37
EE40 EE40 Final Exam Review Final Exam Review Prof Nathan Cheung Prof. Nathan Cheung 12/01/2009 Practice with past exams http://hkn.eecs.berkeley.edu/exam/list/?exam_course=EE%2040 Slide 1 EE40 Fall 2009 Prof. Cheung

Final Exam Review - inst.eecs.berkeley.edu

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Final Exam Review - inst.eecs.berkeley.edu

EE40EE40

Final Exam ReviewFinal Exam Review

Prof Nathan CheungProf. Nathan Cheung12/01/2009

Practice with past examshttp://hkn.eecs.berkeley.edu/exam/list/?exam_course=EE%2040

Slide 1EE40 Fall 2009 Prof. Cheung

Page 2: Final Exam Review - inst.eecs.berkeley.edu

Overview of Course

Circuit components:R C L sources

Circuit analysis:Laws: Ohm’s, KVL, KCLR, C, L , sources

I-V characteristicsenergy storage/dissipation Equivalent circuits (series/

parallel Thevenin Norton)parallel, Thevenin, Norton)Superposition for linear circuitsNodal analysisM h l iMesh analysisPhasor I and V

First-order transient excitation/analysis:Second Order RLC circuits

Slide 2EE40 Fall 2009 Prof. Cheung2

Bode Plots

Page 3: Final Exam Review - inst.eecs.berkeley.edu

Overview of Course

Logic gates; Combinatorial logic (sum-of-products, Karnaugh maps), sequential logic etcsequential logic etc.

Semiconductors Devicespn-diodes (many types) FETs (n-channel, p-channel, CMOS)( , p , )

Useful Diode and FET circuits:Useful Diode and FET circuits: Amplifiers: op-amp (negative feedback), rectifiers; wave shaping circuits

Slide 3EE40 Fall 2009 Prof. Cheung3

Page 4: Final Exam Review - inst.eecs.berkeley.edu

Diode Circuit Analysis by Assumed Diode States

•1) Specify Ideal Diode Model or Piecewise-Linear Diode Model

ID (A) ID (A)

reverse biasforward bias

VD (V)reverse bias

forward bias

•2) Each diode can be ON or OFF

VD (V)VDon

•3) Circuit containing n diodes will have 2n states•4) The combination of states that works for ALL di d ( i t t ith KVL d KCL) ill b th

Slide 4EE40 Fall 2009 Prof. Cheung

diodes (consistent with KVL and KCL) will be the solution

Page 5: Final Exam Review - inst.eecs.berkeley.edu

Example Problem: Perfect Rectifier Model

Sketch V t versus ViSketch Vout versus Vin

Slide 5EE40 Fall 2009 Prof. Cheung

Suggested problem: What if there is a 0.6V drop when diodes are on ?

Page 6: Final Exam Review - inst.eecs.berkeley.edu

Diode with Capacitor Circuit (e.g.Level Shifter)

- VC + VIN VC

VOUT

+

VIN

+

C t

VIN(min)--

V (t)= V (t)+ V (t)VOUT 1 3

VOUT (t)= VC(t)+ VIN(t)t

2Finds out what happens to VCwhen VIN changes

1) Diode =open, VC(t)=0, VOUT (t)= VIN(t)2) Diode =short, VC(t)= -VIN(t) , VOUT(t)=0

when VIN changes

Slide 6EE40 Fall 2009 Prof. Cheung

3) Diode =open, VC(t)= -VIN(min), VOUT(t)= VIN(t)-VIN(min),

Page 7: Final Exam Review - inst.eecs.berkeley.edu

Example: Diode with RL Circuit

Sketch i(t)

Answer

L/R 0 05

Note: i(t) is continuous

Slide 7EE40 Fall 2009 Prof. Cheung

τ = L/R = 0.05 msec

Page 8: Final Exam Review - inst.eecs.berkeley.edu

Load-Line AnalysisWe have a circuit containing a two-terminal non-linear element “NLE”, and some linear components.

Then define I and V at the NLE terminals (typically associated signs)

First replace the entire linear part of the circuit by its Thevenin equivalent.

