53
End End - - to to - - End QoS Provisioning End QoS Provisioning Technologies for B3G Technologies for B3G ETRI ETRI 2004 2004 2 2 28 28 Ajou Ajou University University

End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

  • Upload
    ngomien

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

Page 1: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

EndEnd--toto--End QoS Provisioning End QoS Provisioning Technologies for B3GTechnologies for B3G

ETRIETRI김김 재재 현현

20042004년년 22월월 2828일일

AjouAjou UniversityUniversity

Page 2: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

2

목차목차

End-to-End QoS 정의

Service Traffic 별 QoS 요구사항

End-to-End QoS를 보장하기 위해 필요한 기능

Network QoS 보장 기술 분석

End-to-End QoS 보장기술 및 표준

3GPPITU-T

Case Study3GPP2Home Network

End-to-End QoS Research IssuesSummary

Page 3: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

3

EndEnd--toto--End QoS End QoS 정의정의

QoS 정의

ITU-T (International Telecommunications Union-Telecommunication) “The collective effect of service performance which determines the degree of satisfaction of a user of the service.”

IETF (Internet Engineering Task Force)“A set of service requirements to be met by the network while transporting a flow.”

Core NetworkCore NetworkCore Network

AV StreamingVoiceGameFTPWEB, …

Real Time Traffic에QoS 보장 필요

(Bandwidth, Latency, Jitter고려)

Page 4: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

4

Service TrafficService Traffic별별 QoS QoS 요구사항요구사항

Traffic의 특성에 따라 QoS 보장을 위해 필요한 요구사항이 다름

Service Payload Rate(Mbps) Latency(ms) Jitter(ms) PER

High Quality Voice 0.064 X 2 streams 10 5 10-3

Video Conference 1.5 X 2 streams 10 ± 5 10-5

HDTV 19.68 90 ±10 10-5

SDTV 3 90 ±10 10-5

High Speed Data 10 >100 >100 0

Medium Speed Data 2 >100 >100 0

Low Speed Data 0.5 >100 >100 0

ReferenceL. Chinitz, “Quality of Service in the Home Networking Model,” Home RF working group, Aug., 2001.

Page 5: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

5

EndEnd--toto--End QoSEnd QoS를를 보장하기보장하기 위해위해 필요한필요한 기능기능

중요 QoS 파라미터

BandwidthCapacity, Utilization, Available Bandwidth (ABW)

LossRandom Packet Loss, Bursty Packet Loss

DelayOne-Way Delay, Round -Trip Time (RTT), Delay Jitter

서비스에 따라 필요한 QoS의 기능

Packet classifier, network resource management 지속적으로 트래픽이 발생하는 서비스

Parameterized QoS provision technology : 안정적인 자원 할당

Admission control, shaperPriority QoS provision technology : 서비스 별 전송 순위의 차별화

QoS Policer, Packet Scheduler

Page 6: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

6

EndEnd--toto--End QoSEnd QoS를를 보장하기보장하기 위해위해 필요한필요한 기능기능((ConCon’’tt))

Classifier : Selects packets based on portions of packet headerMarker : Marks/Remarks the packet header based on traffic classMeter : Checks compliance to traffic profile and passes result to Marker and Shaper/DropperShaper : Allows for delaying of packets in buffer to enforce compliance with traffic profileDropper : Drops traffic that does not conform with traffic profileCongestion Avoidance : Checks buffer levels and stochastically drops packetsScheduler : Allows for differential queueing and servicing of packets

Page 7: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

7

NetworkNetwork에서의에서의 QoS QoS 보장보장 기술기술

ATM Network PVC/ Soft-SVC/SVC

ALL_IP: IntServ and RSVPA per-flow resource reservation based approach to enable end-to-end QoS guaranteeAdmission control, resource reservation, routing, etc.RSVP is the signaling protocol used to implement IntServ resource reservation

ALL_IP: DiffServA scalable provision scheme to provide hop-by-hop differentiated service for aggregated flowsNo per-flow state kept in network elementsNo signaling required IETF DiffServ PHB Scheduling Classes (PSCs)

EF (Expedited Forwarding)AF (Assured Forwarding)CS (Class Selector)DF (Default Forwarding)

Page 8: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

8

NetworkNetwork에서의에서의 QoS QoS 보장보장 기술기술

IntServ over DiffServProvide IntServ service to the user on top of a DiffServ core network

Edge-routers process RSVP signaling and map end-to-end QoS requirements to DiffServ service classesBorder routers perform admission controlDiffServ core routers only provide DiffServ per-hop differentiated services

Page 9: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

9

NetworkNetwork에서의에서의 QoS QoS 보장보장 기술기술

ALL_IP: Policy-based Network Management (PBNM)Using policies and policy servers to provide QoS services based on the contract between the service provider and the usersThe edge routers consults policy server to perform admission controlThe core routers accept resource configurations from policy server to implement certain QoS service requirements

Policy Policy ServerServer

Page 10: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

10

History of 3GPPHistory of 3GPP

Circuit domainGSM Radio

Packet domain

UMTS Radio

HomeHome

Page 11: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

11

General Architecture of 3GPP General Architecture of 3GPP

3GPP divided the mobile system in several partsIMS enables IP based services, e.g. telephonyPS domain provides packet bearer services with QoS and mobility support A bearer service contains all aspects to enable the provision ofQoS, i.e. QoS signaling, transport and QoS managementGGSN is anchor for IP address of moving UE

