42
Fractals Fractals Elena Cherkaev [email protected] [email protected]

Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

FractalsFractals

Elena Cherkaev

[email protected]@math.utah.edu

Page 2: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Iterated Function SystemsThe fractals are constructed using a fixed geometric replacement 

rule: Cantor set, Sierpinski carpet or gasket, Peano curve, Koch snowflake, Menger sponge.snowflake, Menger sponge. 

Karl Weierstrass (1872):  Nondifferentiable function

Georg Cantor (1883): Cantor set

Giuseppe Peano (1890), David Hilbert (1891):

Space filling curves 

Helge Von Koch (1904):  Koch snowflake

W l Si i ki (1915) Si i ki t i l d tWaclaw Sierpinski (1915): Sierpinski triangle and carpet

Page 3: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Random FractalsRandom Fractals

Random fractals can be generated by stochastic rather than g ydeterministic processes, for example, trajectories of the Brownian motion, fractal landscapes and  random trees. 

Page 4: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Fractals as Attractors of Nonlinear Dynamical SSystems

Fractals can be generated as strange attractors of Nonlinear g gDynamical Systems, for example, attractor of trajectories of the Lorenz dynamical system, Rossler attractor, attractor of  Ueda systemUeda system.   

Rossler attractorLorenz attractor

Page 5: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Escape‐time fractalsEscape time fractals

Escape‐time fractals — These are based on sensitive d d f h hdependence of the trajectories on the starting point or on initial conditions. 

Examples of this type are the Julia and Mandelbrot sets (GastonExamples of this type are the Julia and Mandelbrot sets (Gaston Julia, Pierre Fatou, Benoit Mandelbrot), and Newton fractal. 

Julia set Newton fractalJulia set Newton fractal

Page 6: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Forthcoming Book: Benoit Mandelbrot A Life in ManyForthcoming Book: Benoit Mandelbrot, A Life in Many 

Dimensions

• Contents:• Introduction — Benoit Mandelbrot: Nor Does Lightning Travel in a Straight Line (M Frame)• Fractals in Mathematics — Chapters by Michael Barnsley, Julien Barral, Kenneth Falconer, 

Hillel Furstenberg, Stephane Jaffard, Michael Lapidus, Jacques Peyriere & Murad Taqqu• Fractals in Physics — Chapters by Amon Aharony, Bernard Sapoval, Michael Shlesinger, 

Katepalli Sreenivasan & Bruce West• Fractals in Computer Science — Chapters by Henry Kaufman & Ken Musgrave• Fractals in Engineering — Chapters by Nathan Cohen & Marc‐Olivier Coppens

F t l i Fi Ch t b M ti Sh bik & N i T l b• Fractals in Finance — Chapters by Martin Shubik & Nassim Taleb• Fractals in Art — Chapters by Javier Barrallo, Ron Eglash & Rhonda Roland Shearer• Fractals in History — Chapter by John Gaddis• Fractals in Architecture — Chapter by Emer O'Daly

F t l i Ph i l Ch t b E ld W ib l• Fractals in Physiology — Chapter by Ewald Weibel• Fractals in Education — Chapters by Harlan Brothers & Nial Neger• Fractals in Music — Chapter by Charles Wuorinen• Fractals in Film — Chapter by Nigel Lesmoir‐Gordon

F t l i C d Ch t b D t i M ti• Fractals in Comedy — Chapter by Demetri Martin

Page 7: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Cantor Set

O h it ti t d l t iddl thi d f h i t lOn each iteration step, delete middle third of each interval.  

Properties: C has structure at arbitrary small scales;C has structure at arbitrary small scales;C is self‐similar;The dimension of C is not integer;C hC has measure zero; C consists of uncountably many points.

Page 8: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Cantor Set: Measure zeroCantor Set: Measure zero

Sum up lengths of  221114121 2

⎟⎟⎞

⎜⎜⎛

++++++the deleted sets: 

13/21

131

...33

13

...3

43

23 3232

=−

=

⎟⎟⎠

⎜⎜⎝

+++=+++

Measure (length) of the deleted set = 1 Measure of C is zero

3/213

Measure of C is zero. 

Page 9: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Cantor Set: Continuum of points

[ ] }2,1,0{,...333

,1,0 33

221 ∈+++=∈ kaaaaxxExpand  x in base‐3: 

Points in the Cantor set do not have  1  in the base‐3 representation

One‐to‐one correspondence with base‐2 representation of the points in the unit interval 

→ Cardinality of Cantor set is continuum !→     Cardinality of Cantor set is continuum !