Then define I and V at the NLE terminals (typically associated signs)

ID

1V+

250KNon-linear element

9µA1M

D

+2V

200K

S

NL

D ID

VDS+ -1V-

S

element - 2VSE -

Slide 8EE40 Fall 2009 Prof. Cheung

Page 9: Final Exam Review - inst.eecs.berkeley.edu

Example of Load-Line Analysis (con’t)

And have this connected to a linear

Given the graphical properties of two terminal non-linear circuit (i.e. the graph of a two terminal device)

D IDAnd have this connected to a linear (Thévenin) circuit Whose I-V can also be graphed on the same axes (“load line”) +

2V200K

S

NL

D ID

VDS+ -on the same axes ( load line )

Application of KCL, KVL gives circuit solution

- 2VSE

200K The solution

ID (µA)10

IDDNL +

- 2VThe solution !

LE S

Slide 9EE40 Fall 2009 Prof. CheungVDS(V)1 2

Page 10: Final Exam Review - inst.eecs.berkeley.edu

Example : Voltage controlled Attenuator

VC and RCDetermines rd atdQ point of diode

Slide 10EE40 Fall 2009 Prof. Cheung

Page 11: Final Exam Review - inst.eecs.berkeley.edu

Example : Voltage Controlled Attenuator

The large capacitors and DC bias source are effective shorts

Slide 11EE40 Fall 2009 Prof. Cheung

for the ac signal in small-signal circuits

Page 12: Final Exam Review - inst.eecs.berkeley.edu

Three-Terminal Parametric Graphs

ID (µA)103-Terminal

Device

IDDG

VGS = 3

S

VGS+-

VGS = 2

VGS = 1

VDS(V)1 2Concept of 3-Terminal Parametric Graphs:

We set a voltage (or current) at one set ofWe set a voltage (or current) at one set of terminals (here we will apply a fixed VGS, IG=0)

and conceptually draw a box around the device ith l t t i l iwith only two terminals emerging so we can

again plot the two-terminal characteristic (here ID versus VDS).

Slide 12EE40 Fall 2009 Prof. Cheung12

But we can do this for a variety of values of VGSwith the result that we get a family of curves.

Page 13: Final Exam Review - inst.eecs.berkeley.edu

Graphical Solutions for 3-Terminal DevicesIID (µA)

10VGS = 3

IDG

++V

D200K

VGS = 2

VGS = 1

- +-

V2V

SWe can only find a solution for

First select VGS (e.g. 2V) and draw ID vs VDS for the 3-Terminal device.

VDS(V)1 2ID (µA)

one input (VGS) at a time:

Now draw ID vs VDS for the 2V -200KΩ Thevenin source.

D (µ )10

The solution !

The only point on the I vs V plane which obeys KCL and KVL is ID = 5µA at VDS = 1V.

!

Slide 13EE40 Fall 2009 Prof. Cheung13VDS(V)1 2

KVL is ID 5µA at VDS 1V.

Page 14: Final Exam Review - inst.eecs.berkeley.edu

SOLVING MOSFET CIRCUITS: STEPS

1) Guess the mode of operation for the transistor. (We will learn how to make educated guesses).

2) Write the ID vs. VDS equation for this guess mode of operation.

3) Use KVL, KCL, etc. to come up with an equation relating ID and VDS based on the surrounding linear circuit.

4) Solve these equations for ID and VDS.

5) Check to see if the values for ID and VDS are possible for the mode you guessed for the transistor. If the values are possible for the mode guessed, stop, problem solved. If the values are

Slide 14EE40 Fall 2009 Prof. Cheung

g , p, pimpossible, go back to Step 1.

