

106.42 107.8682 112.411 114.818 118.710 121.760 127.60 126.904 47 131.293

195.078

(281) (272) (285) (284) (288)(289)

196.966 55 200.59 204.3833 207.2 208.980 38 (209) (210) (222)

10.811Lithium

Sodium

Potassium

Rubidium

Cesium

Francium

Cerium

Thorium

Praseodymium

Protactinium

Neodymium

Uranium

Promethium

Neptunium

Samarium

Plutonium

Beryllium

Magnesium

Calcium

Strontium

Barium

Radium

Scandium

Yttrium

Lanthanum

Actinium

Titanium

Zirconium

Hafnium

Rutherfordium

Vanadium

Niobium

Tantalum

Dubnium

Chromium

Molybdenum

Tungsten

Seaborgium

Manganese

Technetium

Rhenium

Bohrium

Iron

Ruthenium

Osmium

Hassium

Cobalt

Rhodium

Iridium

Meitnerium

Hydrogen

Europium

Americium

Gadolinium

Curium

Terbium

Berkelium

Dysprosium

Californium

Holmium

Einsteinium

Erbium

Fermium

Thulium

Mendelevium

Ytterbium

Nobelium

Lutetium

Lawrencium

Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton

Aluminum Silicon Phosphorus Sulfur Chlorine Argon

Carbon Nitrogen Oxygen Fluorine Neon

Helium

Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon

Platinum

Darmstadtium Unununium Ununbium Ununtrium UnunpentiumUnunquadium

Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon

Boron

Eu

Am

Gd

Cm

Tb

Bk

Dy

Cf

Ni Cu Zn Ga Ge As Se Br Kr

Al Si P S Cl Ar

C N O F Ne

He

Pd Ag Cd In Sn Sb Te I Xe

Pt

Ds Uuu* Uub* Uut* Uup*Uuq*

Au Hg Tl Pb Bi Po At Rn

Ho

Es

Er

Fm

Tm

Md

Yb

No

Lu

Lr

BLi

V

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Sc

Y

La

Ac

Ti

Zr

Hf

Rf

Nb

Ta

Db

Cr

Mo

W

Sg

Mn

Tc

Re

Bh

IrOs

Ce

Th

Pr

Pa

Nd

U

Pm

Np

Sm

Pu

Fe

Ru

Hs

Co

Rh

Mt

H

3

11

19

37

55

87

4

12

20

38

56

88

21

39

57

89

22

40

72

104

23

41

73

105

24

42

74

106

25

43

75

107

26

44

76 77

108

27

45

109

1

58

90

59

91

60

92

61

93

62

94

63

95

64

96

65

97

66

98

67

99

68

100

69

101

70

102

71

103

28 29 30 31 32 33 34 35 36

13 14 15 16 17 18

6 7 8 9 10

2

46 47 48 49 50 51 52 53 54

78

110 111 112 113 115114

79 80 81 82 83 84 85 86

5

The atomic masses listed in this table reflect the precision of current measurements. (Values listed in parentheses are the mass numbers of those radioactive elements’ most stable or most common isotopes.)

1

2

3

4

5

6

7

Perio

d

* The systematic names and symbols for elements greater than 110 will be used until the approval of trivial names by IUPAC.

A team at Lawrence Berkeley National Laboratories reported the discovery of elements 116 and 118 in June 1999.The same team retracted the discovery in July 2001. The discovery of elements 113, 114, and 115 has been reported but not confirmed.

HydrogenSemiconductors(also known as metalloids)

MetalsAlkali metalsAlkaline-earth metalsTransition metalsOther metals

NonmetalsHalogensNoble gasesOther nonmetals

Key:6

CCarbon12.0107

Atomic number

Symbol

Name

Average atomic mass

Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9

Group 1 Group 2 Group 14 Group 15 Group 16 Group 17

Group 18

Group 10 Group 11 Group 12

Group 13

6.941

22.989 770

39.0983

85.4678

132.905 43

(223)

140.116

232.0381

140.907 65

231.035 88

144.24

238.028 91

(145)

(237)

150.36

(244)

9.012 182

24.3050

40.078

87.62

137.327

(226)

44.955 910

88.905 85

138.9055

(227)

47.867

91.224

178.49

(261)

50.9415

92.906 38

180.9479

(262)

51.9961

95.94

183.84

(266)

54.938 049

(98)

186.207

(264)

55.845

101.07

190.23

(277)

58.933 200

102.905 50

192.217

(268)

1.007 94

151.964

(243)

157.25

(247)

158.925 34

(247)

162.500

(251)

164.930 32

(252)

167.259

(257)

168.934 21

(258)

173.04

(259)

174.967

(262)