Page 10: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Cantor set

Cantor set can be generated iteratively using two transformations:   

21)(1)( ff

:intervals nested closed of sequence aConstruct 33

)(,3

)( 21

IIII

xxfxxf

⊃⊃⊃⊃⊃

+==

[ ])()(

1,0.......

010002011

0

210

IIIfIfII

IIII n

∪=∪==

⊃⊃⊃⊃⊃

)()()()(

011001010000

010020100112112

IIIIIIfIIfIfIfI

∪∪∪=∪∪∪=∪=

,)(:in ations transformAffine

...1

bxaxfR

+=shift or on translatiis coeff., scaling is ba

Page 11: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Cantor Set: Continuum of points

C t t i i l t t th t fCantor set is equivalent to the set of all possible sequences of 0 and 1

Page 12: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Affine transformations in 2D

:formthehasation transformaffine 2D

+=⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛=

2

1

2

1)( txAfe

xx

dcba

xx

wxw⎠⎝⎠⎝⎠⎝⎠⎝ 22

:aswritten becan Matrix A

f

⎟⎟⎠

⎞⎜⎜⎝

⎛ −=⎟⎟

⎞⎜⎜⎝

⎛=

2211

2211

cossinsincosθθθθ

rrrr

dcba

A

Examples:   Scaling, shift, rotation, reflection.

Affine transformation consists of a linear transformation A

⎠⎝⎠⎝

Affine transformation consists of a linear transformation  Afollowed by a translation t.  

Page 13: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Affine transformations in 2DHow to find  w ?   

Use:   w(Red_triangle) = Blue_triangle

3,2,1),(

⎞⎛⎞⎛⎞⎛⎞⎛

==

bkawb kk

3,2,1, =⎟⎟⎠

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛k

bb

fe

aa

dcba

ky

kx

ky

kx

Solve for   a, b, c, d, e, f.

Page 14: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Metric Space

A metric space (X, d) is a space X together with a real‐valued function d: X x X ‐> R which measures the distancefunction  d:  X x X > R   which measures the distance between pairs of pts x and y  X. 

A metric space  X is complete if every Cauchy sequence has a limit in X.

Forward iterates of f are transformationsForward iterates of  f are transformations 

)(by defined :

0

fXXf n

o

o

210))(()()(),()(

,)(

)1(

1

0

=

=

+ fffffxfxf

xxf

nnn ooo

o

o

...,2,1,0)),(()()()1( ===+ nxffxffxf nnn ooo o

Page 15: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Contraction Mapping

→ dXXXfconstantaisthereifmappingncontractioais

),( space metric aon :mation A transfor

≤<≤fs

yxdsyfxfds .for factor ity contractiv is

),())(),(( such that ,10 constant ais thereifmappingn contractio a is

:Thm Mappingn Contractio The

xfdXf

f ,point fixed oneexactly has Then ).,( space metric complete aon mappingn contractio a be Let

=x

nxfx

f

n

: toconverges ,...}2,1,0:)({ iteratesofsequencethe, any for and o

∞→→ nxxf fn as )}({ o

Page 16: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Contraction Mapping on the Space of Fractals

nonempty ofspaceingcorrespondthebe))(),( let and space, metric a be ),(Let

dhX(HdX

).( metric Hausdorff with of subsetscompact p ypgp))(),(

dhX(

.factor ity contractiv with ),( space metric on the mappingn contractio a be :Let

sdXXXw →

))()(onmappingncontractioais}:)({)(

by defined )()(:,Then

dhX(HBxxwBw

XHXHw∈=

.factor ity contractiv with ))(),(on mappingn contractio a is

sdhX(H

Page 17: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Iterated Function System

)(spacemetriccompletea of consists SystemFunction IteratedAn :IFS

dX

}1;{: mappingsn contractio ofset finite aith together w

),( spacemetriccomplete a

NnwXw

dX

n

=}...,1,max{,factor ity contractivwith

}...,1,;{Nnsss

NnwX

n

n

==

)()...()()( 21 BwBwBwBW N∪∪=

satisfiespoint fixed unique Its H. space on the mappingn contractio a is)()...()()( 21 BwBwBwBW N∪∪

.any for as )(lim

),()...()()( 21

HBnBWA

AwAwAwAWAn

N

∈∞→=

∪∪==o

IFS.ofattractor is A

Page 18: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Example:  Sierpinski Triangle

