Excelによる音響解析入門 音響構造特性の解析 (4) Excelによるダクト系消音器の解析 ??アクティブ消音器の解析 ... 孔板の孔の扱いと同じであり,詳細はこれを参照

  • Published on
    10-Feb-2018

  • View
    236

  • Download
    16

Embed Size (px)

Transcript

  • 14

    5

    16

    Excel

    111

    !1!1!2

    1

    !2 1 2P1P2 SU1SU2 1

    !#

    %P1

    SU1"$

    &

    !##%

    cos kl

    jS

    0c0sin kl

    j 0c0Ssin kl

    cos kl

    "$$&

    !#

    %P2

    SU2"$

    &

    1

    S l 0 c0 k k c02 f c0 f U

    !1a!2 1

    t

    !#

    %t11t21

    t12t22"$

    &

    !##%

    cos kl

    jmS0 0c0sin kl

    j 0c0mS0sin kl

    cos kl

    "$$&

    2

    mS0 l S0

    m

    !1b!2 2 U2 U20

    3

    ZP2

    SU2

    P2 cos kl

    jP2S

    0c0sin kl

    j 0c0

    S tan kl 3

    Excel 4

    Excel

    Acoustic AnalysisReactive SilencerLining DuctPlane WaveSpreadsheet Software

    !1

    !2

    MicrosoftMSWindowsVisual Basic Micro-

    soft Corporation

  • 3 SmS0 !1b

    !1c S l VSl Sh lh

    3

    l

    2 k kl2 l k1 4

    Zcj 0c0

    S tan kl!j

    0c02

    V 4

    Sh lh

    lh

    5

    ZhRj 0lh 1 2dh

    Sh 5

    R

    dh

    5 2 13

    4 5 6

    ZZcZh

    Rj 0#&

    ( lh 1 2dh

    Sh

    c02

    V$'

    ) 6

    !3!1

    12

    !4

    !5!1abc

    !4 t !" P!P" S!U!S"U" 7

    *,

    .P!

    S!U!+-

    /*,

    .t11t21

    t12t22+-

    /*,

    .P"

    S"U"+-

    / 7

    ! 8 9"1011

    P!PiPr 8

    S!U!S0UiUrS0

    0c0PiPr 9

    P"Pt 10

    S"U"S0UtS0

    0c0Pt 11

    Pi Ui Pr Ur Pt Ut

    "

    811 712

    TL

    TL10 log%%PiPt%%2

    10 log

    %%t11

    S0 0c0

    t12 0c0S0

    t21t22%%2

    412

    !5 Z

    S0U! S0U"

    SUP Z13

    S0U!S0U"SU 13

    !3 !4 !5

    !Excel 4

  • P!PiPr P"Pt

    14

    P!P" 14

    1314!" P!P" S!U!S"U"15

    *,

    .P!

    S!U!+-

    /*,

    .11Z

    01+-

    /*,

    .P"

    S"U"+-

    /15

    15 7

    15t111t120t211Zt22

    11216

    TL10 log%%1 0c02 S0

    Z%%2

    16

    13

    11 12

    21215

    TL10 log024114#&

    (m

    1m$'

    )

    2

    sin22

    ff0

    135

    17

    f0c04 l

    18

    f0

    l m

    31619

    TL10 log#&

    (1

    m 2

    4tan2

    2

    ff0$'

    )19

    f0c04 l

    20

    f0

    l m

    61621

    TL10 log*,

    .1m

    2

    41

    f f0f0f2+-

    /21

    f0c02

    Shlh 1 2dhV

    22

    m2 f0Vc0S0

    23

    6 R R0

    f0

    m

    !6ab f f01 f f0

    35

    !6 1m f f01 1

    m

    14

    24

    516

    Fww tan w 0q ptan

    qdl0 24

    p 2 pl2kl2 25w 2 l2kl2 26q 2w 2p 2 27

    p w q 2527

    d l

    k k2 f c0 0 c0 p p 2 12DelanyBazley

    !6 !7

    Excel

  • !728

    TL10 log

    e x

    210 logeRe x2

    20log eRex 28Re

    24w 26 2429NewtonRaph-

    son

    wn1wnFwnF wn 29

    F wdFw

    dw

    2 wsin 2 w1cos 2 w

    0w p

    2 qdlsin

    2 qdl

    1cos2 qd

    l

    30

    F wn3024

    w0 w w0

    0 w0 2

    2Excel21

    Excel

    Module 0108

    Module 09Module 10

    2

    Module 0306

    Module 09 FuncTLExpansion fS0ml

    fHz

    S0m2 m l

    m TLdB

    FuncTLSideBranch fS0ml fHz

    S0m2

    m lm Nsm4 TLdB

    0FuncTLResonator fS0NdhlhSclc

    f

    Hz S0m2 N

    dhm lhm

    Scm2 lcm Nsm4 TLdB

    0FuncZDuctClose fSl 3

    fHz Sm2 lm

    Nsm4 Z

    FuncZOrifice fdl 1 2 5 f

    Hz dm lm

    1 2 Z

    FuncTtoTLTSiSo12

    Tt11t12t21t22

    SiSo TLdB

    FuncF 0 ResonatorS0NdhlhSclc22

    S0m2 N

    dhm lhm Sc

    m2 lcm f0Hz

    Module 10 FuncWLinedDuct fldw0 2429New-

    tonRaphson fHz

    lm dm Nsm4 w0 w FuncTLLined-

    Duct flw24 w

    fHz

    lm w

    TLdBm Module 10

    SetCmplx FuncWLined-

    Duct

    2Module 03

    FuncWLinedDuct NewtonRaphson

    Cmplx

    FuncWLinedDuct

    22

    !811

    !Excel 4

  • !8FuncTLExpan-sion fS0ml f TL

    f 2Func-

    SetFrq !9FuncTLSideBranch fS0ml

    !10FuncTLResonator fS0NdhlhSclc!10FuncF 0 ResonatorS0NdhlhSclcFuncF 0 Resonator 6

    Z R R0

    FuncTLResonator

    !8

    !9

    !10

    !11

    Excel

  • !11FuncWLinedDuct fldw0 w

    w

    FuncTLLinedDuct flw

    NewtonRaphson

    331

    !1271718

    !12 D02 m!3 1 kHz

    !138!14

    2 60

    Hz FuncTLResonator fS0N

    dhlhSclc N8

    Sc0620324 lc085

    3 000 Nsm4 !14ab

    !14a 220 Hz

    lc

    D03 m

    665 Hz

    32

    !159!16!17!16W !17

    !16!17abFuncWLinedDuct fldw0 FuncTL-LinedDuct flw

    cBEM

    b!15 l lW 2 d

    dDW2

    1 m 2

    !15 2 m!16!17

    !12

    !14

    !13 !15

    !Excel 4

  • bcBEM

    !15

    Ex-

    cel

    10

    1

    2

    3

    4

    5 D. Chritie : Theoretical Attenuation of Sound in Alined

    Duct, Journal of Sound and Vibration171971pp.283

    286

    6

    N2001572001

    7

    1995pp.277278

    8

    2

    1997pp.243244

    9 !

    2003pp.16211624

    10 1

    3No5432001

    pp.916No5512002pp.1722No5662003pp.39

    45

    2006721

    30

    !16

    !17

    Excel

  • !Excel 4

Recommended

View more >