58.6934 63.546 65.409 69.723 72.64 74.921 60 78.96 79.904 83.798

26.981 538 28.0855 30.973 761 32.065 35.453 39.948

12.0107 14.0067 15.9994 18.998 4032 20.1797

4.002 602

106.42 107.8682 112.411 114.818 118.710 121.760 127.60 126.904 47 131.293

195.078

(281) (272) (285) (284) (288)(289)

196.966 55 200.59 204.3833 207.2 208.980 38 (209) (210) (222)

10.811Lithium

Sodium

Potassium

Rubidium

Cesium

Francium

Cerium

Thorium

Praseodymium

Protactinium

Neodymium

Uranium

Promethium

Neptunium

Samarium

Plutonium

Beryllium

Magnesium

Calcium

Strontium

Barium

Radium

Scandium

Yttrium

Lanthanum

Actinium

Titanium

Zirconium

Hafnium

Rutherfordium

Vanadium

Niobium

Tantalum

Dubnium

Chromium

Molybdenum

Tungsten

Seaborgium

Manganese

Technetium

Rhenium

Bohrium

Iron

Ruthenium

Osmium

Hassium

Cobalt

Rhodium

Iridium

Meitnerium

Hydrogen

Europium

Americium

Gadolinium

Curium

Terbium

Berkelium

Dysprosium

Californium

Holmium

Einsteinium

Erbium

Fermium

Thulium

Mendelevium

Ytterbium

Nobelium

Lutetium

Lawrencium

Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton

Aluminum Silicon Phosphorus Sulfur Chlorine Argon

Carbon Nitrogen Oxygen Fluorine Neon

Helium

Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon

Platinum

Darmstadtium Unununium Ununbium Ununtrium UnunpentiumUnunquadium

Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon

Boron

Eu

Am

Gd

Cm

Tb

Bk

Dy

Cf

Ni Cu Zn Ga Ge As Se Br Kr

Al Si P S Cl Ar

C N O F Ne

He

Pd Ag Cd In Sn Sb Te I Xe

Pt

Ds Uuu* Uub* Uut* Uup*Uuq*

Au Hg Tl Pb Bi Po At Rn

Ho

Es

Er

Fm

Tm

Md

Yb

No

Lu

Lr

BLi

V

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Sc

Y

La

Ac

Ti

Zr

Hf

Rf

Nb

Ta

Db

Cr

Mo

W

Sg

Mn

Tc

Re

Bh

IrOs

Ce

Th

Pr

Pa

Nd

U

Pm

Np

Sm

Pu

Fe

Ru

Hs

Co

Rh

Mt

H

3

11

19

37

55

87

4

12

20

38

56

88

21

39

57

89

22

40

72

104

23

41

73

105

24

42

74

106

25

43

75

107

26

44

76 77

108

27

45

109

1

58

90

59

91

60

92

61

93

62

94

63

95

64

96

65

97

66

98

67

99

68

100

69

101

70

102

71

103

28 29 30 31 32 33 34 35 36

13 14 15 16 17 18

6 7 8 9 10

2

46 47 48 49 50 51 52 53 54

78

110 111 112 113 115114

79 80 81 82 83 84 85 86

5

The atomic masses listed in this table reflect the precision of current measurements. (Values listed in parentheses are the mass numbers of those radioactive elements’ most stable or most common isotopes.)

ε1s ∼ Z2 a1s ∼1Z

Ecut ∼ Z2

Page 74: electronic structure, density- functional theory, plane waves

NPW =4π

3k3

cutΩ

(2π)3

∼ Z3

treating core states

1

2

3

4

5

6

7

Perio

d

* The systematic names and symbols for elements greater than 110 will be used until the approval of trivial names by IUPAC.

A team at Lawrence Berkeley National Laboratories reported the discovery of elements 116 and 118 in June 1999.The same team retracted the discovery in July 2001. The discovery of elements 113, 114, and 115 has been reported but not confirmed.

HydrogenSemiconductors(also known as metalloids)

MetalsAlkali metalsAlkaline-earth metalsTransition metalsOther metals

NonmetalsHalogensNoble gasesOther nonmetals

Key:6

CCarbon12.0107

Atomic number

Symbol

Name

Average atomic mass

Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9

Group 1 Group 2 Group 14 Group 15 Group 16 Group 17

Group 18

Group 10 Group 11 Group 12

Group 13

6.941

22.989 770

39.0983

85.4678

132.905 43

(223)

140.116

232.0381

140.907 65

231.035 88

144.24

238.028 91

(145)

(237)

150.36

(244)

9.012 182

24.3050

40.078

87.62

137.327

(226)

44.955 910

88.905 85

138.9055

(227)

