37
R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 1 EVLA Front-End CDR EVLA Ka-Band (26-40 GHz) Receiver

EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

1

EVLA Front-End CDR

EVLAKa-Band (26-40 GHz)

Receiver

Page 2: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

2

EVLA Ka-Band ReceiverOverview

1) General Description 2) Block Diagram3) Noise & Headroom Model4) Feed & Thermal Gap5) RF Tree - Phase-Shifter

- OMT- LNA’s

6) Prototype Component Tests - W/G Dewar Penetration- Calibration Path

7) Block Converter MMIC Module8) Project Status

Page 3: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

3

General Description

• The Ka-Band (26.5-40 GHz) receiver provides a brand new frequency band for the VLA

• Relatively straightforward “hybrid” of existing K & Q-Band receiver designs

• Scaled K-Band Polarizer largely verified in the GBT 1cm receiver• Waveguide output similar to Q-Band

• Dewar will be largely be based on the C-Band receiver design• Utilizes novel MMIC-based Block Converter• Potential future installation on the VLBA for tracking and

navigation of deep space probes for NASA

Page 4: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

4

OMT45°

Tw

ist90°

PhaseShifter

⇒T

rans

ition

Myl

ar W

indo

w LO Ref12-16.7 GHz

@ 0 dBm

NoiseDiode

Termination orPulse Cal Input

MagicTee

WG toCoax

WG toCoax

15 dB

KaDCM

RFPost-Amp

NF < 5 dB

10 dB

IFPost-Amp

NF < 2.5 dB

x3

25-41GHz

44-49 GHz

RCPIF Output8-18 GHz

DC-18GHz

KaDCM

x344-49 GHz

LCP IF Output8-18 GHz

15 dB

RFPost-Amp

NF < 5 dB

10 dB

IFPost-Amp

NF < 2.5 dB

25-41GHz

DC-18GHz

35 dB

LNACoax

to WG

2.9m

mRC

P

Cal Coupler

Qua

rtz

Win

dow

2.9m

m

Coaxto WG

35 dB

LNA Qua

rtz

Win

dow

Cal Coupler

LC

P

WR-28 Waveguide

Coaxial Cable, 2.9mm

Coaxial Cable, SMA

Key:

Cryogenic Dewar

Vacuum Window

MMIC Module

EVLA Ka-Band Receiver

Block Diagram

Page 5: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

5

Ka-BandBlock Conversion

Frequency Diagram

Ka-Band Rx26.5-40 GHz

IF Out8-18 GHz

LO = 46.0 GHzLO Ref = 15.333 GHz

28-38 GHz

Freq(GHz)

0 4 8 12 16 20 24 28 32 36 40 44 48 52 6056

• Translation of 28-38 GHz down to 8-18 GHz• LO Ref 15.333 GHz x 3 = 46 GHz

• Closest L301 Lock Point is actually 15.232 GHz

Page 6: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

6

Estimated EVLA Ka-BandTRx, Output Power & Headroom

EVLA Ka-Band Rx P (1dB) P (1%) Temp NF/C Loss/Gain Loss/Gain Delta T Trx BW Pnoise Pnoise Headroom(RHH : 28 March 2006) (dBm) (dBm) (K) (dB) (dB) (linear) (K) (K) (MHz) (dBm) dBm/GHz (dB)

for Tsky of13.0(K)

18000 -84.9 -97.5Weather Window 300 -0.05 0.9886 3.474 -83.9Feed Horn 300 -0.05 0.9886 3.514 -83.1Vacuum Window 300 -0.01 0.9977 0.708 -83.0Phase Shifter 15 -0.1 0.9772 0.358 -83.0OMT 15 -0.2 0.9550 0.742 -83.1Waveguide 15 -0.1 0.9772 0.384 -83.1Cal Coupler (IL) 15 -0.2 0.9550 0.795 -83.1Cal Coupler (Branch) 300 -30 0 1.0000 0.300 -83.1Isolator 15 -0.5 0.8913 2.155 -83.2LNA -10 -22 20 35 3162.2777 26.426 -45.1 23.1Stainless Steel W/G 157.5 -2 0.6310 0.038 38.89 -47.1Vacuum Window 300 -0.2 0.9550 0.009 -47.3Waveguide 300 -1 0.7943 0.054 -48.3Isolator 300 -0.5 0.8913 0.032 -48.8RF Post-Amp 15 3 637.9 5 13 19.9526 0.625 -35.7 38.7RF Filter (25-41 GHz) 300 -1 0.7943 0.004 14000 -37.8 -49.3Attenuator 300 -5 0.3162 0.040 -29.8RF Post-Amp 15 3 637.9 5 13 19.9526 0.125 -29.8 32.8Mixer (Level 10 + 5dB) 3 -9 300 -14 0.0398 0.071 -43.8 20.8IF Filter (DC-18 GHz) 300 -1 0.7943 0.019 14000 -44.8 -56.3Post-Amp 18 6 229.6 2.5 13 19.9526 0.071 -31.8 37.8Attenuator 300 -3 0.5012 0.005 -34.8Isolator 300 0.5 1.1220 -0.001 39.95 -34.3