Page 15: Final Exam Review - inst.eecs.berkeley.edu

CHECKING THE ANSWERS

NMOS 1) VGS > VT(N) in triode or saturationVGS ≤ VT(N) in cutoffTriodeSaturationCut-off

•2) VDS < VGS – VT(N) in triode VDS ≥ VGS – VT(N) in saturationDS tov V+0

GSvTriodeCut-off

toVDS ≥ GS T(N)

PMOS1) VGS < VT(P) in triode or

PMOS saturationVGS ≥ VT(P) in cutoff

2) VDS > VGS – VT(P) in triode Triode Saturation Cut-off ) DS GS T(P)

VDS ≤ VGS – VT(P) in saturation

DS tov V+ 0GSv

toV

Slide 15EE40 Fall 2009 Prof. Cheung

DS to to

Page 16: Final Exam Review - inst.eecs.berkeley.edu

Example Problem : MOSFET Circuit

Slide 16EE40 Fall 2009 Prof. Cheung

Page 17: Final Exam Review - inst.eecs.berkeley.edu

Example Problem : MOSFET Circuit

Find VGS such that VDS=2V

AnswerGuess Saturation Mode

Check: V (=2V) > V -V (=1 5-0 5=1V)

Slide 17EE40 Fall 2009 Prof. Cheung

VDS(=2V) > VGS-VT (=1.5-0.5=1V)MOSFET indeed is in saturation mode

Page 18: Final Exam Review - inst.eecs.berkeley.edu

Example Problem : MOSFET Circuit

Find small-signal model parameters

=10-5 Siemens

Slide 18EE40 Fall 2009 Prof. Cheung

Page 19: Final Exam Review - inst.eecs.berkeley.edu

How do you guess the right mode ?

Often, the key is the value of VGS.

(We can often find VGS directly without solving the whole circuit )(We can often find VGS directly without solving the whole circuit.)

I

VGS ≤ VT(N)

IDVGS = VT(N) + εb bl i

ID

VGS ≤ VT(N)

definitely cutoffprobably saturation

VDS VDSVGS - VT(N) = ε

Slide 19EE40 Fall 2009 Prof. Cheung

Page 20: Final Exam Review - inst.eecs.berkeley.edu

How do you guess the right mode ?

t i d d t ti d

When VGS >> VTH(N), it’s harder to guess the mode.

I triode mode saturation modeID

VGS - VTH(N)

If ID is small, probably triode mode

Slide 20EE40 Fall 2009 Prof. CheungVDS

Page 21: Final Exam Review - inst.eecs.berkeley.edu

EXAMPLE

1.5 kΩ1) Since VGS > VTH(N), not in cutoff mode. Guess saturation mode.

D

ID+

2) Write transistor ID vs. VDS:( )V1V310250II 26

tDsaD −•== −

G +

VDS

+_4 V

( )mA1

tDsaD

=

S

_+_3 V

3) Write ID vs. VDS equation using KVL:

04Ω Ik1 5VGIVEN: VTH(N) = 1 V, K= 250 µA/V2

0V4 =+•Ω DDS Ik1.5-V-

Slide 21EE40 Fall 2009 Prof. Cheung

K 250 µA/V , λ = 0 V-1.

Page 22: Final Exam Review - inst.eecs.berkeley.edu

EXAMPLE

1.5 kΩ4) Solve VDS:

D

ID+

ID = 1mA VDS = 2.5 V

5) Check:G +

VDS

+_4 V

5) Check:

ID and VDS are correct sign, and V ≥ V V i d i

S

_+_3 V

VDS ≥ VGS-VT(N) as required in saturation mode.

GIVEN: VTH(N) = 1 V, ½ W/L µ C = 250 µA/V2

Slide 22EE40 Fall 2009 Prof. Cheung

½ W/L µnCOX 250 µA/V , λ = 0 V-1.

Page 23: Final Exam Review - inst.eecs.berkeley.edu

WHAT IF WE GUESSED THE MODE WRONG?

1) Since VGS > VTH(N), not in cutoff mode. Guess triode mode.

D

1.5 kΩ2) Write transistor ID vs. VDS:

GID

++4 V

ID = 2·250·10-6(3 – 1 – VDS/2)VDS

VDS_+

_

3 V3) Write ID vs. VDS equation using

KVL:S

_3 V

GIVEN: VTH(N) = 1 V, 0V4 =+•Ω DDS I k 1.5-V-

Slide 23EE40 Fall 2009 Prof. Cheung

TH(N)K= 250 µA/V2, λ = 0 V-1.