47.867

91.224

178.49

(261)

50.9415

92.906 38

180.9479

(262)

51.9961

95.94

183.84

(266)

54.938 049

(98)

186.207

(264)

55.845

101.07

190.23

(277)

58.933 200

102.905 50

192.217

(268)

1.007 94

151.964

(243)

157.25

(247)

158.925 34

(247)

162.500

(251)

164.930 32

(252)

167.259

(257)

168.934 21

(258)

173.04

(259)

174.967

(262)

58.6934 63.546 65.409 69.723 72.64 74.921 60 78.96 79.904 83.798

26.981 538 28.0855 30.973 761 32.065 35.453 39.948

12.0107 14.0067 15.9994 18.998 4032 20.1797

4.002 602

106.42 107.8682 112.411 114.818 118.710 121.760 127.60 126.904 47 131.293

195.078

(281) (272) (285) (284) (288)(289)

196.966 55 200.59 204.3833 207.2 208.980 38 (209) (210) (222)

10.811Lithium

Sodium

Potassium

Rubidium

Cesium

Francium

Cerium

Thorium

Praseodymium

Protactinium

Neodymium

Uranium

Promethium

Neptunium

Samarium

Plutonium

Beryllium

Magnesium

Calcium

Strontium

Barium

Radium

Scandium

Yttrium

Lanthanum

Actinium

Titanium

Zirconium

Hafnium

Rutherfordium

Vanadium

Niobium

Tantalum

Dubnium

Chromium

Molybdenum

Tungsten

Seaborgium

Manganese

Technetium

Rhenium

Bohrium

Iron

Ruthenium

Osmium

Hassium

Cobalt

Rhodium

Iridium

Meitnerium

Hydrogen

Europium

Americium

Gadolinium

Curium

Terbium

Berkelium

Dysprosium

Californium

Holmium

Einsteinium

Erbium

Fermium

Thulium

Mendelevium

Ytterbium

Nobelium

Lutetium

Lawrencium

Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton

Aluminum Silicon Phosphorus Sulfur Chlorine Argon

Carbon Nitrogen Oxygen Fluorine Neon

Helium

Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon

Platinum

Darmstadtium Unununium Ununbium Ununtrium UnunpentiumUnunquadium

Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon

Boron

Eu

Am

Gd

Cm

Tb

Bk

Dy

Cf

Ni Cu Zn Ga Ge As Se Br Kr

Al Si P S Cl Ar

C N O F Ne

He

Pd Ag Cd In Sn Sb Te I Xe

Pt

Ds Uuu* Uub* Uut* Uup*Uuq*

Au Hg Tl Pb Bi Po At Rn

Ho

Es

Er

Fm

Tm

Md

Yb

No

Lu

Lr

BLi

V

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Sc

Y

La

Ac

Ti

Zr

Hf

Rf

Nb

Ta

Db

Cr

Mo

W

Sg

Mn

Tc

Re

Bh

IrOs

Ce

Th

Pr

Pa

Nd

U

Pm

Np

Sm

Pu

Fe

Ru

Hs

Co

Rh

Mt

H

3

11

19

37

55

87

4

12

20

38

56

88

21

39

57

89

22

40

72

104

23

41

73

105

24

42

74

106

25

43

75

107

26

44

76 77

108

27

45

109

1

58

90

59

91

60

92

61

93

62

94

63

95

64

96

65

97

66

98

67

99

68

100

69

101

70

102

71

103

28 29 30 31 32 33 34 35 36

13 14 15 16 17 18

6 7 8 9 10

2

46 47 48 49 50 51 52 53 54

78

110 111 112 113 115114

79 80 81 82 83 84 85 86

5

The atomic masses listed in this table reflect the precision of current measurements. (Values listed in parentheses are the mass numbers of those radioactive elements’ most stable or most common isotopes.)

1

2

3

4

5

6

7

Perio

d

* The systematic names and symbols for elements greater than 110 will be used until the approval of trivial names by IUPAC.

A team at Lawrence Berkeley National Laboratories reported the discovery of elements 116 and 118 in June 1999.The same team retracted the discovery in July 2001. The discovery of elements 113, 114, and 115 has been reported but not confirmed.