Page 7: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

7

Ka-BandFeed

Page 8: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

8

Ka-Band RF Tree• “Srikanth” designed Ka-Band versions of

– Circular-to-Square Transition– W/G Corrugated Phase-Shifter– 45 Degree Twist Section

• “Wollack” Ortho-Mode Transducer• NRAO Cal Coupler (not shown)• Cryogenic Isolator

– Pamtech or Dorado• CDL MAP-style LNA• Output WR-28 waveguide path will need

complicated bends & twists for alignment and thermal stress relief – Prototype Rx will use flexguide

Page 9: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

9

Ka-BandSrikanth Phase-Shifter

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40Frequency (GHz)

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

Diff

eren

tial P

hase

Shi

ft (D

egre

es)

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

Differential Phase Shift (D

egrees)

Ka-Band Waveguide Phase-ShifterDifferential Phase Shift

S/N 1 (Smoothed)S/N 2 (Smoothed)Desired Phase Shift1 dB Axial Ratio Window

Page 10: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

10

Ka-Band Wollack-style OMT

Page 11: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

11

CDL Ka-BandLow Noise Amplifiers

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40Frequency (GHz)

0

5

10

15

20

25

LNA

Noi

se T

empe

ratu

re (K

)

0

5

10

15

20

25

30

35

40

45

50

55

60

LNA

Gai

n (d

B)

Ka-BandLow Noise Amplifiers

S/N AM017 TrxS/N AM017 GainS/N AM018 TrxS/N AM018 Gain

¹

¸

Page 12: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

12

WR-28 Dewar Output Penetration Fixtures

• Rather than fabricate new WR-28 waveguide windows, we will reuse the commercial vacuum windows & custom-made dewar penetration fixtures preserved from the old A-Rack receiver package.

– The long-ago decommissioned VLA C-Band parametric amplifiers was once fed by a 32 GHz pump.

• We have managed to find about 116 units and 135 windows.

– More than enough for 30 EVLA and 11 VLBA receivers

• The supposedly narrowband units were found to have a surprisingly flat and low-loss broadband response.

– Less than 1 dB across 26.5-40 GHz

Page 13: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

13

Dewar PenetrationInsertion Loss Tests

28000 30000 32000 34000 36000 38000 40000Frequency (MHz)

-3

-2

-1

0

1

2

3

Inse

rtio

n Lo

ss (d

B)

Insertion Loss Measurements on WR-28 Signal Path Does not account for effects of LNA or Block Converter Module Impedance Match

Vacuum Window (VW)Dewar Pentration (DP) + VW6" SS Waveguide (SS6") + DP + VWSS6" + DP + VW + Isolator (Iso)6" Flexguide (FG6") + SS6" + DP + VWFG6" + SS6" + DP + VW + Iso

Page 14: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

14

Ka-band Down-Converter Module

(KaDCM)• Ka-Band Downconverter Specifications:

• RF Frequency Range = 26 - 40 GHz• LO Frequency Range = 14.7 - 16.3 GHz• IF Frequency Range = 8 - 18 GHz• RF to IF Gain = 14 +/- 2 dB• Noise Figure < 6.5 dB• Input P1dB = -16 dBm• LO Reference to IF leakage > -60 dB

Page 15: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

15

KaDCMBlock Diagram

IF Output

8-18 GHz13 dB

KaDCM

RFPost-Amp

NF < 5 dB

13 dB

IFPost-Amp

NF < 2.5 dB

x3

25-41GHz

WaveguideFilter

44-49 GHz

DC-18GHz

RF InputWR-2826-40 GHz

LO Ref

14.7-16.3 GHz@ 0 dBm

13 dB

NF < 5 dB

MicrostripFilter

36-50 GHz

5 dB

RFPost-Amp

3 dB

In theory, this design optimizes the RF-to-IF signal path to achieve maximum headroom while minimizing its noise contribution.

Page 16: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

16

KaDCM Design

• The design of the Ka-band Down-Converter Module (KaDCM) was contracted out to the Microwave Group of Caltech’s Electrical Engineering Department (i.e., Sandy Weinreb).

• The KaDCM design uses custom mixer and tripler MMIC’s, designed by M. Morgan (now at CDL), which were fabricated on a United Monolithic Semiconductors (UMS) wafer.

