68
North America Dynamic Wind North America Dynamic Wind North America Dynamic Wind North America Dynamic Wind Generator Modeling Update Generator Modeling Update Based on work performed by the WECC Wind Generator Modeling Group and the IEEE Dynamic Performance of Wind Power Generation Working Group Abraham Ellis Sandia National Laboratories Yuriy Kazachkov SiemensPTI US Membership to the IEC TF88 WG27 [email protected] Eduard Muljadi National Renewable Energy Laboratory [email protected] Juan SanchezGasca, Nicholas Miller GE Energy PSLF [email protected] Robert Zavadil EnerNex Corporation [email protected] j[email protected] , [email protected] Pouyan Pourbeik Electric power Research Institute [email protected] [email protected] [email protected] Roskilde, Denmark – October 2009

Generator Modeling Update - Western Electricity ... TF88-WG27-Oct 2009 Wind... · Generator Modeling Update ... generator ac dc Plant Feeders Type 3 Type 4 asynchronous generators

  • Upload
    hadan

  • View
    216

  • Download
    2

Embed Size (px)

Citation preview

North America Dynamic WindNorth America Dynamic WindNorth America Dynamic Wind North America Dynamic Wind Generator Modeling UpdateGenerator Modeling Update

Based on work performed by the WECC Wind Generator Modeling Group and the IEEE Dynamic Performance of Wind Power Generation Working Group

Abraham Ellis

Sandia National Laboratories

Yuriy Kazachkov

Siemens‐PTI

US Membership to the IEC TF88 WG27

[email protected]

Eduard Muljadi

National Renewable Energy Laboratory

[email protected]

Juan Sanchez‐Gasca, Nicholas Miller

GE Energy ‐ PSLF

[email protected]

Robert Zavadil

EnerNex Corporation

[email protected]

[email protected][email protected]

Pouyan Pourbeik

Electric power Research Institute

[email protected]@enernex.com [email protected]

Roskilde, Denmark – October 2009

Presentation ContentsPresentation ContentsPresentation ContentsPresentation Contents

1. Status of WECC WGMG generic d li ff t d l t d ti itimodeling effort and related activities 

in IEEE & NERC.

2 Review of WECC generic model2. Review of WECC generic model structures, testing and  verification

3 Simplified aerodynamic conversion3. Simplified aerodynamic conversion representation for generic models

4. Model validation and parameter pidentification

5. Wind power plant network equivalent for power flow and dynamic simulations

Wind Turbine Generator TopologiesWind Turbine Generator TopologiesWind Turbine Generator TopologiesWind Turbine Generator Topologies

• Four basic WTG types Type 1 Type 2based on grid interface technology

Type 1 Fixed speed conventional

generator

PlantFeeders

PF controlac

generator

PlantFeeders

PF control– Type 1 – Fixed-speed, conventional induction generator

– Type 2 – Variable slip, induction generators with variable rotor

Slip poweras heat loss

capacitorstodc

capacitors

generators with variable rotor resistance

– Type 3 – Variable speed, doubly-fed asynchronous generators with rotor

PlantFeeders

ac dcgenerator

PlantFeeders

Type 3 Type 4

asynchronous generators with rotor-side converter

– Type 4 – Variable speed, asynchronous generators with full

generator

full power

actodc

dctoacac

todc

dctoac

asynchronous generators with full converter interface

partial power

WECC Generic Model ImplementationWECC Generic Model ImplementationWECC Generic Model ImplementationWECC Generic Model Implementation• Completed generic models implemented as standard‐library 

models in PSSE/PSLF completedmodels in PSSE/PSLF completed

PSLF/17 Model Type Type 1 Type 2 Type 3 Type 4Generator wt1g wt2g wt3g wt4gExcitation / Controller wt2e wt3e wt4eTurbine wt1t wt2t wt3t

Generic model WT1 WT2 WT3 WT4Generator WT1G WT2G WT3G WT4GEl. Controller WT2E WT3E WT4ETurbine/shaft WT12T WT12T WT3T