HydrogenSemiconductors(also known as metalloids)

MetalsAlkali metalsAlkaline-earth metalsTransition metalsOther metals

NonmetalsHalogensNoble gasesOther nonmetals

Key:6

CCarbon12.0107

Atomic number

Symbol

Name

Average atomic mass

Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9

Group 1 Group 2 Group 14 Group 15 Group 16 Group 17

Group 18

Group 10 Group 11 Group 12

Group 13

6.941

22.989 770

39.0983

85.4678

132.905 43

(223)

140.116

232.0381

140.907 65

231.035 88

144.24

238.028 91

(145)

(237)

150.36

(244)

9.012 182

24.3050

40.078

87.62

137.327

(226)

44.955 910

88.905 85

138.9055

(227)

47.867

91.224

178.49

(261)

50.9415

92.906 38

180.9479

(262)

51.9961

95.94

183.84

(266)

54.938 049

(98)

186.207

(264)

55.845

101.07

190.23

(277)

58.933 200

102.905 50

192.217

(268)

1.007 94

151.964

(243)

157.25

(247)

158.925 34

(247)

162.500

(251)

164.930 32

(252)

167.259

(257)

168.934 21

(258)

173.04

(259)

174.967

(262)

58.6934 63.546 65.409 69.723 72.64 74.921 60 78.96 79.904 83.798

26.981 538 28.0855 30.973 761 32.065 35.453 39.948

12.0107 14.0067 15.9994 18.998 4032 20.1797

4.002 602

106.42 107.8682 112.411 114.818 118.710 121.760 127.60 126.904 47 131.293

195.078

(281) (272) (285) (284) (288)(289)

196.966 55 200.59 204.3833 207.2 208.980 38 (209) (210) (222)

10.811Lithium

Sodium

Potassium

Rubidium

Cesium

Francium

Cerium

Thorium

Praseodymium

Protactinium

Neodymium

Uranium

Promethium

Neptunium

Samarium

Plutonium

Beryllium

Magnesium

Calcium

Strontium

Barium

Radium

Scandium

Yttrium

Lanthanum

Actinium

Titanium

Zirconium

Hafnium

Rutherfordium

Vanadium

Niobium

Tantalum

Dubnium

Chromium

Molybdenum

Tungsten

Seaborgium

Manganese

Technetium

Rhenium

Bohrium

Iron

Ruthenium

Osmium

Hassium

Cobalt

Rhodium

Iridium

Meitnerium

Hydrogen

Europium

Americium

Gadolinium

Curium

Terbium

Berkelium

Dysprosium

Californium

Holmium

Einsteinium

Erbium

Fermium

Thulium

Mendelevium

Ytterbium

Nobelium

Lutetium

Lawrencium

Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton

Aluminum Silicon Phosphorus Sulfur Chlorine Argon

Carbon Nitrogen Oxygen Fluorine Neon

Helium

Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon

Platinum

Darmstadtium Unununium Ununbium Ununtrium UnunpentiumUnunquadium

Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon

Boron

Eu

Am

Gd

Cm

Tb

Bk

Dy

Cf

Ni Cu Zn Ga Ge As Se Br Kr

Al Si P S Cl Ar

C N O F Ne

He

Pd Ag Cd In Sn Sb Te I Xe

Pt

Ds Uuu* Uub* Uut* Uup*Uuq*

Au Hg Tl Pb Bi Po At Rn

Ho

Es

Er

Fm

Tm

Md

Yb

No

Lu

Lr

BLi

V

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Sc

Y

La

Ac

Ti

Zr

Hf

Rf

Nb

Ta

Db

Cr

Mo

W

Sg

Mn

Tc

Re

Bh

IrOs

Ce

Th

Pr

Pa

Nd

U

Pm

Np

Sm

Pu

Fe

Ru

Hs

Co

Rh

Mt

H

3

11

19

37

55

87

4

12

20

38

56

88

21

39

57

89

22

40

72

104

23

41

73

105

24

42

74

106

25

43

75

107

26

44

76 77

108

27

45

109

1

58

90

59

91

60

92

61

93

62

94

63

95

64

96

65

97

66

98

67

99

68

100

69

101

70

102

71

103

28 29 30 31 32 33 34 35 36

13 14 15 16 17 18

6 7 8 9 10

2

46 47 48 49 50 51 52 53 54

78

110 111 112 113 115114

79 80 81 82 83 84 85 86

5

The atomic masses listed in this table reflect the precision of current measurements. (Values listed in parentheses are the mass numbers of those radioactive elements’ most stable or most common isotopes.)

ε1s ∼ Z2 a1s ∼1Z

Ecut ∼ Z2

Page 75: electronic structure, density- functional theory, plane waves

NPW =4π

3k3

cutΩ

(2π)3

∼ Z3

treating core states

1

2

3

4

5

6

7

Perio

d

* The systematic names and symbols for elements greater than 110 will be used until the approval of trivial names by IUPAC.