PS DomainPS DomainPS Domain

CS DomainCS DomainCS Domain

UEUE(Use Equipment)(Use Equipment)

RNCRNC

RANRAN(Radio(RadioAccessAccessNetwork)Network)

SSGNSSGN GGSNGGSN

IMSIMS(IP (IP MulitmediaMulitmedia

Subsystem)Subsystem)IMSIMS

Page 12: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

12

QoS Architecture in 3GPPQoS Architecture in 3GPP

TE MT RAN CN Iu EDGE NODE

CNGateway

TE

3GPP

End-to-End Service

TE/MT Local Bearer Service

UMTS Bearer Service External BearerServiceUMTS Bearer Service

Radio Access Bearer Service

CN BearerService

BackboneBearer Service

IuBearer Service

Radio BearerService

Physical Radio Bearer Service

Physical Bearer Service

TE: Terminal Equipment, MT: Mobile Terminal, RAN: Radio Access NTE: Terminal Equipment, MT: Mobile Terminal, RAN: Radio Access Network, CN: Core Networketwork, CN: Core Network

Several Bearer Services with clearly defined characteristics and functionality are specified

ReferenceReference3GPP TS 23.1073GPP TS 23.107

IP Bearer only in RelIP Bearer only in Rel--55

IP BS ManIP BS ManIP Policy EnforcIP Policy Enforcand optionally also on RSVP/and optionally also on RSVP/

ager. Uses Diffserv Edge Function, ager. Uses Diffserv Edge Function, ement Point ement Point

IntServ. IntServ.

Page 13: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

13

QoS Parameter of 3GPPQoS Parameter of 3GPP

The QoS parameters differ according to the considered link. The following slides provide the QoS parameter for “UMTS BS”and “RAB Service”

Traffic class Conversational class Streaming class Interactive class Background

Example of application Voice Streaming video Web browsing

Background download of emails

Fundamental characteristics

- Preserve time relation (variation) between information entities of the stream - Conversational pattern stringent and low delay

- Preserve time relation (variation) between information entities of the stream

- Request response pattern - Preserve payload content

- Destination is not expecting the data within a certain time- Preserve payload content

ReferenceReference3GPP TS 23.2073GPP TS 23.207

Page 14: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

14

QoS Parameter Attributes and RangesQoS Parameter Attributes and Ranges

Different QoS attributes and ranges per traffic classTraffic class Conversational Streaming Interactive Background

Maximum bitrate(kbps) <=16000 <=16000 <=16000 <=16000

Maximum SDU size (octets) <=1500 <=1500 <=1500 <=1500

SDU format information

SDU error ratio 10-2, 7*10-3, 10-3, 10-4, 10-5

10-1, 10-2, 7*10-3, 10-

3, 10-4, 10-5 10-3, 10-4, 10-6 10-3, 10-4, 10-6

Transfer delay (ms) 100 – maximum value

280 – maximum value

Guaranteed bit rate (kbps) <=16000 <=16000

Traffic handling priority 1,2,3

Allocation/Retention priority

1,2,3 1,2,3 1,2,3 1,2,3

Source statistic descriptor Speech/unknown Speech/unknown

ReferenceReference3GPP TS 23.2073GPP TS 23.207SDU : Service Data UnitSDU : Service Data Unit

Page 15: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

15

PS Domain PS Domain

Introduction of IMSIntroduction of IMS

Circuit domainGSM Radio

Packet domain

UMTS Radio

HomeHome

IMSIMS

IMSIMSService ControlService ControlSIPSIP

-- IMS : IP Multimedia SubsystemIMS : IP Multimedia Subsystem

Page 16: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

16

Details of IMSDetails of IMS

UTRANUTRAN

SGSNSGSN GGSNGGSN

HSSHSSII--CSCFCSCF

PP--CSCFCSCF

SS--CSCFCSCFOtherOtherIP/IMSIP/IMSNetworkNetwork

Serving-CSCF (Call Session Control Function)Performs the Session Control: handles the SIP requests and forwards them to the S-CSCF /external IP network of other end user.The S-CSCF might be specialized for the provisioning of a (set of) service(s).

Interrogating-CSCF“main entrance” of the home network: Selects (with the help of HSS: Home Subscriber Server) the appropriate S-CSCF

Proxy-CSCF“first contact point” of IMS: located in the visited network, selects the I-CSCF of the Home Network of the user. Performs some local analysis (e.g. number translation, QoS policing,..)

SIP signalingSIP signaling

User DataUser Data

Page 17: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

17

Overview of Protocol StackOverview of Protocol Stack

L1

RLC

PDCP

MAC

IP v6

SIP

L1

RLC

PDCP

MAC

ATM

UDP/IP

GTP-U

AAL5

Relay

L1

UDP/IP

L2

GTP-U

IPv6

3G-SGSNUTRAN MS Iu-PSUu Gn

3G-GGSN

ATM

UDP/IP

GTP-U

AAL5

L1

UDP/IP

GTP-U

L2

Relay

UDP

L1

L2

UDP

IP

ATM

AAL5

Gi

UDP

IP

P-CSCF

SIP

TransportLayers

Mw I-CSCF S-CSCF

Mw

UDP

TransportLayers

ATM

AAL5

UDP

IP

TransportLayers

IPv6

UDP

IPv6

SIP

TransportLayers

UDP

TransportLayers

IPv6

UDP

Transport Layers

IP v6

UDP

SIP

PS domain transport Backbone transport

IMS SignallingSIP SIP SIP SIP

IPv6 IPv6 IPv6 IPv6

P-CSCF S-CSCF

Page 18: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

18

QoS Management Function in the QoS Management Function in the Control PlaneControl Plane

IP BSManager

TranslAdm./Cap.