• Caltech delivered a functioning first article KaDCM in Q3 2005, as well as a 2nd assembled but untested unit, for use in the Ka-Band prototype receiver.

• Once the performance of the KaDCM has been verified, NRAO will fabricate the 66 units required for the EVLA receivers (andthe 22 VLBA units, if needed) in-house.

Page 17: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

17

KaDCM Block Exterior and Bias Card

Page 18: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

18

KaDCM MMIC Channels & LO Filter

Page 19: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

19

Co-Planar W/GCircuit Board

&MMIC Component

Layout

The KaDCM contains:

- 7 MMIC Devices- 5 Amplifiers (Agilent)- 1 Custom Mixer (UMS)- 1 Custom Tripler (UMS)

- 14 CPW boards - Approx 75 wire bonds

EVLA KaDCM

Page 20: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

20

2nd RFPost-ampG=13 dB

WR-28Probe

1st RFPost-ampG=13 dB

Pad5 dB

RF Filter25-41 GHz

Mixer

IF Post-ampG=13 dB

IF FilterDC-18 GHz

IF OutputConnector

LO InputConnector

LOAmplifier

LOTripler

WR-22Probe

Microstrip36-50 GHz

Filter

“Thick Iris”44-49 GHz

WR-19 WaveguideFilter

WR-22Probe

LO Amp

Pad3 dB

Page 21: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

21

KaDCM Design Issues

• The LO to IF leakage specification proved to be the most difficult requirement to meet.– The 14.7-16.3 GHz LO reference can leak into the 8-18 GHz IF output range – This type of direct coupling is minimized by a well designed physical layout

• A more subtle type of leakage arises from intermodulation products of the LO harmonics.– For example, when the LO fundamental input is set to 16.0 GHz, the desired 3rd harmonic of

the LO reference will be 48.0 GHz while the 4th will be at 64.0 GHz.– If the mixer sees a strong 4th harmonic, it will generate a 4th minus 3rd intermod which will

exit the mixer at 16.0 GHz, right in the middle of the EVLA 8-18 GHz IF.– Consequently the level of the unwanted 4th harmonic must be strongly rejected.

• To mitigate the detrimental effect of this in continuum observations, the 4th-3rd LO leakage term (as determined by Barry Clark) must be 25 dB below the broadband power in the 8-18 GHz IF.

– The estimated output level when looking at cold sky of the KaDCM IF is about -35 dBm.– This means the 4th-3rd LO spur present in the IF will have to less than -60 dBm.– Since the mixer requires an LO power level of +10 dBm at the desired 3rd harmonic, the level

of the unwanted 4th harmonic will be about -10 dBm, assuming its power is down by -20 dB.– Balanced mixers typically have a 20 dB rejection of signals on the LO port. Using a more

conservative 15 dB value, the resulting intermod level at the mixer IF port is about -25 dBm.– With the 10 dB IF postamp gain, the spur will be rise to -15 dBm, which is 45 dB too high.

Page 22: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

22

KaDCM Design Issues

• Thus to meet the -60 dBm spec, the level of the unwanted 4th-3rd LO leakage term at the mixer must be reduced by at least 45 dB.

• To achieve this extra rejection, the output of the tripler requires an additional stage of filtering to reject the 4th harmonic.

– A microstrip filter does not have a very high Q but has high out of band rejection.

– A waveguide filter has high Q but poor rejection at high frequencies where it becomes over-moded.

• The KaDCM utilizes a 36-50 GHz microstrip filter followed by a “Thick Iris” 44-49 GHz waveguide filter by (both designed by M. Morgan, NRAO-CDL). This cascaded filter is well matched to the desired 44-49 GHz 3rd harmonic.

• Note that in spectral line mode, when using a 10 KHz bandwidth, a level -41 dB below noise power in the 8-18 GHz IF is ideally required.

Page 23: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

23

LO Harmonic Filtering

KaDCM Simulated LO Filter Insertion LossMicrostrip + Waveguide Filter

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

30 35 40 45 50 55 60 65 70 75

Frequency (GHz)

Inse

rtion

Los

s (d

B)

MS Filter IL [dB]WG Filter RL [dB]

3rd 4th2nd

Page 24: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

24

KaDCM Prototype #1Conversion Gain vs. Frequency

Simulated L301 Lock Points

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40Frequency (GHz)

10

12

14

16

18

20

Con

vers

ion

Gai

n (d

B)

KaDCM Prototype #1Conversion Gain vs. Frequency

Simulated L301 Lock Pointsfor the LO reference

(5 April 2006)LO Ref = 14.720 GHzLO Ref = 14.976 GHzLO Ref = 15.232 GHzLO Ref = 15.488 GHzLO Ref = 15.744 GHzLO Ref = 16.000 GHzLO Ref = 16.256 GHz

Page 25: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

25

-97

-96

-95

-94

-93

-92

-91

-90

15.95 15.97 15.99 16.01 16.03 16.05

Frequency (GHz)

Out

put P

ower

(dB

m)

Spectrum Analyzer Measurement of KaDCM LO Ref Leakage

LO Ref = 16 GHz @ 0 dBm & RF = Off(RHH : 5 April 2006)

16 GHz = -91 dBm

Page 26: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

26

KaDCM Headroom ?