:ofiterationsCalculate)()()()( 321 ∪∪=

WBwBwBwBW

,...2,1 , )( :ofiterations Calculate

0 == nAWAW

nn

o

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

5.0005.0

)(2

11 x

xxw

⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

⎠⎝⎠⎝

5.00

5.0005.0

)(2

12

2

xx

xw

⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

⎠⎝⎠⎝⎠⎝

05.0

5.0005.0

)(2

13

2

xx

xw⎠⎝⎠⎝⎠⎝ 2

Page 19: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Deterministic and Random AlgorithmsDeterministic and Random Algorithms

)()()()(},...,;{: :fractal ticDeterminis 21 N

BBBBWwwwXIFS

21)(

yiterativel Compute . set compact a Choose)()()()(

0

321

n nAWA

ABwBwBwBW

==

∪∪=

o

fractal.ticdeterminis -- IFS ofattractor the toconverges iterates of Sequence

,...2,1 ,)( 0n nAWA ==

"y probabilit with Apply " :AlgorithmIteration Random ii pw

b bilitith )}(),...(),({y recursivel Choose

; Start with

211

0

nNnnn xwxwxwx Xx

∈∈

+

.y probabilit with ip

Page 20: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

3D IFSs and 3D Fern3D IFSs and 3D Fern

• Instead of a 2x2 real matrix A and a column vectorInstead of a 2x2 real matrix A and a column vector 

t (*,*), we have a 3x3 real matrix A and a column vector t (*,*,*) for a 3D IFS. Again, it can be expressed as w(x)= Ax+t. 

• As an example of 3D, we introduce a 3D Fern, which is the attractor of an IFS of affine maps in 3D.

Page 21: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

3D Fern3D Fern

The IFS for the 3D Fern

0000 ⎤⎡⎤⎡,

000

000018.00000

)(1

⎥⎥⎥

⎢⎢⎢

⎡+

⎥⎥⎥

⎢⎢⎢

⎡= xxw

,06.1

0

85.01.001.085.00

0085.0)(2

⎥⎥⎥

⎢⎢⎢

⎡+

⎥⎥⎥

⎢⎢⎢

−= xxw

,08.0

0

3.00002.02.002.02.0

)(3

⎥⎥⎥

⎢⎢⎢

⎡+

⎥⎥⎥

⎢⎢⎢

⎡= xxw

03.000 ⎥⎦⎢⎣⎥⎦⎢⎣

⎥⎥⎥

⎢⎢⎢

⎡+

⎥⎥⎥

⎢⎢⎢

⎡−=

08.0

0

300002.02.002.02.0

)(4 xxw⎥⎦⎢⎣⎥⎦⎢⎣ 03.000

Page 22: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Fractal DimensionFractal Dimension

Box dimension: 

( )ε 1log)log(lim

0

ND→

= ( )εlog

ε

Page 23: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

3D IFS fractals:  Menger sponge

,...3/2

00

3/10003/10003/1

)(2

⎥⎥⎥

⎢⎢⎢

⎡+

⎥⎥⎥

⎢⎢⎢

⎡= xxw,

00

3/2

3/10003/10003/1

)(1

⎥⎥⎥

⎢⎢⎢

⎡+

⎥⎥⎥

⎢⎢⎢

⎡= xxw

3/23/100 ⎥⎦⎢⎣⎥⎦⎢⎣03/100 ⎥⎦⎢⎣⎥⎦⎢⎣

732)20log(D ( ) 73.23log

)g(≅=D

Page 24: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Sierpinski pyramid

( ) 32.22log)5log(≅=D ( )2log

Page 25: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Self similar fractalsSelf similar fractals

Looks the same no matter how close you get.

A smaller copy of the fern

A copy within the copy

Page 26: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Continuous Dependence on ParametersContinuous Dependence on Parameters

If the contraction w continuously depends on a parameter  p,  y p p p,then the fixed point depends continuously on  p. 

The attractor changes continuously as you change the tparameters.

Animation : Dancing fern 

Simulations by Eric Heisler

Page 27: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Deterministic and random trees

Page 28: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Tree Fractals: TransformationsTree Fractals: Transformations

⎤⎡⎤⎡ i θθ⎥⎦

⎤⎢⎣

⎡+⎥

⎤⎢⎣

⎡ −=

1

11 cossin

sincos)(

yx

vrrrr

vw rr

θθθθ

(x1,y1)

⎥⎦

⎤⎢⎣

⎡+⎥

⎤⎢⎣

⎡−

=1

12 cossin

sincos)(

yx

vrrrr

vw rr

θθθθ

Each iteration takes a line segment and creates two branches

⎦⎣⎦⎣ 1cossin yrr θθ

Each iteration takes a line segment and creates two branches. 