PSSE/32

Pitch Controller/Pseudo Gov. wt1p wt2p wt3p

• Key ParticipantsSiemens (PSSE) General Electric (PSLF) DOE (Sandia National

Pitch control WT3PPseudo Gov/: aerodynamics WT12A WT12A

– Siemens (PSSE), General Electric (PSLF), DOE (Sandia National Laboratories and NREL), Consultants, Universities, other stakeholders

• Current focus– Additional model validation, refinement, upgrade

– Identification of generic model parameters

Partial List of WTG TypesPartial List of WTG Types

Type 1 Type 2 Type 3 Type 4 V t NM72 V t V80 GE GE 2 5XL

Partial List of WTG TypesPartial List of WTG Types

Vestas NM721.65 MW, 50/60 Hz

Vestas V801.8 MW, 60Hz

GE 1.5 MW, 50/60 Hz

GE 2.5XL2.0 MW, 50/60 Hz

Vestas V82 1.65 MW, 50/60Hz

Vestas V47 660 kW, 50/60 Hz

GE 3.6 MW, 50/60 Hz

Clipper 2.5 MW, 50/60 Hz

BONUS Gamesa G80 Gamesa G80 Enercon E66 (now Siemens)

1.3 MW, 50/60 Hz 1.8 MW, 60 Hz 2 MW, 50 Hz 1.8 MW, 50 Hz

BONUS (now Siemens) 2.3 MW, 50 Hz

Suzlon S88 2.1 MW, 50Hz

NORDEX N80 2.5 MW, 50Hz

Enercon E70 2.0 MW, 50 Hz

Mitsubishi MWT100a1 MW, 60 Hz

REPower MD70 and MD77

1.5 MW, 50Hz

Siemens, 2.3VS82, 2.3MW, 50/60Hz

Suzlon S66 1.25 MW, 50 Hz

REPower MM70 and MM82 2.0

Kennetech 33-MVS, 400kW, 60Hz1.25 MW, 50 Hz MM70 and MM82 2.0

MW, 50Hz 400kW, 60Hz

Mitsubishi MWT-92/95

2.4 MW

Fuhrlaender FL 2 5 Fuhrlaender FL 2.5 MW, 60 Hz

Related ActivitiesRelated ActivitiesRelated ActivitiesRelated Activities• IEEE DPWPG Task Force

V ifi ti h t f WECC i d l– Verification, enhancement of WECC generic models

– Paper on Specifications for Wind Power Plant models

– Paper on Validation Procedures for Wind Power Plant modelsPaper on Validation Procedures for Wind Power Plant models

– Outreach (Tutorials)

– Coordination with WECC, NERC (IVGTF), UWIG, CIGRE, IEC, …, ( ), , , ,

• UWIG/EnerNex (DOE funding)D l d t ti f i d t bi ifi– Develop user documentation for generic and turbine‐specific wind turbine models; conduct training seminars

– Verify performance of generic and vendor‐specific modelsy p g p

– Validate of models against field test results

Related ActivitiesRelated ActivitiesRelated ActivitiesRelated Activities

• NERC IVGTF Work Plan, Task 1.1 (Planning)– Valid, generic, non‐confidential, and public standard power flow and stability (positive‐sequence) models […] needed

– Models should be readily validated and publicly available to– Models should be readily validated and publicly available to power utilities and all other industry stakeholders

– Model parameters should be provided by manufacturers 

– Common model validation standard […] should be adopted

– Review the Modeling, Data and Analysis (MOD) standards t id tif d difi ti t dd i blto identify any need modifications to address variable generation modeling and model validation

Good Progress, More Work NeededGood Progress, More Work NeededGood Progress, More Work NeededGood Progress, More Work Needed• Generic models emerging as the correct approach

– Pressure continues to build in North America, Europe, p

– Several technical activities underway to validate, improve

– Strong trend among manufacturers to replace custom models with adjusted generic modelsadjusted generic models

• Need to build on recent progress with generic models– Include a more complete set of control options

• Programmed inertia, frequency support features, LVRT details, etc. 

