37
Stackelberg Security Games for Security Fernando Ordóñez Universidad de Chile

Fernando Ordoñez

  • Upload
    ceamos

  • View
    233

  • Download
    1

Embed Size (px)

DESCRIPTION

Presentación de Fernando Ordoñez en el marco de la Primera Cumbre Internacional de Análisis Criminal Científico. 23 de abril de 2014.

Citation preview

Page 1: Fernando Ordoñez

Stackelberg Security Games for Security

Fernando Ordóñez

Universidad de Chile

Page 2: Fernando Ordoñez

Stackelberg Games for Security

Fernando Ordóñez

Universidad de Chile

Page 3: Fernando Ordoñez

Stackelberg Games for Security

Fernando Ordóñez

Milind Tambe, P. Paruchuri, C. Kiekintveld, B. An, J. Pita, M. Jain, J. Tsai, R. Yang, A. Jiang,

M. Brown, E. Shieh… and others

Page 4: Fernando Ordoñez

Stackelberg Security Game

4

Page 5: Fernando Ordoñez

5

Stackelberg Security Game

Page 6: Fernando Ordoñez

Stackelberg Security Game

6

Monday Tuesday

Page 7: Fernando Ordoñez

Stackelberg Security Game

7

Wednesday

Page 8: Fernando Ordoñez

Outline

• Stackelberg Games

• Deployed Applications

• Challenges in Stackelberg Security Games

– Problem Size

– Uncertainty/rationality

– Model Inputs (data, game definition)

• Ongoing work

Page 9: Fernando Ordoñez

Game Theory: Stackelberg Game

• Stackelberg: defender goes first, attacker second

• Non zero sum utilities

• A mixed strategy is optimal for the leader

Police

Adversary

Target #1 Target #2

Patrol #1 7, -4 -2, 3

Patrol #2 -7, 7 4, -3

Page 10: Fernando Ordoñez

Game Theory: Stackelberg Game

Page 12: Fernando Ordoñez

Optimization Model (Rational Adversary)

)7( ),(maxarg

)6( 0,1

)5( 1

)4( assignment feasible ,10

)3( 1

)2( =

)1( urcesTotal_Reso .

),( max,

ik

a

ikq

k

k k

jj

jj

jjj

Ti

i

ik

d

ikax

qxUq

q

q

Aa

a

Aax

xts

qxU

A

AConstraint on x to enforce a feasible marginal coverage on targets

Page 13: Fernando Ordoñez

USCG Patrols

Port of Boston (Not actual areas)

Page 14: Fernando Ordoñez

Challenges in SSG

• Problem Size

• Uncertainty/rationality

• Model Inputs (data, game definition)

• Evaluation

Page 15: Fernando Ordoñez

Federal Air Marshals (FAMS)

Strategy 1 Strategy 2 Strategy 3

Strategy 1

Strategy 2

Strategy 3

Strategy 4

Strategy 5

Strategy 6

Strategy 1 Strategy 2 Strategy 3

Strategy 1

Strategy 2

Strategy 3

Strategy 4

Strategy 5

Strategy 6

Page 16: Fernando Ordoñez

Multiple Defense Resources

4 Flights 2 Air Marshals

100 Flights 10 Air Marshals

6 Schedules

17,000,000,000,000 Schedules

Pure strategies are joint schedules: Each air marshal assigned to a tour

Page 17: Fernando Ordoñez

Payoff duplicates: Depends on target covered

Speedup: Compact Representation

ARMOR Actions

Tour combos

Prob

1 1,2,3 x1

2 1,2,4 x2

3 1,2,5 x3

… … …

120 8,9,10 x120

CompactAction

Tour Prob

1 1 y1

2 2 y2

3 3 y3

… … …

10 10 y10

Attack 1 Attack 2 Attack …

Attack 6

1,2,3 5,-10 4,-8 … -20,9

1,2,4 5,-10 4,-8 … -20,9

1,3,5 5,-10 4,-8 … -20,9

… … … … …

ARMOR: 10 tours, 3 defenders

MILP similar to ARMOR 10 instead of 120 variables y1+y2+y3…+y10 = 3

Page 18: Fernando Ordoñez

Algorithm Development

• Tight formulations

• Decomposition Methods

– Column generation

– Constraint generation

• Heuristic Methods

Page 19: Fernando Ordoñez

Uncertainty/Rationality

Page 20: Fernando Ordoñez

Uncertainty/Rationality

Page 21: Fernando Ordoñez

Optimization Model (Partially Rational Adversary)

Fractional and Non-Convex

)4( assignment feasible ,10

)3( 1

)2( =

)1( urcesTotal_Reso .

