43
Filter- Diagonalization trix Diagonalization & um Dynamics: circumventing l Processing! les: imental signals lassical: rajectory-dependent cellularization (traj.-dep. Fil DMC) E t () IK C t

Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Embed Size (px)

Citation preview

Page 1: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Filter-Diagonalization

1. Matrix Diagonalization &

Quantum Dynamics: circumventing

2. Signal Processing!

3. Examples:Experimental signals

Semiclassical:[Trajectory-dependent cellularization (traj.-dep. Filinov)]

QMC (DMC)

E t

( )IKC t

Page 2: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Groups interested in extracting eigenstates (or Density-Matrices) using “filters”Mandelshtam, Shaka, Chen (Irvine)Taylor (USC)Baer (Jerusalem) (Density-Matrices)Rabani (Tel-Aviv) (Density-Matrices)Wyatt (Houston)Head-Gordon (Berkeley) (Density-Matrices)Moiseyev (Haifa)Guo (New-Mexico)Meyer, Cederbaum, Beck (Heidelberg)Ruchman&Gershgoren, Labview implementation

for condensed phases signals (Jerusalem)

D.N., Mike Wall, Johnny Pang, Sybil Anderson, Jaejin Ka

Emily Carter, Antonio, de Silva, E. Fattal, Peter Felker, Julie Feigon, Wousik Kim(UCLA)

Page 3: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Existing Approaches for eigenstates:

Non-sepearable H:

Lowest state: ITERATE.

General: LANCOSZ

H Tridiagonal

Eigenvalues simple for REAL H’s

Converges fastest near gaps.

Too democratic.

Page 4: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Filter-Diagonalization:

Extends FFT

Bridges FFT and other approaches,

Trick:Connect Q.M. Signal Processing

H ( ) exp( )n nn

C t a i t

Signal processing can be recast (mapped) as aQM problem.

Page 5: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

To see connection: start from QM.

H given, need , ( )n n

Simplest approach:

0 0( ) exp( )C t iHt

FFT C(t).

Expensive! Need long time to resolve closely-spaced eigenvalues

Page 6: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

E

Usually: for resolution, width: 1/T

121120

Page 7: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Filter-Diagonalization:

2 2

0

( ) exp( ) ( )T

E iE t t dt

1) Filter the same w.p. at 2 (or more) energies

Resulting in energy-localized states,

even if T is short!

1 1

0

( ) exp( ) ( )T

E iE t t dt

Page 8: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

EE

Filter-Diagonalization:Short time (wide width) and…

E1

e121e120

Page 9: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

EE

E2

e121e120

E1

…and use the filtered vectors as an energy selected basis!

Page 10: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Practically:• Orthogonalize

• Diagonalize small matrix.

1( )E 2( )E

1 1 1 2

2 1 2 2

( ) | ( ) ( ) | ( )

( ) | ( ) ( ) | ( )

E H E E H E

E H E E H E

h

Page 11: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Filter – short time throws contribution of most eigenstates.

Diagonalization: separates contribution of closely-spaced eigenvalues.

Page 12: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Method: as is useful for extracting eigenstatesFrom a short time filter;

Or in general diagonalizing matrices in selectedenergy ranges

(Especially if multiple initial vectors are used).

Page 13: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Combined Approach: First:

0( ) exp( )t iHt

0

( ; ) ( ; ) exp( )T

j jx x t i t dtE E

k

jE

Then: Orthogonalize the ( ; )jx E

Finally: diagonalize the small matrix:

( ; ) ( ; )jl j lh x E H x E

Page 14: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Time-dependent propagation. First: general methods:

Spectral Propagation:

1 2

exp( ) ( ) ( )

2

( )

n nn

n n n

n n o

iHt a t T H

H

T H

Split-Operator:

exp ( ) exp exp exp2 2A B A B A

t ti H H t iH iH t iH

Page 15: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Pre-conditioning+Filter-Diagonalization:

(Wyatt; Carrington)

Pre-conditioning:

H=H0+V

00

1

( )jjE H

Basis-set localized around Ej !

Diagonalize H in basis

k

jE

Page 16: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

DFT: Divide and ConquerRenormalization Group—Baer and Head-Gordon.

( ) ( )x x H x

( ) ( () )smooth HH D H

D: concentrated around , sojust few e.functions are enough.

Page 17: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Surprising feature of Filter-Diagonalization:

can be recast as a:

Signal processing application!

Page 18: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

And now to : Signal Processing:

From C(t) t=0,dt,2dt,3dt,…,T

Get C(t) all t

OR:( ) exp( )n n

n

C t a i t

Page 19: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Signal Processing: Not trivial.

1) “Classical” “MUSIC”, Linear-Prediction, Maximum-Entropy: work usually increases for long signals

2) FFT:

• Handles easily long signals.

But:• Handles only a single signal at a time • Long propagation time

( ) ( ) exp( )t

C C t i t

Page 20: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

1995: Wall and Neuhauser.Do not orthogonalize.Solve instead Generalized-eigenvalue problem

hB SB

' ( ) ( ')

exp( )ex( ') p( ' ') '

EES E E

iEt iE tC t tdtt d

( ) ( ')t t

Page 21: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

hB SB

' ( ) ( ')

exp( )ex( ') p( ' ') '

EES E E

iEt iE tC t tdtt d

• Single C(t) needed for all energy-ranges!