Control

UMTS BSManager

RadioBS Manager

UTRAph. BS M

UE

Adm./Cap.Control

RABManager

RadioBS Manager

UTRAph. BS M

UTRAN

Adm./Cap.Control

UMTS BSManager

CN EDGE

IP BSManager

Adm./Cap.Control

UMTS BSManager

Gateway

Iu BSManager

Iu NSManager

Subsc.Control

Iu BSManager

Iu NSManager

CN BSManager

BB NSManager

Transl

CN BSManager

BB NSManager

ExtNetw.

ExtServiceControl

localSIP proxy

Policy ControlFunction

P-CSCF

service primitive interfaceprotocol interface

UE : User Equipment, PUE : User Equipment, P--CSCF : ProxyCSCF : Proxy--Call Session Call Function, BS : Bear Service, RAB : Radio AccesCall Session Call Function, BS : Bear Service, RAB : Radio Access Bear, NS : Network Services Bear, NS : Network Service

ReferenceReference3GPP TS 23.2073GPP TS 23.207

Page 19: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

19

QoS Management Function in the QoS Management Function in the Control Control Plane(ConPlane(Con’’tt))

Translation FunctionConvert between external service signalling and internal service primitives including the translation of the service attributes

UMTS BS ManagerSignal between each otherVia the translation function with external instance to establish or modify a UMTS bearer serviceInterrogates its associated admission/capability whether the network entity supports the specific requested service and whether the required resources are available

RAB ManagerVerifies with its admission/capability control whether the UTRAN supports the specific requested service and whether the required resources are availableTranslates the RAB service attributes into radio bearer service and IU bearer service attributes and request the radio BS manager and the Iu BS manager to provide bearer services with the required attributes

Page 20: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

20

QoS Management Functions in the QoS Management Functions in the User PlaneUser Plane

Class

ResourceManager

UE UTRAN CN EDGE Gateway ExtNetw.

TE

Cond.

UTRAN phys. BS

Lacal BS

Cond.

ResourceManager

Mapper.

ResourceManager

Iu Network Service

Mapper

ResourceManager

ResourceManager

BB Network Service

Class

ResourceManager

Cond.

Mapper

External BS

Data flow with indication of direction

ReferenceReference3GPP TS 23.1073GPP TS 23.107

Page 21: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

21

QoS Management Functions in the QoS Management Functions in the User User Plane(ConPlane(Con’’tt))

Classification Function (Class)Assign user data units received from the external bearer serviceor the local bearer service to the appropriate UMTS bearer service according to the QoS requirements of each user data unit

Traffic Conditioner (Cond.)In MT : Provides conformance of the uplink user data traffic with the QoS attributes of the relevant UMTS bearer serviceIn Gateway : Provide conformance of the downlink user data traffic with the QoS attributes of the relevant UMTS bearer service.

Mapping FunctionMarks each data unit with the specific QoS indication related tothe bearer service performing the transfer of the data unit

Resource ManagerDistributed its resources between all bearer services requestingtransfer of data units on these resources

Page 22: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

22

ITUITU--T Y.1540 Performance ParametersT Y.1540 Performance ParametersIP Application QoS Performance Parameters

IP Transfer Delay (IPTD)Propagation Delay: function of distanceTransport Delay: function of processing in nodesCodec Delay: signal conversionJitter Buffer Delay: smoothing delay variability

IP Delay Variability (IPDV) (Jitter)

IP Packet Loss Ratio (IPLR)congestion discards, delay variation discardsBursts or random

IP Packet Error Ratio (IPER)

Page 23: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

23

ITUITU--T Y.1541T Y.1541 QoS ClassesQoS Classes

Network Performance Y.1541 QoS Classes

Parameter Class 0 Class 1 Class 2 Class 3 Class 4 Class 5

IPTD 100ms 400ms 100ms 400ms 1 s U

IPDV 50ms 50ms U U U U

IPLR 1*10-3 1*10-3 1*10-3 1*10-3 1*10-3 U

IPER 1*10-4 U

VoiceBest Effort

DataSignaling

Interactive Data Streaming Video

Classes resolve scaling issues

Example Service

Mappings

Note that delay variability is the distinguishing difference between Classes 0,1 and 2,3

Page 24: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

24

Scope of QoS Signaling Scope of QoS Signaling ReqtsReqts.. in IP in IP NetworkNetwork

TE TEGW . . .