– Perform model validation, develop parameter sets

– Develop model documentation and application guides

• Coordination of related efforts is key

• Ultimate goal: full‐featured, industry standard models– In the meantime, manufacture models are still useful in cases where 

specific control features not available in the generic models have a substantial impact

D i ti f WECC G i M d lD i ti f WECC G i M d lDescription of WECC Generic ModelsDescription of WECC Generic Models

References:– Y. Kazachkov, S. Stapleton, “Do Generic Dynamic Simulation Wind 

Turbine Models Exist?”, WindPower 2005, Denver, Colorado, May 2005

– N. W. Miller, W. W. Price, J. J. Sanchez‐Gasca, “Dynamic Model of GE’s 1.5 and 3.6 MW Wind Turbine Generators – Model Structure, Simulation Results, and Model Validation”, CIGRE Technical Brochure 328, Modeling and Dynamic Performance of Wind Generation as it R l P S C l d D i P f CIGRE WGRelates to Power System Control and Dynamic Performance, CIGRE WG C4.601, August, 2007

– WECC WGMG, “Generic Wind Plant Models for Power System Studies”, Wi dP 2006 Pi b h PA J 2006WindPower 2006, Pittsburgh, PA, June 2006 

– WECC WGMG, “Development and Validation of WECC Variable Speed Wind Turbine Dynamic Models for Grid Integration Studies”, Wi dP 2007 L A l CA J 2007WindPower 2007, Los Angeles, CA, June 2007

WECC Generic ModelsWECC Generic Models

• WECC WGMG GoalsS if i i t d l f l l– Specify generic, non‐proprietary models for large‐scale power system simulations  (positive‐sequence models)

– Generic models are parametrically adjustable to any specific p y j y pwind turbine of the same type in the market

– Models are simplified, but major dynamic behavior is maintained • Find balance between simplification and performance For example• Find balance between simplification and performance. For example,

representation of aerodynamic conversion should be simplified to avoid using proprietary Cp curves. Too much simplification is not good: a model does not perform well if aerodynamics is ignored (e.g. constant mechanical power)

– Perform model testing and as much validation as possible

Implement in PSSE and PSLF with full documentation and– Implement in PSSE and PSLF with full documentation and default parameter sets

WECC Generic ModelsWECC Generic Models

• Technical SpecificationsApplication: electrical disturbances (not wind disturbances) primarily– Application: electrical disturbances (not wind disturbances), primarily grid faults external to the plant, typically 3 to 6 cycle duration.

– Typical simulation time frame of interest are 20 to 30 seconds, with a ¼ cycle integration time step Wind speed assumed to be constantcycle integration time step.  Wind speed assumed to be constant.

– Model able to handle oscillatory modes from dc to 5 Hz.

– Initialize from power flow at full or partial power; able to handle user‐ifi d i d dspecified wind speed

– Speed and voltage protection modeled separately

– Represent machine inertia and first shaft torsional mode characteristics

– The models should be applicable to strong and weak systems with a short circuit ratio of 2.5 and higher at the point of interconnection

– Shunt capacitors and any other reactive support equipment modeled p y pp q pseparately with existing standard models

Response to Frequency DisturbancesResponse to Frequency Disturbances

• The generic WTG models were not developed with g pthe intent of being accurate for the study of frequency excursions on the power system, or to reproduce the behavior of advanced powerreproduce the behavior of advanced power management features that are imminently becoming available from some WTG manufacturers (such as programmed inertia and 'spinning reserve' by spilling wind). W d t k f th ith M f t t• We need to work further with Manufacturers to better understand response to frequency disturbances and thus improve the models.p

WT1 Generic ModelWT1 Generic ModelWT1 Generic ModelWT1 Generic ModelBasic Description

Modules: WT1T, WT1P, WT1G

Generator model is conventional induction machine

Default model data provided in documentation (Mitsubishi MWT1000A)