Key:6

CCarbon12.0107

Atomic number

Symbol

Name

Average atomic mass

Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Group 9

Group 1 Group 2

6.941

22.989 770

39.0983

85.4678

132.905 43

(223)

140.116

232.0381

140.907 65

231.035 88

144.24

238.028 91

(145)

(237)

150.36

(244)

9.012 182

24.3050

40.078

87.62

137.327

(226)

44.955 910

88.905 85

138.9055

(227)

47.867

91.224

178.49

(261)

50.9415

92.906 38

180.9479

(262)

51.9961

95.94

183.84

(266)

54.938 049

(98)

186.207

(264)

55.845

101.07

190.23

(277)

58.933 200

102.905 50

192.217

(268)

1.007 94

Lithium

Sodium

Potassium

Rubidium

Cesium

Francium

Cerium

Thorium

Praseodymium

Protactinium

Neodymium

Uranium

Promethium

Neptunium

Samarium

Plutonium

Beryllium

Magnesium

Calcium

Strontium

Barium

Radium

Scandium

Yttrium

Lanthanum

Actinium

Titanium

Zirconium

Hafnium

Rutherfordium

Vanadium

Niobium

Tantalum

Dubnium

Chromium

Molybdenum

Tungsten

Seaborgium

Manganese

Technetium

Rhenium

Bohrium

Iron

Ruthenium

Osmium

Hassium

Cobalt

Rhodium

Iridium

Meitnerium

Hydrogen

Li

V

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Sc

Y

La

Ac

Ti

Zr

Hf

Rf

Nb

Ta

Db

Cr

Mo

W

Sg

Mn

Tc

Re

Bh

IrOs

Ce

Th

Pr

Pa

Nd

U

Pm

Np

Sm

Pu

Fe

Ru

Hs

Co

Rh

Mt

H

3

11

19

37

55

87

4

12

20

38

56

88

21

39

57

89

22

40

72

104

23

41

73

105

24

42

74

106

25

43

75

107

26

44

76 77

108

27

45

109

1

58

90

59

91

60

92

61

93

62

94

A team at Lawrence Berkeley National Laboratories reported the discovery of elements 116 and 118 in June 1999.The same team retracted the discovery in July 2001. The discovery of elements 113, 114, and 115 has been reported but not confirmed.

Semiconductors(also known as metalloids)

MetalsAlkali metalsAlkaline-earth metalsTransition metalsOther metals

NonmetalsHalogensNoble gasesOther nonmetals

Group 14 Group 15 Group 16 Group 17

Group 18

Group 10 Group 11 Group 12

Group 13

151.964

(243)

157.25

(247)

158.925 34

(247)

162.500

(251)

164.930 32

(252)

167.259

(257)

168.934 21

(258)

173.04

(259)

174.967

(262)

58.6934 63.546 65.409 69.723 72.64 74.921 60 78.96 79.904 83.798

26.981 538 28.0855 30.973 761 32.065 35.453 39.948

12.0107 14.0067 15.9994 18.998 4032 20.1797

4.002 602

106.42 107.8682 112.411 114.818 118.710 121.760 127.60 126.904 47 131.293

195.078

(281) (272) (285) (284) (288)(289)

196.966 55 200.59 204.3833 207.2 208.980 38 (209) (210) (222)

10.811

Europium

Americium

Gadolinium

Curium

Terbium

Berkelium

Dysprosium

Californium

Holmium

Einsteinium

Erbium

Fermium

Thulium

Mendelevium

Ytterbium

Nobelium

Lutetium

Lawrencium

Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton

Aluminum Silicon Phosphorus Sulfur Chlorine Argon

Carbon Nitrogen Oxygen Fluorine Neon

Helium

Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon

Platinum

Darmstadtium Unununium Ununbium Ununtrium UnunpentiumUnunquadium

Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon

Boron

Eu

Am

Gd

Cm

Tb

Bk

Dy

Cf

Ni Cu Zn Ga Ge As Se Br Kr

Al Si P S Cl Ar

C N O F Ne

He

Pd Ag Cd In Sn Sb Te I Xe

Pt

Ds Uuu* Uub* Uut* Uup*Uuq*

Au Hg Tl Pb Bi Po At Rn

Ho

Es

Er

Fm

Tm

Md

Yb

No

Lu

Lr

B

63

95

64

96

65

97

66

98

67

99

68

100

69

101

70

102

71

103

28 29 30 31 32 33 34 35 36

13 14 15 16 17 18

6 7 8 9 10

2

46 47 48 49 50 51 52 53 54

78

110 111 112 113 115114

79 80 81 82 83 84 85 86

5 ε1s ∼ Z2 a1s ∼1Z

Ecut ∼ Z2

0

10

20

10 20 30 40 50 60 70 80

IP (e

V)

Z

IP ∼ 1 a ∼ 1

Page 76: electronic structure, density- functional theory, plane waves

first principle of computational physics

Page 77: electronic structure, density- functional theory, plane waves

first principle of computational physics

when two systems have similar physical and chemical properties, their simulation should

require a similar amount of computer resources

Page 78: electronic structure, density- functional theory, plane waves

power to the imagination

Page 79: electronic structure, density- functional theory, plane waves

power to the imagination

Chemically similar atoms have potentials with very different, possibly nasty, mathematical properties?