Transformations  w rotate  trunk by  θ or  ‐ θ ,  

shrink by  r ,  and   move to new position y , p

Page 29: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Tree Fractals:  IFS with condensation 

setoncondensatiais

,)( :treetheof trunk thebe Let

210

0

∪∪=∈=

CCAwwwW

HBCBwC

))()()(()()()()()()(set.on condensatiais,

21212112

2101

0

∪∪∪∪∪==∪∪==

=

CwCwwwCwCwCAWACwCwCAWA

CCA

...)()()())()()(()()()(

2123

21212112

∪∪∪== CwCwCAWA

Page 30: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Random TreesRandom Trees

Examples of random trees calculated with differentExamples of random trees calculated with different parameters of the contraction (different angles)

Page 31: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Baker’s Map

Page 32: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Baker’s map: AttractorBaker s map: Attractor

Stretching and folding are two main mechanisms 

of forming an attractor  

Page 33: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Baker’s map: AttractorBaker s map: Attractor

At the crossection: 

topological Cantor set!topological Cantor set! 

(all possible sequences  of  0  and 1)

Page 34: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Baker’s map: Fractal Dimension

2 of consists which ),(by edapproximat isA attractor The .21Let < SB/a non

side ofsquares2A with cover can Onelength.unit and height of strips

=

aaa

n

nnn

ε

thlimit as calculated becan dimension box and ,)2/( Then, = − aN n

2)ln()2/1ln(1

)/1ln()ln(lim

:zero togoes when

<+==a

Ndε

ε

)()(

Page 35: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Ueda AttractorUeda Attractor

Start with a patch of initial conditions  

which experiences stretching and foldingwhich experiences stretching and folding

Animation of forming an attractor

Simulations by Quishi Wang

Page 36: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

The Escape Time Algorithm: Julia SetThe Escape Time Algorithm: Julia Set 

Start ith.polynomialais Suppose, Cf: C →

),()(

),()(

, Start with

212

101

0

zfzfz

zfzfz

zz

o

o

==

==

=

),()...))(...(()(...

),()(

1

12

zfzffzfz

zfzfz

onnn − ===

{ }{ } toconvergenot do orbits whosein points ofset thebe Let

...CFf

{ }{ }. ofset Julia is boundary its set, Julia a is Then

boundedis |)(|: 0

fJF

zfCzF

ff

non

f∞

=∈=

Page 37: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

The Escape Time Algorithm:The Escape Time Algorithm: Numerical Approach

W                         

: )( iterate ,each For .domain nalcomputatio Discretize

,=

zzz

zfzzW

qp

V

,... , , 210 zzz

SetJulia needed iterations ofnumber the toaccording Vin pointsColor

? from escape toneeded iterations ofnumber theisWhat

==>

V

Set Julia ==>

Page 38: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Julia Set

Color points in W according to the number of iterations needed for an orbit starting at point z toan orbit starting at  point  z,  to escape. 

Here,  f(z) = λ cos(z), λ = 0.75+i*0.85f(z)   λ cos(z),  λ  0.75 i 0.85Simulations by Brandon Olson  

Page 39: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Newton fractal

Newton’s method of solution                       fast (quadraticaly) converges when starting point is close to the solution.

0)( =xf

)()(')(

1 nn

nnn xg

xfxfxx =−=+

For solution of the equation:           

the Newton’s method gives: 4

014 =−zthe Newton s method gives:

The roots are 1, ‐1, i, and –i, there are 4 attracting points.

3

4

41)(

zzzzg −

−=

The roots are 1,  1, i, and i,  there are 4 attracting points.

Points of the complex plane are colored by a different color, depending on the root to which the Newton method converges.

Page 40: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Newton fractal: S iti d d i iti l ditiSensitive dependence on initial conditions     

Outside the region of quadratic convergence the Newton’s method can be very sensitive to the choice of starting pointcan be very sensitive to the choice of starting point.

014 =−z 015 =−z

Simulations of Aryn Roth

Page 41: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Generalized Newton fractalGeneralized Newton fractal

1)(4z −

)(1 nn zgz =+

)1(4

)( 3

iaz

azzg

+=

−=

Page 42: Fractals - math.utah.eduelena/Fractals.pdf · • Fractals in Computer Science —Chapters by Henry Kaufman & Ken Musgrave • Fractals in Engineering —Chapters by Nathan Cohen

Participants

• Brandon Olson

• Roxanne Brinkerhoff

• Bill Clark

• Gregory Danner

• Eric Heisler

• Masaki Iino

J d J dki• Jordan Judkins

• Carl Tams

• Liz Doman• Liz Doman

• Aryn Roth

• Quishi WangQ g