NetworkEnd-End Network (IP Service QoS)

Network NetworkCustomer Installation Customer Installation

User-to-User Connection (Transport and higher QoS)

TE GWTerminal EquipmentGatewayRouter Protocol Stack

LAN LAN

IP Network Cloud

UNI UNI

*NI Network Interface

GW GW GW GW GW

DSTSRC

NNI NNI

Protocol Requirements

Page 25: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

25

Control Plane and Data Plane Mechanisms: Control Plane and Data Plane Mechanisms: RelationshipRelationship

EndEndSystemSystem

EndEndSystemSystem

Call/Session ControlCall/Session Control

Packet ForwardingPacket Forwarding

Call/Session Control (with indication of QoS Class)Call/Session Control (with indication of QoS Class)Session IP flowSession IP flowQoS QoS mechanism(e.gmechanism(e.g. RSVP or Diffserv packet marking). RSVP or Diffserv packet marking)Gate ControlGate Control

Page 26: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

26

Interworking ITU/3GPPInterworking ITU/3GPP

For end to end service delivery, industry convergence on a single set of QoS Classes to be signaled end to end is desirable

The ITU-T QoS Classes should be globally supported

Currently: ITU-R/3GPP differ

Globally Standardized Interworking betweenWireless (ITU-R/3GPP) and Wireline (ITU-T) networks

Page 27: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

27

Case StudyCase Study

Page 28: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

28

3GPP23GPP2

Page 29: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

29

EndEnd--toto--End QoS Architecture of 3GPP2End QoS Architecture of 3GPP2

MSMS : Mobile Station,: Mobile Station, PDSN/AGWPDSN/AGW : Packet Data Serving Node/ Access Gateway, : Packet Data Serving Node/ Access Gateway, BRBR : Border Router, : Border Router, CNCN : Correspondent Node (mobile station),: Correspondent Node (mobile station), HAHA : Home Agent, : Home Agent,

ReferenceReference3GPP2 S.R00793GPP2 S.R0079--00

Page 30: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

30

EndEnd--toto--End QoS Reference ModelEnd QoS Reference Model

HAAAHAAA : Home AAA, : Home AAA, VDBVDB: Visited Data Base, : Visited Data Base, HDBHDB : Home Data Base, : Home Data Base, PP--CSCFCSCF : Proxy: Proxy--Call Session Call Session Control Function, Control Function, SS--CSCFCSCF : Serving: Serving--Call Session Control Function , Call Session Control Function , PDFPDF : Policy Decision Function: Policy Decision FunctionSLASLA : Service Level Agreement: Service Level Agreement

An example of the End-to-End QoS architecture

ReferenceReference3GPP2 S.R00793GPP2 S.R0079--00

Page 31: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

31

Reference Architecture (3GReference Architecture (3G--EVDEVDOO))

Can model reference connections including applications and data center

Page 32: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

32

Protocol Stack for 3GProtocol Stack for 3G--1X Data 1X Data (ATM)(ATM)

AT 3G-1XCell

PC 3G-1X MSC Host

10 Base TRS-232

Cable

3com

3G3G--1x1xBTSBTS

Ethernet

MAC

IP

TCP/UDP

PPP

Ethernet

MAC

Airlink

MAC

RLP

Airlink

MAC

T1

ATM

PP/T1

ATM

T1

FR

IPRMI

ServersServers

3G3G--1x1xMSCMSC

PCF

PCFPCF

T1

FR

Phys

GRE

L2 L2

Phys

IP

TCP/UDP

PDSNPDSN

Air

AAL2

T1

FR

T1

ATM/AAL5

OC3

Airlink

ATM

T1

ATM

ATM SwitchATM Switch

PSAX

AAL2

T1

RLP

Application Application

Phys

L2 L2

Phys

IP

GREPPP

IP

IP IP -- Internet ProtocolInternet Protocol, , TCP TCP -- Transmission Control ProtocolTransmission Control Protocol, RLP, RLP-- Radio Link ProtocolRadio Link ProtocolUDPUDP-- User Datagram ProtocolUser Datagram Protocol, , PPP PPP -- PointPoint--toto--Point ProtocolPoint Protocol, , FR FR –– Frame RelayFrame Relay

Page 33: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

33

Protocol Stack for 3G EVDO Protocol Stack for 3G EVDO (HDLC)(HDLC)

AT 1xEV-DOCell

PC RAN Router 1xEV-DO FMS Host

ServersServers

1xEV1xEV--DODOControllerController

PCFPCFPDSNPDSN

1xEV1xEV--DODOBTSBTS

RouterRouter

PCF PDSN

Ethernet

MAC

IP

TCP/UDP

PPP

Ethernet

MAC

Airlink

MAC

RLP

Airlink

MAC

T1/E1

HDLC

IP

TCP/ UDP

RMI

T1/E1

HDLC

Ethernet

MAC

IP

Ethernet

MAC

T1/E1

L2

IP

TCP/ UDP

IP

GRE

RMI

RLP

T1/E1

L2 L2

Phys

IP

GRE

PPP

IP

L2

Phys

IP

TCP/UDP

Application Application

10 Base T

Cable Backhaul

R-P (A10/A11) IP NetworkRouter

GRE GRE -- Generic Routing Encapsulation (protocol)Generic Routing Encapsulation (protocol), , RMI RMI -- Remote Method InvocationRemote Method Invocation, , IP IP -- Internet Protocol Internet Protocol TCP TCP -- Transmission Control ProtocolTransmission Control Protocol UDPUDP-- User Datagram ProtocolUser Datagram Protocol, , PPP PPP -- PointPoint--toto--Point ProtocolPoint ProtocolHDLC HDLC –– High Level Data Link ControlHigh Level Data Link Control

Page 34: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

34

3G+ Wireless Technology Evolution3G+ Wireless Technology Evolution ::Reference Architecture for Voice TrafficReference Architecture for Voice Traffic