Page 80: electronic structure, density- functional theory, plane waves

power to the imagination

Chemically similar atoms have potentials with very different, possibly nasty, mathematical properties?

Imagine pseudo-atoms whose chemical properties are very similar to those of real atoms, but whose pseudo-potentials are as gentle as possible.

Well ...

Page 81: electronic structure, density- functional theory, plane waves

properties of pseudopotentials

Page 82: electronic structure, density- functional theory, plane waves

properties of pseudopotentials

Vps does not have core states: valence states of any given angular symmetry are the lowest-lying states of that symmetry:

φpsval is nodeless and smooth

Page 83: electronic structure, density- functional theory, plane waves

properties of pseudopotentials

Vps does not have core states: valence states of any given angular symmetry are the lowest-lying states of that symmetry:

φpsval is nodeless and smooth

φpsval(r) = φae

val(r) for r > rc

The chemical properties of the pseudo-atom are the same as those of the true atom:

εpsval = εae

val

Page 84: electronic structure, density- functional theory, plane waves

0 1 2 3 4 5 6 7 8r (a.u.)

Si

3s

Page 85: electronic structure, density- functional theory, plane waves

0 1 2 3 4 5 6 7 8r (a.u.)

0 1 2 3 4 5 6 7 8r (a.u.)

Si

3s

Page 86: electronic structure, density- functional theory, plane waves

0 1 2 3 4 5 6 7 8r (a.u.)

0 1 2 3 4 5 6 7 8r (a.u.)

Si0 1 2 3 4 5 6 7 8

r (a.u.)

3p

Page 87: electronic structure, density- functional theory, plane waves

0 1 2 3 4 5 6 7 8r (a.u.)

0 1 2 3 4 5 6 7 8r (a.u.)

Si0 1 2 3 4 5 6 7 8

r (a.u.)

3p

0 1 2 3 4 5 6 7 8r (a.u.)

Page 88: electronic structure, density- functional theory, plane waves

0 1 2 3 4 5 6 7 8r (a.u.)

0 1 2 3 4 5 6 7 8r (a.u.)

Si0 1 2 3 4 5 6 7 8

r (a.u.)0 1 2 3 4 5 6 7 8

r (a.u.)0 1 2 3 4 5 6 7 8

r (a.u.)

3d

Page 89: electronic structure, density- functional theory, plane waves

0 1 2 3 4 5 6 7 8r (a.u.)

0 1 2 3 4 5 6 7 8r (a.u.)

Si0 1 2 3 4 5 6 7 8

r (a.u.)0 1 2 3 4 5 6 7 8

r (a.u.)0 1 2 3 4 5 6 7 8

r (a.u.)

3d

0 1 2 3 4 5 6 7 8r (a.u.)

Page 90: electronic structure, density- functional theory, plane waves

US pseudopotentials

Page 91: electronic structure, density- functional theory, plane waves

US pseudopotentials

HUSφn = εnSφn 〈φn|S|φm〉 = δnm

Page 92: electronic structure, density- functional theory, plane waves

using fast Fourier transforms

f(G) =1

Ω

f(r)e−iG·rdr ≈

1

N3

klm

f

rklm︷ ︸︸ ︷(

k

N1a1 +

l

N2a2 +

m

N3a3

)

e−iG·rklm

f(r) =∑

pqs

f (pG1 + qG2 + sG3)︸ ︷︷ ︸

Gpqs

e−iGpqs·r

Gpqs · rklm =2π

N(pk + ql + sm)

f(klm) =∑

pqs

ei2π(pk+ql+sm)f(pqs)

f(pqs) =∑

klm

e−i2π(pk+ql+sm)f(klm)

FFT

FFT−1

f(G) f(pG1 + qG2 + sG3) f

(k

N1a1 +

l

N2a2 +

m

N3a3

)scatter

gather

FFT

FFT−1

1

Page 93: electronic structure, density- functional theory, plane waves

using fast Fourier transforms

f(G) =1

Ω

f(r)e−iG·rdr ≈

1

N3

klm

f

rklm︷ ︸︸ ︷(

k

N1a1 +

l

N2a2 +

m

N3a3

)

e−iG·rklm

f(r) =∑

pqs

f (pG1 + qG2 + sG3)︸ ︷︷ ︸

Gpqs

e−iGpqs·r

Gpqs · rklm =2π

N(pk + ql + sm)

f(klm) =∑

pqs

ei2π(pk+ql+sm)f(pqs)

f(pqs) =∑

klm

e−i2π(pk+ql+sm)f(klm)