Page 24: Final Exam Review - inst.eecs.berkeley.edu

WHAT IF WE GUESSED THE MODE WRONG?

1.5 kΩ4) Solve for VDS with quadratic

equation by combining 2) and 3):

D

ID+VDS = 4 V, 2.67 V

G +

VDS

+_4 V 5) Check:

VDS > VGS – VT(N) = 2VN ith l lid i t i d d !

S

_+_3 V

Neither value valid in triode mode!Guess is incorrect.

GIVEN: VTH(N) = 1 V, K 250 A/V2

Slide 24EE40 Fall 2009 Prof. Cheung

K= 250 µA/V2, λ = 0 V-1.

Page 25: Final Exam Review - inst.eecs.berkeley.edu

Another Perspective

In this circuit, the transistor delivered a constant current IDSATto the 1 5 kΩ resistor

This circuit acts like a constant current source, as long as the transistor remains in saturationto the 1.5 kΩ resistor. transistor remains in saturation mode.IDSAT does not depend on the tt h d i t if t ti

D

1.5 kΩattached resistance if saturation is maintained.

GID

++4 V

VDS_+

_

3 VIDSAT 1.5 kΩ

Slide 25EE40 Fall 2009 Prof. Cheung

S_3 V

Page 26: Final Exam Review - inst.eecs.berkeley.edu

Another Perspective

IDSAT does depend on VGS; one can adjust the current supplied by adjusting V

The circuit will go out of saturation mode if• VGS < VT(N) oradjusting VGS. VGS < VT(N) or• VDS < VGS – VT(N)

This can happen if VGS is too

D

RL

This can happen if VGS is too large or too small, or if the load resistance is too large.

GID

++VDD

VDS_+

_

VIDSAT RL

Slide 26EE40 Fall 2009 Prof. Cheung

S_VGS

Page 27: Final Exam Review - inst.eecs.berkeley.edu

ANOTHER EXAMPLE

1.5 kΩ1) What is VGS?No current goes into/out gate.VGS = 3 V by voltage division2 kΩ

G

DID+

4 V

VGS 3 V by voltage division.Guess saturation (randomly).

2) Write transistor I vs V :

2 kΩ

+

VDS

_4 V 2) Write transistor ID vs. VDS:

6 kΩ( )V 1V 310250II 26

tDsaD −•== −

S

_

3) Write ID vs. VDS equation using

6 kΩmA1=

GIVEN: VTH(N) = 1 V, K= 250 µA/V2, λ = 0 V-1

KVL:0V4 =+•Ω DDS I k 1.5-V-

V =2 75V consisitent with saturation mode

Slide 27EE40 Fall 2009 Prof. Cheung

λ = 0 V 1.Effectively the same circuit as previous example: only 1 voltage source in this case

VDS=2.75V consisitent with saturation mode

Page 28: Final Exam Review - inst.eecs.berkeley.edu

The CMOS Inverter: Current Flow

VOUT

N: off

N: satP: sat ii

VDD

N: offP: Triode C

SG

VDD

N: satP: Triode

A B D EI

S

D

G

VOUTVIN

N: TriodeP: sat

A B D EG S

D

VIN0

N: TriodeP: off

P: sat

Slide 28EE40 Fall 2009 Prof. Cheung

VINVDD00

Page 29: Final Exam Review - inst.eecs.berkeley.edu

Another CMOS Example: The LATCH

VDDVDD Data (VIN) is written to the internal node (V )

CLK CLKinternal node (VOUT_INT) when the clock is low. VOUT remains frozen.

VOUT VOUT_INT VIN

OUT

When the clock is high.The (inverted) internal node voltage is written to V The internal node

CLK CLK

VOUT. The internal node VOUT_INT remains frozen

Slide 29EE40 Fall 2009 Prof. Cheung

Page 30: Final Exam Review - inst.eecs.berkeley.edu

THE LATCH

VDDVDD When CLK is low the left-hand transistors conduct. The

CLK CLK right-hand transistors are open.