IP

64k PCM/32K ADPCM

PCM

BTS

ATMAAL2

ATM

Packet Pipes ATM

PCM/ Channelized T1

PSAXPSAX

MSCPSTN

Media Gateway

PSAXPSAX

MSC

BTS

ATMAAL2

ATM

Packet Pipes

PCM

Media Gateway

IP Router

64k PCM/32K ADPCM100BT

Ethernet

GX550 GX550

1

2 3

1

1

2.5G2.5G

Voice call FlowTDM

2

3

ATM :PCM 64 kbps

ATM :ADPCM 32 kbps

Tandem Tandem

4

4 IP :G.726 32 kbps

100BTEthernet

TMX880 TMX880

IP Router

RNCRNC5

5

3G3G

3G+3G+

IP :Vocoder bypass

Page 35: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

35

3G+ Wireless Technology Evolution3G+ Wireless Technology Evolution ::EndEnd--toto--end voice packet delayend voice packet delay

0

50

100

150

200

250

mse

c

TDM tandemG.711 (64kbps)

ATM BackboneG.711 (64kbps)

AAL1

ATM BackboneG.726 (32kbps)

AAL2

IP BackboneG.726 (32kbps)

IP backboneVocoder Bypass

Technologies

Uplink Avg. Delay BackBone Avg. Delay Downlink Avg. Delay

No significant difference between ATM and IP backbone Vocoder bypass : delay decrease and better voice quality due to no trans-vocoder

E2E One Way Delay (ms)

64 kbps (G.711)

32 kbps(G.726) 16kbps(G.728)

0 94 87 50 93 86 100 92 85 150 90 83 200 87 80 250 80 73 300 74 67 350 68 61 400 63 56 450 59 52

450

9 0 - 1 0 0 B e s t q u a l i t y ; u s e rs v e r y s a t is f ie d

8 0 -9 0 H ig h q u a li t y ; u s e rs s a t is f ie d

7 0 -8 0 M e d iu m q u a li t y ; s o m e u s e r s d is s a t is f ie d

6 0 -7 0 L o w q u a li t y ; m a n y u s e r s d is s a t is f ie d

5 0 -6 0 P o o r q u a li t y ; n e a r ly a l l u s e r s d is s a t is f ie d

L e s s th a n 5 0

U n a c c e p t a b le q u a l i t y

Source: IEEE Communications Magazine, July 1999

Voice Quality Scores (R value)

Uplink : MT – BTS – MSC/RNCBackbone : MG – Switch/Router – MGDownlink : MSC/RNC - BTS - MT

Page 36: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

36

3G+ Wireless Technology Evolution3G+ Wireless Technology Evolution : : Voice : Background load vs. JitterVoice : Background load vs. Jitter

Scenarios IP backbone voice scenarioWeb browsing background traffic in links Web data rate fixed to uplink 64 Kbps and downlink 153 KbpsNo QoS mechanism implemented

QoS mechanism should be support in the backhaul and backbone(end-to-end).

Back-groundTraffic Load

Avg. End-to-end packet delay (msec)

P( x < X) = 0.95Avg. pkt. delay(msec)

Avg. Jitter

(msec)

0% 219 219.8 0.0043

40% 233 261.8 1.99

10% 221 222.7 0.426

30% 229 246.5 1.51

70% 266 360.4 6.4

80% 301 425.9 12.4

0

50

100

150

200

250

300

350

400

450

mse

c

0% 10% 30% 40% 70% 80%

Backgorund traffic

Avg. End-toend delay 95% delay Avg. Jitter

Page 37: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

37

3G+ Wireless Technology Evolution3G+ Wireless Technology Evolution ::Backbone Network Evolution (ATM vs. IP)Backbone Network Evolution (ATM vs. IP)

Web page response time for the different backboneIP backbone reduced little end-to-end delay due to lower header overhead and SAR delay compared to ATM backbone (5.2%, 7.7 %)Other Performance Issues : TCP Window sizes (UNIX vs. MS Server), HTTP version, etc.

9.69 9.1

8.3

0

2

4

6

8

10

12

mea

n pa

ge re

spon

se ti

me

(mse

c)

ATM IP

Backbone transport technologies

EVDO HDLC(T1) Ethernet (100BT)

Page 38: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

38

3G+ Wireless Technology Evolution3G+ Wireless Technology Evolution : : 3G3G--11XX, EVDO vs. EVDV, EVDO vs. EVDV

Web page response time for the technologies phaseDelay is reduced 46% from 3G-1X trial to EVDV technology in 10% BLERImprovement not proportional to difference in air interface speedsHigher speed air interface is expected to see higher BLER - improvement may not be good as 46%.