FFT

FFT−1

f(G) f(pG1 + qG2 + sG3) f

(k

N1a1 +

l

N2a2 +

m

N3a3

)scatter

gather

FFT

FFT−1

1

f(G) =1

Ω

f(r)e−iG·rdr ≈

1

N3

klm

f

rklm︷ ︸︸ ︷(

k

N1a1 +

l

N2a2 +

m

N3a3

)

e−iG·rklm

f(r) =∑

pqs

f (pG1 + qG2 + sG3)︸ ︷︷ ︸

Gpqs

e−iGpqs·r

Gpqs · rklm =2π

N(pk + ql + sm)

f(klm) =∑

pqs

ei2π(pk+ql+sm)f(pqs)

f(pqs) =∑

klm

e−i2π(pk+ql+sm)f(klm)

FFT

FFT−1

f(G) f(pG1 + qG2 + sG3) f

(k

N1a1 +

l

N2a2 +

m

N3a3

)scatter

gather

FFT

FFT−1

1

f(G) =1

Ω

f(r)e−iG·rdr ≈

1

N3

klm

f

rklm︷ ︸︸ ︷(

k

N1a1 +

l

N2a2 +

m

N3a3

)

e−iG·rklm

f(r) =∑

pqs

f (pG1 + qG2 + sG3)︸ ︷︷ ︸

Gpqs

e−iGpqs·r

Gpqs · rklm =2π

N(pk + ql + sm)

f(klm) =∑

pqs

ei2π(pk+ql+sm)f(pqs)

f(pqs) =∑

klm

e−i2π(pk+ql+sm)f(klm)

FFT

FFT−1

f(G) f(pG1 + qG2 + sG3) f

(k

N1a1 +

l

N2a2 +

m

N3a3

)scatter

gather

FFT

FFT−1

1

Page 94: electronic structure, density- functional theory, plane waves

using fast Fourier transforms

f(G) =1

Ω

f(r)e−iG·rdr ≈

1

N3

klm

f

rklm︷ ︸︸ ︷(

k

N1a1 +

l

N2a2 +

m

N3a3

)

e−iG·rklm

f(r) =∑

pqs

f (pG1 + qG2 + sG3)︸ ︷︷ ︸

Gpqs

e−iGpqs·r

Gpqs · rklm =2π

N(pk + ql + sm)

f(klm) =∑

pqs

ei2π(pk+ql+sm)f(pqs)

f(pqs) =∑

klm

e−i2π(pk+ql+sm)f(klm)

FFT

FFT−1

f(G) f(pG1 + qG2 + sG3) f

(k

N1a1 +

l

N2a2 +

m

N3a3

)scatter

gather

FFT

FFT−1

1

f(G) =1

Ω

f(r)e−iG·rdr ≈

1

N3

klm

f

rklm︷ ︸︸ ︷(

k

N1a1 +

l

N2a2 +

m

N3a3

)

e−iG·rklm

f(r) =∑

pqs

f (pG1 + qG2 + sG3)︸ ︷︷ ︸

Gpqs

e−iGpqs·r

Gpqs · rklm =2π

N(pk + ql + sm)

f(klm) =∑

pqs

ei2π(pk+ql+sm)f(pqs)

f(pqs) =∑

klm

e−i2π(pk+ql+sm)f(klm)

FFT

FFT−1

f(G) f(pG1 + qG2 + sG3) f

(k

N1a1 +

l

N2a2 +

m

N3a3

)scatter

gather

FFT

FFT−1

1

f(G) =1

Ω

f(r)e−iG·rdr ≈

1

N3

klm

f

rklm︷ ︸︸ ︷(

k

N1a1 +

l

N2a2 +

m

N3a3

)

e−iG·rklm

f(r) =∑

pqs

f (pG1 + qG2 + sG3)︸ ︷︷ ︸

Gpqs

e−iGpqs·r

Gpqs · rklm =2π

N(pk + ql + sm)

f(klm) =∑

pqs

ei2π(pk+ql+sm)f(pqs)

f(pqs) =∑

klm

e−i2π(pk+ql+sm)f(klm)