• Recent tests indicate that the prototype KaDCM does not achieve the expected compression level.– Input power P(1dB) spec = -16 dBm– Measured Input P(1dB) < -22 dBm

• Hopefully can play with RF & IF gains to mitigate the mixer compression.

• If this cannot be improved, it would adversly affect the Ka-Band Rx Headroom (defined as how far the typical operating point (i.e., cold sky) is below the 1% compression point).– Would reduce current 21 dB Headroom to 15 dB– Project Book Spec = 20 dB

Page 27: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

27

KaDCM Unit Cost

• Assumes minimum of 66 KaDCM units • Direct Cost = $2,200• Indirect Cost = $5,000

– if include pro-rated costs (with QPAM) of• Caltech contract• Wafers• 50 GHz test equipment• Wire bonder & accessories, etc.

Page 28: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

28

Ka-Band Receiver Project Status

• Due to other pressures and diversions, the development of the Ka-Band receiver has been slower than originally planned.

• Most of the commercial components and custom waveguide components for the prototype system are in-house.

• Hope to complete the design, construction and evaluation of the prototype in 2006.

• Production slated to begin in 2007. – Receivers will be built at or exceed the antenna

outfitting schedule.

Page 29: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

29

Questions ?

Page 30: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

30

Backup Slides

Page 31: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

31

Thermal Gap Assembly(Q-Band Example)

Page 32: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

32

Calibration Path

• Broadband Noise Source• Magic Tee Splitter• Separate Variable Attenuators

– From old A-Rack 32 GHz Paramp– Have found 34 out of the 60 needed– Will have to purchase the rest

• Hermetic 2.9 mm Coax Bulkhead Feedthru Connectors

• Commercial Stainless Steel Cables with K-Connectors

• VLA/GBT WR-28 Cal Couplers (30 dB) • Pulse/Phase Cal Option

– Desirable for VLBA – Not needed on EVLA (use Termination)

OMTNoiseDiode

Termination

MagicTee

WG toCoax

WG toCoax

35 dB

LNACoaxto WG

2.9m

mRC

P

CalCoupler

Qua

rtz

Win

dow

2.9m

m

Coaxto WG

35 dB

LNA Qua

rtz

Win

dow

CalCoupler

LC

P

PulseCal

Pulse CalInput

Page 33: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

33

Prototype Ka-Band Calibration Components

Page 34: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

34

Magic TeeTest Results

26000 28000 30000 32000 34000 36000 38000 40000Frequency (MHz)

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

T Cal L

CP

& R

CP

Split

(dB

)

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

P Cal L

CP

& R

CP

Split

(dB

)

-60

-50

-40

-30

-20

P Cal to

TC

al Is

olat

ion

(dB

) Quinstar Magic TeeQJH-A0FB00(5 Dec 2004)

LCP TCal Power SplitRCP TCal Power SplitPCal to TCal IsolationLCP PCal Power SplitRCP PCal Power Split

26000 28000 30000 32000 34000 36000 38000 40000

.

.

.

Page 35: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

35

Page 36: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

36

Spectrum Analyzer Measurement of KaDCM LO Intermods

LO Ref = 16 GHz & RF = 35 GHz @ ???(5 April 2006)

-90

-80

-70

-60

-50

-40

-30

-20

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Frequency (GHz)

Out

put P

ower

(dB

m)

LO-RF = 48-35 = 13

2·RF-LO = 2·35-48 = 22

3·RF-2·LO = 3·35-2·48 = 9

Page 37: EVLA Front-End CDR · 2006-04-28 · R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver 24 April 2006 4 45 OMT ° Twist 90° Phase {ShifterTransit i on Myla r Window LO Ref 12-16.7

R. Hayward EVLA Front-End CDR – EVLA Ka-Band Receiver24 April 2006

37

Spectrum Analyzer Measurement of KaDCM Output

LO Ref = 16 GHz & Swept RF = 30-40 GHz(5 April 2006)

-90

-80

-70

-60

-50

-40

-30

-20

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Frequency (GHz)

Out

put P

ower

(dB

m)