3.5 3.42.6 2.5

9.18.3

7

5

15.1

11.5

9.38.1

0

2

4

6

8

10

12

14

16

page

resp

onse

tim

e (s

ec)

No FER 4% FER 10% FER

FER

3G-1X RTT (F:153 Kbps, R:64 Kbps)3G-1X (F:153 Kbps, R:153 Kbps)EV-DO (F:2.4 Mbps, R:153Kbps)EV-DV (F:2.4 Mbps, R:2Mbps)

Page 39: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

39

Home NetworkHome Network

Page 40: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

40

홈홈 네트워크네트워크 정의정의 및및 QoSQoS보장보장 필요성필요성

VoD 서비스IPTV 서비스양방향멀티미디어서비스

위성디지털방송or

케이블디지털방송or

지상파디지털방송

인터넷망

FTTH (155Mbps 이상)FTTO (155Mbps 이상)

Ethernet (100Mbps)

WLAN

ResidentialGateway

UWB Network(100 Mbps)

UWB

WLAN Network(최대 54Mbps)

IEEE1394 Network(400 Mbps ~ 1.6GHz)

IEEE1394

PacketScheduling

QoS mapping

병목현상병목현상발생가능발생가능

Ethernet(100Mbps)

QoS mapping

PacketScheduling

홈 네트워크 정의

홈 네트워크란 다양한 유․무선망 접속기술을 이용하여 댁내의 정보가전제품에서 백색가전제품에 이르기까지 모든 전자제품들을 하나의 망으로 형성하여 사용자의 편의를 극대화하는기술이다.

홈 네트워크에서의 QoS 보장 필요성

홈 네트워크에서 발생되는 트래픽의 종류와 접속기술이 다양하므로 고품질의 실시간멀티미디어 서비스를 제공하기 위해서는 residential gateway에 다양한 네트워크 환경을고려한 QoS 보장 기술이 필요

Page 41: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

41

Ethernet QoS Ethernet QoS 보장기술보장기술 분석분석

802.1q에 의해 QoS 정의

Priority 기반의 QoS 메커니즘

자원 예약과정 없이 단순히 트래픽에 따라 분류하여 전송

상위 클래스의 트래픽이 큐에 있으면 하위 클래스의 패킷은 전송할 수 없음

Call admission control 프로토콜의 부재로 망이 혼잡해질 위험성이 큼

하나의 응용 서비스 트래픽이 사용할 수 있는 자원의 한계를 정하고 있지 않음

Priority Group Service type Priority 지원 서비스

Highest 망 관리와 제어 트래픽에 관련 111

110

101 Game, telephony, videophones, Web conferencing

110 Movies, channel changing, security, camera monitoring

Game, telephony, videophones, Web conferencing

Movies, channel changing, security, camera monitoring

010

001

011

000

RIP,OSPF table의 갱신에 사용

Stream setup and control

2nd highest Parameterized services

Stream setup and control

3rd highest Prioritized services

4th highest Best-effort로 전송 Web surfing, printing

ReferenceReferenceN.N, QoS: Assigning Priority in IEEE 802N.N, QoS: Assigning Priority in IEEE 802--style Networks, 16.8.1998, [style Networks, 16.8.1998, [defereddefered 15.4.1999] 15.4.1999]

ReferenceReferenceG.stoneG.stone: QoS a concern in linking 1394, Ethernet, 2003: QoS a concern in linking 1394, Ethernet, 2003

Page 42: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

42

IEEE1394 QoS IEEE1394 QoS 보장기술보장기술 분석분석

Ch B Ch C Ch D Ch ECycle

StartCh B Ch C Ch D

Cycle

StartCh B

Cycle

Start

Packet

B

Nominal cycle period = 125 us Nominal cycle period = 125 us

DelayCycle n Cycle n+1

Cycle Sync

AC

K

Delay

Packet

B

AC

KCh D

: Isochronous Transactions : Asynchronous Transactions

Subaction (long) Gaps Subaction (long) Gaps Subaction (long) Gaps

Isochronous (short) gaps Isochronous (short) gaps

One byte time slots

Cycle SyncCycle Sync

Isochronous modeIRM (Isochronous Resource Manager), BM (Bus Manager)에 의해 필요

Bandwidth와 channel을 할당 받음

Asynchronous modeCompare and swap method 사용

패킷 전송을 성공한 노드는 일정시간 동안 새로운 채널을 요구할 수 없음

Physical ID가 낮거나 root 노드에 가까우면 채널을 점유할 기회가 높아짐

서비스에 따라 차별화된 QoS를 제공 못함

: Cycle starts Packets

Page 43: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

43

IEEE 802.11e QoS IEEE 802.11e QoS 보장기술보장기술 분석분석AC CWmin CWmax

AC_VO (CWmin+1)/4-1 (CWmin+1)/2-1

AC_VI (CWmin+1)/2-1 CWmin

AC_BE CWmin CWmax

AC_BK CWmin CWmax

With 802.11aaSlotTime: 9usSIFS: 16usPIFS: 25usDIFS: 34usAIFS: >=34 us

ACK RTS

CTS

SIFS SIFS

PIFS

AIFS[AC]=DIFS

SIFS

AIFS[AC]

AIFS[AC]

high priority AC

medium priority AC

low priority AC backoff

backoff

defer accessContention Windows(counted in slots, 9us

count down as long as medium is idle,Back off when medium gets bust again

CW=rand[1,CWi+1]

1 max

1

[ ] min[{( [ ] 1) [ ]} 1, ][0, [ ]]

i i

i

CW AC CW AC PF AC CWBackoff rand CW AC aSlotTime

+

+

= + × −= ×

EDCA 서비스의 종류에 따라 priority 기반의 차별화된QoS를 제공

AIFS, Cw_min, Cw_max, TxOP, PF등의factor를 사용

4개의 AC (Access category)를 정의

EDCA ParametersContention Window ParametersMax. TXOP duration (TXOP Limit)

