20
Generative Adversarial Networks (GAN) Hanxiao Liu April 17, 2017 1 / 20

Generative Adversarial Networks (GAN)hanxiaol/slides/gan.pdff-gan: Training generative neural samplers using variational divergence minimization. In Advances in Neural Information

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Generative Adversarial Networks (GAN)

Hanxiao Liu

April 17, 2017

1 / 20

Outline

I Implicit Generative Models

I GAN

I VariantsI f -GANI Wasserstein GAN

I Use casesI Conditional generationI SSL

2 / 20

Implicit Generative Models

Working with likelihood could be expensive

I Variational Autoencoder (variational inference)

I Boltzmann Machines (MCMC)

I PixelRNN (conditional prob.)

Representation learning may not require likelihood.

I Sometimes we are more interested in taking samplesfrom p(x) instead of p itself.

More discussions: [Mohamed and Lakshminarayanan, 2016]

3 / 20

Implicit Generative Models

advocate/penalize samples within the blue/white region.

4 / 20

GAN

Unsupervised learning via supervised learning

5 / 20

GAN

Proposed by [Goodfellow et al., 2014]

A minimax game

J (D) = −1

2Ex∼data logD(x)− 1

2Ez log(1−D(G(z))) (1)

J (G) = −J (D) (2)

I The optimal discriminator D∗(x) = pdata(x)pdata(x)+pmodel(x)

.

I In this case, J (G) = 2DJS(pdata‖pmodel) + const.

I Jenson-Shannon divergence:DJS(p‖q) = 1

2DKL(p‖p+q

2) + 1

2DKL(q‖p+q

2).

6 / 20

GAN

7 / 20

GAN

Visualizing the GAN training process

dots: data.blue: discriminator.green: generator.

8 / 20

DCGAN

Deep Convolutional GAN [Radford et al., 2015]

9 / 20

DCGAN

Walk around the data manifold

Vector Arithmetic

10 / 20

f -divergence

Can we simply optimize the divergence?

Df (p‖q) =

∫q(x)f

(p(x)

q(x)

)dx (3)

I recovers KL divergence when f(u) = u log u.

I optimization minqDf (p‖q) can hardly be carried outwith Df in its original form.

11 / 20

f -GAN [Nowozin et al., 2016]

Fenchel conjugacy: f(u) = supt tu− f ∗(t)

minq

Df (P‖Q) (4)

= minq

∫q(x)

[supt

(tp(x)

q(x)− f ∗(t)

)]dx (5)

≥ minq

supT

∫p(x)T (x)− f ∗(T (x))q(x)dx (6)

= minq

supT

EpT (x)− Eqf ∗(T (x)) (7)

≈ minw

maxθ

EpTθ(x)− Eqωf ∗(Tθ(x)) (8)

The above includes GAN as its special case.

12 / 20

Training GAN

Training GAN (finding the equilibrium) is hard.

I Gradient for G will vanish when D is very good.

I i.e. when pdata and pmodel are very different.I usually true for high-dimensional data.I f -divergence may be ill-defined.

13 / 20

Wasserstein GAN

Replace the pointwise f -divergence with Wassersteindistance [Arjovsky et al., 2017].

Dw(p‖q) = infγ∈Π(p,q)

E(x,y)∼γdist(x, y) (9)

where Π(p, q) is the set of all joint distributions γ(x, y)which marginal distributions are respectively p and q.

I well defined even if p and q have different support.

I leads to a very simple algorithm using a similarvariational trick for the f -divergence.

14 / 20

Wasserstein GAN

15 / 20

Conditional GAN

[Mirza and Osindero, 2014]

16 / 20

Conditional GAN

Image to image translation [Isola et al., 2016].

17 / 20

Semi-supervised Learning

I Data augmentation

I Regularization [Salimans et al., 2016]

I Categorical GAN [Springenberg, 2015]

18 / 20

Reference I

Arjovsky, M., Chintala, S., and Bottou, L. (2017).Wasserstein gan.arXiv preprint arXiv:1701.07875.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,Ozair, S., Courville, A., and Bengio, Y. (2014).Generative adversarial nets.In Advances in neural information processing systems, pages 2672–2680.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2016).Image-to-image translation with conditional adversarial networks.arXiv preprint arXiv:1611.07004.

Mirza, M. and Osindero, S. (2014).Conditional generative adversarial nets.arXiv preprint arXiv:1411.1784.

Mohamed, S. and Lakshminarayanan, B. (2016).Learning in implicit generative models.arXiv preprint arXiv:1610.03483.

19 / 20

Reference II

Nowozin, S., Cseke, B., and Tomioka, R. (2016).f-gan: Training generative neural samplers using variational divergenceminimization.In Advances in Neural Information Processing Systems, pages 271–279.

Radford, A., Metz, L., and Chintala, S. (2015).Unsupervised representation learning with deep convolutional generativeadversarial networks.arXiv preprint arXiv:1511.06434.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., andChen, X. (2016).Improved techniques for training gans.In Advances in Neural Information Processing Systems, pages 2226–2234.

Springenberg, J. T. (2015).Unsupervised and semi-supervised learning with categorical generativeadversarial networks.arXiv preprint arXiv:1511.06390.

20 / 20