)( )( max)(

)(

,

jj

jj

jjj

Ti

i

i

d

ie

e

ax

Aa

a

Aax

xts

xUxF

A

A

k

xak

U

xaiU

Page 22: Fernando Ordoñez

Playing against Human Adversaries

Page 23: Fernando Ordoñez

Experimental Results

PT = Prospect theory QRE = Quantal Response Equilibrium

Page 24: Fernando Ordoñez

Model Inputs

Page 25: Fernando Ordoñez

Steps to build SSG

1. Gather representative data

2. Define targets to protect

3. Define time periods to protect

4. Types of Attackers

5. Defender and Attacker utilities

Page 26: Fernando Ordoñez

1: Relevant Data

• 2 year crime event data

• Horizon: annual averages of crime

– No daily variation

– No seasons

• Baseline patrol strategy

Page 27: Fernando Ordoñez

2: Targets

Clustering,

nodes with > 10 events in 20 meters

Page 28: Fernando Ordoñez

3/4: Periods/Attacker types 8 attacker types (clustering crime data)

7 Periods (cross police shifts with crime types)

Prob. de un tipo de atacante en un periodo Cluster S1 S2 S3 S4 S5 S6 S7 Total

0 0,234 0,516 0,624 0 0,603 0,562 0,395 1815

1 0,078 0,057 0,048 0,142 0,049 0,079 0,097 679

2 0 0 0 0,47 0 0 0 545

3 0,032 0,018 0,018 0 0,012 0,027 0,05 369

4 0 0 0 0,26 0 0 0 405

5 0,253 0,091 0,063 0,079 0,066 0,093 0,15 808

6 0,023 0,027 0,022 0,048 0,033 0,016 0,024 419

7 0 0 0 0 0 0,223 0,285 575

8 0,381 0,291 0,225 0 0,238 0 0 1110

Total 727 457 1892 1217 939 881 612

Page 29: Fernando Ordoñez

5: Utilities

Crime events have a value information

Cluster Avalúo ($)

0 $ 91.175

1 $ 104.448

2 $ 67.976

3 $ 225.985

4 $ 87.650

5 $ 108.717

6 $ 69.481

7 $ 69.246

8 $ 109.174

Cluster Promedio de Utilidad Días Reclusión Tasa Descuento Costo ($)

0 91175 61 40% 319113

1 104448 1752 40% 365568

2 67976 63 40% 237916

3 225610 1746 40% 789636

4 87650 1747 40% 306776

5 108717 1686 40% 380511

6 69481 74 40% 243184

7 69246 1757 40% 242362

8 109174 1739 40% 382109

Page 30: Fernando Ordoñez

Results

A frequency with which each node should be protected to maximize utilities

Page 31: Fernando Ordoñez

Evaluation

• Computer

• Anectdote

• Tests on field

Page 32: Fernando Ordoñez

-1,6

-1,4

-1,2

-1

-0,8

-0,6

-0,4

-0,2

00

0,5 1

1,5 2

2,5 3

3,5 4

4,5 5

5,5 6

Def

en

de

r's

Exp

ect

ed

Uti

lity

Attacker λ value

PASAQ(λ=1.5)

DOBSS(λ=∞)

PASAQ(noise high)

DOBSS(noise high)

Robustness Results: Observation Noise

Page 33: Fernando Ordoñez

Patrol Schedules – before/after PROTECT

0

5

10

15

20

25

30

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7C

ou

nt

0

20

40

60

80

100

120

140

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Co

un

t

Base Patrol Area

Pre-PROTECT

Post-PROTECT

From the Port of Boston

Page 34: Fernando Ordoñez

Conduct pre- and post-PROTECT assessment Effectiveness (tactical deterrence) increased from pre- to post- PROTECT observations

Adversarial Perspective Team (APT)

Page 35: Fernando Ordoñez

On going work: protecting the border

Page 36: Fernando Ordoñez

Sampled patrols from optimal solution

Page 37: Fernando Ordoñez

Research Questions • Efficient algorithms to solve real instances

(patrolling on a network)

• Automatically determine payoff values

• Multiple types of security resources

• Validation