TxOPSTA가 채널을 할당 받았을 때 연속하여 점유할수 있는 시간

Page 44: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

44

IEEE 802.11e QoS IEEE 802.11e QoS 보장기술보장기술 분석분석HCCA

예약기반의 QoS를 제공

TSPEC(전송률, 패킷의 크기, 지연, 서비스 간격을 명시) 을 이용한 자원 협상

DLP를 사용하여 HC의 도움 없이 STA간에 데이터를 전송

TBTT이전에 데이터의 전송을 완료할 수 없으면 다음 superframe에서 재시도

서비스에 따라 TxOP의 한계값이 결정되어 있음

CFP뿐만 아니라 CP에서도 전송이 가능함

CFP(polling through HCF) CP (listen before talk and polling through HCF)

TXOP TXOP TXOP TXOPTBTT

QoS CF-Poll QoS CF-PollCF-endBeacon

Transmitted

by (Q)STAs

Transmitted

by HC

TBTTTime

RTS/CTSRTS/CTSFragmented Fragmented DATA/ACKDATA/ACK(polled by HC)(polled by HC)

RTS/CTS/DATA/ACKRTS/CTS/DATA/ACK(after (after DIFS+backoffDIFS+backoff))

RTS/CTSRTS/CTSFragmented Fragmented DATA/ACKDATA/ACK(polled by HC)(polled by HC)

HCCA : HCF Controlled Channel Access, TSPEC : Traffic Specification, DLP : Direct Link ProtocolHC : Hybrid Coordinator로 AP와 동일, EDCA: Enhanced Distributed Channel AccessCFP : Contention Free Period, CP : Contention Period, TxOP : Transmission Opportunity PF : Persistent Factor

Page 45: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

45

이종이종 접속기술접속기술 간간 QoS QoS 보장보장 문제점문제점

접속기술 QoS 보장 문 제 점

Ethernet→1394

Streaming 트래픽은 asynchronous mode로 전송할 수 밖에 없음

패킷 크기의 차이 때문에 패킷이 손실될 경우 전체 패킷을 다시 전송해야만 함

Ethernet←1394

전송속도의 차이에 의해 bottle neck이 생길 수 있음

isochronous mode로 전송된 서비스 트래픽을 ethernet으로 전송할 경우 Best Effort로만 전송 가능

Ethernet←802.11

HCCA를 사용하여 전송된 트래픽을 외부 access 망으로 사용하는 Ethernet으로전송할 경우 트래픽 패턴이 손상될 수 있음

1394←802.11

EDCA로 전송된 트래픽은 서비스 클래스에 상관없이 Asynchronous mode로만전송 가능

패킷의 크기가 달라 별도의 큐가 필요

Ethernet→802.11

저속의 단말로 인한 전체 처리율의 저하 현상 (IEEE 802.11 Performance Anomaly)HDTV급의 A/V 트래픽을 하나 이상 지원하기가 어려움

1394→802.11

IEEE1394에서 HDTV와 같은 대용량 A/V streaming 트래픽이 발생할 경우WLAN의 채널 자원이 고갈 가능

Page 46: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

46

이종이종 접속기술접속기술 간간 QoS QoS 보장을보장을 위한위한 해결방안해결방안

QoS 파라미터 mappingClass 1

주기적으로 트래픽을 발생

Jitter와 latency에 민감

일정 수준의 에러는 보상할 수 있음

Class 2불규칙적으로 발생하며 트래픽의 크기가 작음

Class 3비교적 낮은 latency와 비교적 높은 처리량을 요구

채널에러에 민감

Class 4트래픽이 burst하게 발생하며 많은 대역폭을 요구

Priority Type Service Type IEEE 1394 IEEE 802.11e

(HCCA사용)IEEE 802.11e

(HCCA사용 안 함) IEEE 802.1p Example

EDCA(AC_VI, AC_VO)

Audio/ Video streamingA/V conferencing

Home automation controlStream setup & control message

Web servicesNetworked home games

E-mail, FTPPeriodic reports

EDCA(AC_BE)

EDCA(AC_BE)

EDCA(AC_BK)

Class 1 Real time streaming isochronous HCCA 7,6,5,4

Class 2 Real time block traffic asynchronous EDCA

(AC_VI, AC_VO) 3

Class 3 Interactive services asynchronous EDCA

(AC_BE) 0

Class 4 Best effort services asynchronous EDCA

(AC_BK) 1,2

Page 47: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

47

이종이종 접속기술접속기술 간간 QoS QoS 보장을보장을 위한위한 해결방안해결방안

IEEE 1394 IEEE 802.11 ethernet

Classifier CAC

Class 1 Class 2 Class 3 Class 4EDF SchedulerReservation

Control signal (to CAC)Control signal (from CAC)Data channel

IP layerIP layer에서에서 분류기분류기(Classifier)(Classifier)로로 분류분류Ethernet과 IEEE 802.11은 MAC SDU에 트래픽클래스를 나타내는 필드가 존재IEEE 1394는 Asynchronous mode로 전송할 경우트래픽 클래스는 알 수 없음

Class 1 : Reservation Class 1 : Reservation 방식의방식의 사용사용WLAN

TSPEC에 따라 협상하여 HCCA로 전송IEEE 1394

BM에게 request를 전송하여 필요 자원을 협상Isochronous mode로 채널을 할당

EthernetPriority방식으로 전송할 수밖에 없음

CAC (Connection Admission Control)로 차단Class 1이 자원의 일정량 이상 점유할 경우서비스가 요구하는 QoS를 만족할 수 없을 경우