Single or two-mass shaft model

PlantFeeders

S g e o t o ass s a t ode

Power factor correction capacitor must be provided and initialized from load flow data

generator

Feeders

PF controlcapacitors

No special initialization or run-time script needed

No special adjustment needed for wind farm representationp

WT1 Generic ModelWT1 Generic ModelWT1 Generic ModelWT1 Generic Model

WT1G 2lr

2ro

LRω

2lrL.12qrψ-

+

+

-

SLIPωo2drψ

Induction Generator Model

1lr

1ro

LRω

1lrL.1

1qrψ-

++

- +

+

satm "Lqd "ψ"E =−

iqsmqψ +oω

SLIPωo1drψ

mq2

md2 ψψ +

ids

satm "Liqsmqψ

-

-mψ

Se )ψ(S.1K mesat +=

2lr1lrmsatsatm L/.1L/.1L/K

.1"L++

=

mdψ

satm "L

SLIPωo

1lr

1ro

LRω

1lrL.1

1qrψ

1drψ

+

+

-sat"Lm

dq "ψ"E =

+

+

+

LLL

satmL

+

SLIPωo

2lr

2ro

LRω

2qrψ

2drψ

+

+

-

+

)Rω(/)'LL()"LRω(/'LL"T

)Rω(/)LL()'LRω(/LL'TL"L)L/.1L/.1L/.1(/.1"L

L'L)L/.1L/.1(/.1'LLLL

2rom2lrm2rom2lro

1rom1lrm1rom1lro

l2lr1lrmm

l1lrmm

lsm

+==

+==

−=++=

−=+=

−=

2lrL.1

Model simulates a one-cage model is used if Lpp is equal to Lp. Otherwise, it simulates a two-cage induction generator. If Lpp or Tppo are 0., the model sets Lpp = Lp.

WT1 Generic ModelWT1 Generic ModelWT1 Generic ModelWT1 Generic Model

WT1PPitch Control Model

speed

Kp iFrom

Kdroop1

Σ

Σ1 + sT

Kp

Ki 1s

Σ

pimax

pimin

11 + sT1

11 + sT2

pgen

pmechwref

s1

s2 s3To

GovernorModel

TurbineModel

p

s0

1 + sTpe

pref

s1From

GeneratorModel

Note: For disturbances involving frequency drops this is not necessarily accurate – should set pimax to rated turbine output to a oid an response from the t rbineavoid any response from the turbine.

WT1 Generic ModelWT1 Generic ModelWT1 Generic ModelWT1 Generic ModelHt = Htfrac H

Hg = H - Ht

K = 2 (2π Freq1 ) H t2

H

HgWT1T Two-mass model

Tmech 1s

12Ht

Σ

++ -

-ωο

+

+ω tΣ

δ

Pmech

ω t

Δωt

Δ Δω

..s0

FromGovernor

Model

Two mass model

K

1s

12Hg

ΣDshaft

Σ

+

+Telec

-

ωο+

+ωgΣ-

1s

δtg

Pgen Δωg

Δω tg Δω tg

..s2

s1

FromGenerator

Model

FromGenerator

Model

οωg

Pmech ω1s

12H+

Pgen

TaccFromGovernor

ModelΣ

..To

Generators0

WT1T Single mass model (Htfrac = 0)

D

GeneratorModel andGovernor

Model

WT1 Fault TestWT1 Fault TestWT1 Fault TestWT1 Fault Test9-cycle, 3-phase fault at POI, clear fault by tripping line

V1

Pg

V5V5

Speed

Qg

WT1 Fault TestWT1 Fault TestWT1 Fault TestWT1 Fault Test9-cycle, 3-phase fault at POI, Self-Clearing

V1

Pg

V5

Qg

Speed

WT1 Frequency Drop TestWT1 Frequency Drop TestWT1 Frequency Drop TestWT1 Frequency Drop Test1% drop at t = 1 sec

V1

V5

Pg

QgSpeed Qgp

Frequency at Bus 5

WT1 Model ComparisonWT1 Model ComparisonWT1 Model ComparisonWT1 Model ComparisonAgainst Mitsubishi MWT1000A Manufacturer Model

WT2 Generic ModelWT2 Generic ModelWT2 Generic ModelWT2 Generic Model

Basic Description

Modules: WT2T, WT2E, WT2A/WT2P, WT2G

Generator model is conventional induction machine

Default model data provided in documentation (Vestas V80)( estas 80)