VOUT INT is charged to VIN.0 V VDD

VOUT VOUT_INT VIN

OUT_INT g IN

VOUT remains the same; there is no charging path.

CLK CLK

V 0 V

Slide 30EE40 Fall 2009 Prof. Cheung

VDD 0 V

Page 31: Final Exam Review - inst.eecs.berkeley.edu

THE LATCH

VDDVDD When CLK is high, the right-hand transistors

CLK CLK conduct. the left-hand transistors are open.

VDD 0 V

VOUT VOUT_INT VIN

p

VOUT is changed to VOUT INT.

CLK CLKVDD0 V

VOUT_INT remains the same; there is no charging path

Slide 31EE40 Fall 2009 Prof. Cheung

VDD0 V there is no charging path.

Page 32: Final Exam Review - inst.eecs.berkeley.edu

CONCEPT OF STATE

VDDVDD A latch stores a “1” or “0”.

CLK CLK The stored value is known as the “state”.

CurrentState

NextStateVIN

This is one of the basic elements neededbasic elements needed to make a “state machine” (covered in

CLK CLK

(EE 20 and CS 61C).

Slide 32EE40 Fall 2009 Prof. Cheung

Page 33: Final Exam Review - inst.eecs.berkeley.edu

LATCH AS GATEKEEPER

A signal may have to go through a complex system of gates, with paths of different delays: possibility of false output!

Combinatorial Logic Sequential ElementP t h i

Slide 33EE40 Fall 2009 Prof. Cheung

Signal propagates all the way through Includes our logic gates: NAND, NOT, etc.

Prevents changes in output until signaled

Page 34: Final Exam Review - inst.eecs.berkeley.edu

Amplifier EfficiencyPower Supply A

Load

SourcePi = (10-3V)2/105Ω

LoadSource =10-11 W

Load(8 )2/8

Amplifier

P0 = (8V)2/8Ω=8 W

Power Supply BPower SuppliesPs = 15W+7.5W

= 22 5 W= 22.5 WAmplifierP = 22 5W+10-11W-8WAmplifier Efficiency η

Slide 34EE40 Fall 2009 Prof. Cheung

Pd = 22.5W+10 W-8W= 14.5 W= 8/22.5 =36%

Page 35: Final Exam Review - inst.eecs.berkeley.edu

Differential Signal and Common Mode Signal

Redefine the inputs in terms of two other voltages:1. differential mode input vid ≡ vi1 – vi2

2 d i t ( + )/22. common mode input vicm ≡ (vi1 + vi2)/2

so that( /2) d ( /2)vi1 = vicm + (vid/2) and vi2 = vicm - (vid/2)

iidd vAvAv += icmcmiddo vAvAv +

ff “common mode gain”

“differential mode gain”

Slide 35EE40 Fall 2009 Prof. Cheung

Page 36: Final Exam Review - inst.eecs.berkeley.edu

Common Mode Rejection Ratio

dAlog20)dBin(CMRR =

cmAlog20)dBin(CMRR =

ExampleExample

•Differential signal from sensor = 1mV (peak).g (p )We want outputs signal > 1V implies Ad> 1000•Common mode signal =100V (from power line).We want common mode signal < 0.1V impliesAcm <10-4

Therefore CMRR needs to be > 20log(107)= 140dB

Slide 36EE40 Fall 2009 Prof. Cheung

Therefore CMRR needs to be > 20log(107)= 140dB

Page 37: Final Exam Review - inst.eecs.berkeley.edu

Offset Voltage, Offset Current, and Bias Current

GivenVoff=2mVI 100 AIB= 100nAIoff= 20nAAcm=1Ad=100Both input terminals to ground

Use superpositionterminals to ground through 100kΩresistors

Slide 37EE40 Fall 2009 Prof. Cheung

Vo = Ad(Vvoff+VIoff)+ Acmvicm= 100(0.001667+0.001667)+1(0.01)=0.3343V