Class 2,3,4 : Priority Class 2,3,4 : Priority 방식을방식을 사용사용EDF를 이용하여 결정한 deadline의 순서로 전송을시도

Deadline :( ) ( , )( ) ( , )

( ) ( )total reservation

W i J i jD i a i jR j R j

= +−

i : number of class, j : number of superframe, W : weighting factor, J : packet length measured in number of bits Rtot : total bandwidth, Rreservation : reserved bandwidth a: packet arrival time

EDF : Earliest Dead Line

Page 48: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

48

Home Gate QoS Guaranteed TechnologyHome Gate QoS Guaranteed Technology

HomePNA IEEE 1394 Ethernet WLAN

UWBWDM ZigbeeDOCSISxDSL

Generic Middware

ClassifierQueue

managerBridge

managerBandwidthmanager

UPnP Jini HAVi Echonet IPHN

Conversation Streaming Interactive Background

Linux Solaris Windows CE

HomePNA

PHYMAC

Middleware

Application

Real-time OS

QoSsupport

QoSsupport

Page 49: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

49

SummarySummary

Page 50: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

50

네트워크에서의네트워크에서의 QoS QoS 발전단계발전단계

2005~20062005~2006멀티미디어멀티미디어 서비스서비스 중심중심

2007~20082007~2008통합서비스통합서비스 중심중심

2009~20102009~2010지능형지능형 통합서비스통합서비스 중심중심

방송과 인터넷의 융합

개별 Access Tech.의 공존

Access Tech.로융합

단일화된 네트워크통합된 네트워크

하나의 Access Tech.로 단일화

정책(Policy) 기반의동적 QoS

예약(Reservation) 기반의 동적 QoS

Individual Access Tech.• 802.1p, DiffServ• priority 기반의Queuing/Scheduling

Per Hop Behavior

• On Demand Bandwidth & On Demand QoS

• Dynamic SLA Support

Per Flow Behavior

• Multimedia Session QoS

• SIP Aware QoS

SLA : Service Level Agreement, SIP: Session Initiation Protocol

우선권(Priority) 기반의QoS

네트워크네트워크

개별기술개별기술

QoSQoS

서비스서비스

QoS 기술

Page 51: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

51

EndEnd--toto--End QoS Research IssuesEnd QoS Research Issues

IP/MPLSIP/MPLSIP/MPLSRNC PDSNRouterRouter

Radio AccessRadio AccessRadio AccessRadio Access CoreCore BackboneBackbone

ContentContentProviderProvider

NetworkNetworkProviderProvider

ServiceServiceProviderProvider

•• Application QoS DefinitionApplication QoS Definition•• Application QoS requirementApplication QoS requirement•• QoS recovery mechanismQoS recovery mechanism

•• Customer SLA Customer SLA •• QoS Policy QoS Policy •• SLA mapping to Net. QoSSLA mapping to Net. QoS

•• Wireless QoS Policy Wireless QoS Policy Map to Map to WirelineWireline

•• Managed NetworkManaged Network

•• EE--tt--E QoS SignalingE QoS Signaling•• QoS MAC/PHYQoS MAC/PHY•• Cross layer QoS MappingCross layer QoS Mapping

•• QoS Res. QoS Res. MgmMgm. . •• Call Adm. Cont.Call Adm. Cont.•• QoS SchedulingQoS Scheduling•• QoS TransportQoS Transport

•• QoS Mapping QoS Mapping

Page 52: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

52

ConclusionConclusion

현재 3GPP,ITU-T에서 End-to-End QoS 보장에 관한 연구가 활발히진행 중

End-to-End QoS 보장 기술은 DiffServ에서 signaling procedure를가미한 IntServ 방식의 혼합 방식으로 발전

3GPP : SIP을 이용한 IMSITU : Signaling procedure를 이용한 IP based Network

Network을 통하여 End-to-End QoS를 보장하기 위해서는 다양한QoS 보장 기술들의 연동이 필요

전체 Network는 다양한 Access 기술들이 Core Network에 연결된Hybrid Network임

향후 Network은 단일화될 가능성이 높으므로 다양한 통신 기술들의연동필요

궁극적인 목표인 단일형 End-to-End QoS 보장 기술을 위하여 기반기술인 QoS Parameter Mapping과 QoS Manager를 개발하고, 향후Network aware QoS 보장 기술을 개발 필요

Page 53: End-to-End QoS Provisioning Technologies for B3Gwinner.ajou.ac.kr/publication/data/invited/QoS_final.pdf · Service Payload Rate(Mbps) Latency(ms) Jitter ... Loss 9Random Packet Loss,

53

ReferenceReference

3GPP 3GPP TS 23.002: “Network Architecture”, 20023GPP TS 22.105: “Services and Service Capabilities”, 20033GPP TS 23.060: “General Packet Radio Service (GPRS)”, 20023GPP TS 23.107: “Quality of Service (QoS) concept and architecture”, 20023GPP TS 23.207: “End-to-end Quality of Service (QoS) concept and architecture, 2004

3GPP2S.R0079-0: “Support for End-to-End QoS, stage 1 Requirements”,2004

“이종 홈 네트워크에서 QoS보장에 관한 연구” 발표자료, Jan. 18, 2005“3G+ Wireless QoS Performance Simulator” 발표자료, Feb. 26, 2004‘http://www.itu.int/ITU-T/worksem/qos/program.html’