• No Hamiltonian necessary!!!!!

Page 22: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Route “eventual”:

H

Eigenvalues from C(t)

H not needed (need not exist)

Route “completed”:Eigenvalues from C(t)

Page 23: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Sig. Proc. Algorithm (automated):Choose frequency rangeChoose # of vectors (2-10)Calculate h,S from C(t)Diagonalize to get poles.

Cheap! (Single FFT)

Extends FFT to a matrix method(FFT: L=1!)

Applicable to MATRIX signals Cik(t)

Page 24: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Developments: Mandelshtam;Taylor;GuoShaka)

• Discrete nature of signals.

• Multiple time-scales.

• Avoiding Diagonalization.

(long time spectrum directly from short-t.)

Page 25: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Applications:

NMR -- Multiple time-dimensions

t

Semiclassical correlation functions (He-aromatic clusters;He2-aromatics next.)

Excited states in DMC

Extracting frequencies from short-time segments – Mass spectra

Classical frequencies from < v(t)v(0)>

Page 26: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

1’st Example: Use with an Experimental Signal (absorption in I3

-). (Gershgoren and Ruchman, Jerusalem, 2000.)

0 1000 2000 3000 4000 5000-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

C(t) vs. anexp(-int)A

bsor

ptio

n [a

.u]

Time [fsec]

Page 27: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

50 100 150 200 250 300 350

0.0

0.2

0.4

0.6

0.8

1.0

Line resolution in I3

-

absorption

| |

[cm-1

]

Page 28: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Matrix-correlation functions: help disentangle eigenvalues

( ) exp( )IJ I JC t iHt

hB SBStill apply:

But now:

, ' exp( )exp( ' ') '( ')IE JE IJS iC Et iE t dtdtt t

Page 29: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Semi-classical signal with Filter-Diagonalization

(Anderson, Ka, Felker, Neuhauser, 1999-2001)

• Semiclassical – excellent at short times.• Cross-correlation: helps!.

• Example: He+Naphthalene (3D system),

[Developed: Trajectory-dependent Filinov]

2nd example:

Page 30: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

He+Naphthalene

(Earlier simulations:He+Benzene)

Page 31: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Comparison between single correlation function and

5x5 cross correlation function (Benzene)

-39

-38

-37

-36

-35

1 2 3 4

Single Correlation Function

5x5

t (psec)

E(c

m-1)

Page 32: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Benzene: Converged results from a 5x5 cross-correlation analysis vs. exact results for different symmetries.

Symmetry Semiclassical Exact

A1 -56.5 -56.57

E1 -46.0 -45.46

A1 -38.8 -38.77

E2 -37.7 -36.96

E1 -32.6 -32.45

B2 -31.4 -30.92

B1 -30.2 -29.39

A1 -28.0 -27.82

E2 -27.2 -26.99All energies are in wavenumbers

Page 33: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Insert: Trajectory-Dependent Cellularization.

Herman-Kluck

21( ) ,2

N

N

C t d A t

y (p,q)

y exp(B(y,t)) y

Problems: (related) – Weights increasing;Trajectory chaotic –

cellularization (Filinov) problematic

Page 34: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

det

12

NN d e

y y η y yηy

Filinov-Transform (Filinov, Freeman, Doll, Coalson; Manolopolous).

Problem – B may be steep in certain directions

Solution: make ηtime-dependent and trajectory-dep. matrix.

22

22

( (

( )

,N N y y

C t

d d A t

2B 1

B(y,t)+ y)+ y)y

B

y2y y y exp

Page 35: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

We find the 2’nd derivative matrix,

2

2T

AλA

B

yset

Tη AφAAnd REQUIRE

And condition so that the overall integrand is well-behaved and not large.

21( ) ,2

N

N

C t d A t

y exp(iB(y,t)) y

Trajectory-dependent cellularization: “details”

Page 36: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Trajectory-Dependent Cellularization.

Page 37: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Work-in-progress: Naphthalene, Effect of Trajectory-Dependent

Cellularization (single C(t), few trajectories)

Page 38: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Other-improvements (in progress):

Backward-forward propagation(Makri):

0 0

0 0 0 0 0

exp( )

exp( ) exp( )exp( )

iHt

iH t iH t iHt

known semiclassical

Page 39: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

3-rd example: Eigenvalues in DMC(with Chen and Mandelshtam)

0 0( ) exp( )IK I KC t A Ht A

(see Whaley too).Suitable for Filter-Diagonalization.

Page 40: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

FDG for QMC vs. exact results –2D He-Be. work in progress;

Will implement: better initial guesses,smaller dt, more trajectories

0 0( ) exp( )IK I KC t A iHt A

Page 41: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:
Page 42: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Potential for automatically many degrees of freedom (even if ground-state unknown):

0 0

( ; )

exp( ) exp( ) exp( )

IK

I K

C t T

HT A Ht A HT

Ground-stateIf T is large.

Page 43: Filter-Diagonalization 1. Matrix Diagonalization & Quantum Dynamics: circumventing 2.Signal Processing! 3.Examples: Experimental signals Semiclassical:

Conclusions:

Filter-Diagonalization:

* Handles large signals* Applicable when long-times expensive/difficult* Is general extension of Fourier-Transforms

Trajectory-dependent cellularization effective.