Single or two-mass shaft model

Power factor correction capacitor must be provided p pand initialized from load flow data

No special initialization or run-time script neededgenerator

PlantFeeders

PF controlac No special adjustment needed for wind farm representationSlip power

as heat loss

PF controlcapacitors

actodc

WT2 Generic ModelWT2 Generic ModelWT2 Generic ModelWT2 Generic Model

PgenFrom

Σ

Rmax

+

-

genFromGenerator

Model

T

Rext

Kp

1 + sTp

Kpp + Kip / s

s0

s1

WT2E

1 + sTw

+

Δω

P vs. slip curve

SpeedFrom

TurbineModel

ToGenerator

ModelRmin

s2

Kw

speed

Kp pimaxFrom

Turbine

WT2P

Kdroop1

Σ

Σ1 + sT

p

Ki 1s

Σ

pimax

pimin

11 + sT1

11 + sT2

pgen

pmechwref

1

s2 s3To

GovernorModel

TurbineModel

p

s0

1 + sTpe

pref

s1From

GeneratorModel

WT2 Generic ModelWT2 Generic ModelWT2 Generic ModelWT2 Generic ModelHt = Htfrac H

Hg = H - Ht

K = 2 (2π Freq1 ) H t2

H

HgWT2T Two-mass model

Tmech 1s

12Ht

Σ

++ -

-ωο

+

+ω tΣ

δ

Pmech

ω t

Δωt

Δ Δω

..s0

FromGovernor

Model

Two mass model

K

1s

12Hg

ΣDshaft

Σ

+

+Telec

-

ωο+

+ωgΣ-

1s

δtg

Pgen Δωg

Δω tg Δω tg

..s2

s1

FromGenerator

Model

FromGenerator

Model

οωg

Pmech ω1s

12H+

Pgen

TaccFromGovernor

ModelΣ

..To

Generators0

WT2T Single mass model (Htfrac = 0)

D

GeneratorModel andGovernor

Model

WT2 Fault TestWT2 Fault TestWT2 Fault TestWT2 Fault Test9-cycle, 3-phase fault at POI, clear fault by tripping line

P

V1

V5 Pg

Qg

Speed

WT2 Fault TestWT2 Fault TestWT2 Fault TestWT2 Fault Test9-cycle, 3-phase fault at POI, self-clearing

V1

V

Pg

V5 Qg

Speed

WT2 Frequency Drop TestWT2 Frequency Drop TestWT2 Frequency Drop TestWT2 Frequency Drop Test1% drop at t = 1 sec

V5

V1

SpeedPg

Speed

QgFrequency at Bus 5

WT2 Model ComparisonWT2 Model ComparisonWT2 Model ComparisonWT2 Model ComparisonAgainst Vestas V80 Manufacturer Model

WT3WT3 GenericGeneric ModelModelWT3 WT3 Generic Generic ModelModel

Vreg bus V Basic Description

Generator/Converter

M d l

ConverterControlM d l

Ip (P)Command

g Vterm

Eq (Q)Command

Basic Description

Modules: WT3T, WT3E, WT3P, WT3G

Generator is modeled as controlled currentModelModel

PowerOrder

Pgen , Qgen

ShaftSpeedSpeed

Order

Pgen , Qgen

Pgen

Generator is modeled as controlled current injection

Default model data provided in documentation (GE 1 5)

Pitch ControlModel

WindTurbineModel

BladePitch

(GE 1.5)

Single or two-mass shaft model

No special initialization or run-time script neededNo special initialization or run-time script needed

Plant level reactive control options available for wind farm model (PF control, Q control and voltage control)

generator

PlantFeeders

acto

dcto

28

voltage control)

partia l power

todc

toac

WT3 GenericWT3 Generic ModelModelWT3 Generic WT3 Generic ModelModelHt = Htfrac H

Hg = H - Ht

K = 2 (2π Freq1 ) H t2

H

HgWT3T Two-mass model

Tmech 1s

12Ht

Σ

++ -

-ωο

+

+ω tΣ

1 δtg

Pmech

ω t

Δωt

Δω tg Δω tg

..