FFT

FFT−1

f(G) f(pG1 + qG2 + sG3) f

(k

N1a1 +

l

N2a2 +

m

N3a3

)scatter

gather

FFT

FFT−1

1

f(G) =1

Ω

f(r)e−iG·rdr ≈

1

N3

klm

f

rklm︷ ︸︸ ︷(

k

N1a1 +

l

N2a2 +

m

N3a3

)

e−iG·rklm

f(r) =∑

pqs

f (pG1 + qG2 + sG3)︸ ︷︷ ︸

Gpqs

e−iGpqs·r

Gpqs · rklm =2π

N(pk + ql + sm)

f(klm) =∑

pqs

ei2π(pk+ql+sm)f(pqs)

f(pqs) =∑

klm

e−i2π(pk+ql+sm)f(klm)

FFT

FFT−1

f(G) f(pG1 + qG2 + sG3) f

(k

N1a1 +

l

N2a2 +

m

N3a3

)scatter

gather

FFT

FFT−1

1

Page 95: electronic structure, density- functional theory, plane waves

Fourier analysis

Φ(x) =∑

n

ϕ(x− n")

Φ(x + !) = Φ(x)!

Φ

Page 96: electronic structure, density- functional theory, plane waves

Fourier analysis

Φ(x) =∑

n

ϕ(x− n")

Φ(x + !) = Φ(x)!

Φ

Φ(x) =∑

q

Φ(q)eiqx qk = k2π

"

Page 97: electronic structure, density- functional theory, plane waves

Fourier analysis

Φ(x) =∑

n

ϕ(x− n")

Φ(x + !) = Φ(x)!

Φ

Φ(x) =∑

q

Φ(q)eiqx qk = k2π

" Φ

2π/"

Φ(q) =1!

∫ !

0Φ(x)e−iqxdx

=1!

∫ ∞

−∞ϕ(x)e−iqxdx

=1!ϕ(q)

Page 98: electronic structure, density- functional theory, plane waves

sampling theoremϕ

a

ϕ(x) = 0 for |x| >a

2

Page 99: electronic structure, density- functional theory, plane waves

ϕ

∆q

sampling theoremϕ

a

ϕ(x) = 0 for |x| >a

2

∆q <2π

a

Page 100: electronic structure, density- functional theory, plane waves

ϕ

∆q

Φ

2π/∆q

sampling theoremϕ

a

ϕ(x) = 0 for |x| >a

2

∆q <2π

a

Page 101: electronic structure, density- functional theory, plane waves

ϕ

∆q

Φ

2π/∆q

sampling theoremϕ

a

ϕ(x) = 0 for |x| >a

2

ϕ

∆q

∆q <2π

a

∆q >2π

a

Page 102: electronic structure, density- functional theory, plane waves

ϕ

∆q

Φ

2π/∆q

sampling theoremϕ

a

ϕ(x) = 0 for |x| >a

2

ϕ

∆q

∆q <2π

a

∆q >2π

a

Φ

2π/∆q

Page 103: electronic structure, density- functional theory, plane waves

using periodic boundary conditions

finite systems

Page 104: electronic structure, density- functional theory, plane waves

using periodic boundary conditions

ψ(x + ") = ψ(x)" = a

finite systems

Page 105: electronic structure, density- functional theory, plane waves

ψ(x) =∑

G

c(G)eiGx

G1

G2

using periodic boundary conditions

ψ(x + ") = ψ(x)" = a

finite systems

Page 106: electronic structure, density- functional theory, plane waves

G1

G2

using periodic boundary conditionsinfinite crystals

ψ(x + ") = ψ(x)" = L

ψ(x + a) = eikaψ(x)

ψk(x) = eikxuk(x)uk(x + a) = uk(x)

Page 107: electronic structure, density- functional theory, plane waves

G1

G2

using periodic boundary conditionsinfinite crystals

ψ(x + ") = ψ(x)" = L

ψ(x + a) = eikaψ(x)

ψk(x) = eikxuk(x)uk(x + a) = uk(x)

uk(x) =∑

G

ck(G)eiGx

kn =2π

Ln

Page 108: electronic structure, density- functional theory, plane waves

G1

G2

using periodic boundary conditionsinfinite crystals

ψ(x + ") = ψ(x)" = L

ψ(x + a) = eikaψ(x)

ψk(x) = eikxuk(x)uk(x + a) = uk(x)

uk(x) =∑

G

ck(G)eiGx

kn =2π

Ln

Page 109: electronic structure, density- functional theory, plane waves

G1

G2

using periodic boundary conditionsinfinite crystals

ψ(x + ") = ψ(x)" = L

ψ(x + a) = eikaψ(x)

ψk(x) = eikxuk(x)uk(x + a) = uk(x)

uk(x) =∑

G

ck(G)eiGx

kn =2π

Ln

Page 110: electronic structure, density- functional theory, plane waves

these slides athttp://stefano.baroni.me/presentations