Two mass model

K

1s

12Hg

ΣDshaft

Σ

+

+Telec

-

ωο+

+ωgΣ-

1s

tg

Pgen

ωg

Δωg

tg tg

..

g

WT3T Single mass model (Htfrac = 0)

29

WT3WT3 Generic ModelGeneric ModelWT3 WT3 Generic ModelGeneric Model

WT3P BladeωF

PImax

θ

Anti-windup onPitch Limits rate lim it (PIrate)

Pitch Control Model θPitch

ωreffFrom

Converter

ωerrω

FromTurbineM odel To

TurbineM odel

11+ sT p

cm dθΣ+

+Pitch

Control

Kpp + Kip / s

Anti-windup onPitch Limits

+

Σ+

PImin

Pord

+Converter

ControlM odel

Pi tchCompensation

K pc+ K ic / sΣ

1Pset

NOTE: Pset should normally be 1.0 unless it is controlled by a separate active power control model, e.g. to provide

i It t l b t thgoverning response. It must always be greater than or equal to the initial power output of the WTG.

30

WT3WT3 Generic ModelGeneric ModelWT3 WT3 Generic ModelGeneric ModelWT3EReactive Power

Wind Plant Reactive Power Control Emulation

Ki / s

VrfqQmax

Control Model Vc

Kiv / s+

11+ sTc

11+ sTr

Qmin

1/FnKpv

1+ sTv

Qwv

+

+

s2

s3 s5

Σ Σ

Pgen 11+ sTp

-1

varflg1

PFAref tan

x Qord

Power Factor Q

Qmax

p

Qref

0

QgenVmax

Vterm XIQmax

E

Power FactorRegulator

QcmdQmin

vltflg

s6

++

Vref Kqv / s

Vmin

Eq cmd

ToGenerator /Converter

Model

Kqi / sQcmd

XIQmin

0

1

s0 s1ΣΣ

31

WT3WT3 Generic ModelGeneric ModelWT3 WT3 Generic ModelGeneric Model

Anti-windupon

(shaft speed)ωWT3E

Active Power (Torque)

Ip cmdTo

Generator /Converter

Model

XPord1

1+ sTpc

Pmax & dPmax/dton

Power Limits

Kptrq+ Kitrq / sωerr1

1 + Tsps

ωref

f ( Pgen ) Σ

+Pgen

Pmin & -dPmax/dt

.

.

Ipmax

( q )Control Model

VtermTo PitchControlModel

To PitchControlModel

0.8

1.0

1.2

(p.u

.)

0.0

0.2

0.4

0.6

Pow

er (

32

0.00.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

Turbine Speed Setpoint (p.u.)

WT3WT3 Generic ModelGeneric ModelWT3 WT3 Generic ModelGeneric Model

WT3G IE "WT3GGenerator / Converter Model From

exwtge

High VoltageReactive Current

Management

Low Voltage

Isorc-1X"(efd)

11+ 0.02s

s0

Eq"cmd

LVPL & rrpwr

Fromexwtge

gActive CurrentManagement

IPcmd

(ladifd)1

1+ 0.02ss1

IPlv

Vterm

jX"11+ 0.02s

LVPL

LVPL

1.11

V

Lvplsw = 1

Lvplsw = 0

Low Voltage Power Logic

Vbrkpt(0.90)

zerox(0.50)

s2

33

WT3 Fault TestWT3 Fault TestWT3 Fault TestWT3 Fault Test9-cycle, 3-phase fault at POI, clear fault by tripping line

V1

Pg

V5 SQg

V5 Speed

WT3 Fault TestWT3 Fault TestWT3 Fault TestWT3 Fault Test9-cycle, 3-phase fault at POI, self clearing

V1

Pg

V5

Qg

Speed

WT3 Frequency Drop TestWT3 Frequency Drop TestWT3 Frequency Drop TestWT3 Frequency Drop Test1% drop at t = 1 sec

P

V1

V5 Pg5

Speed

QgFrequency at Bus 5

WT3 Model ComparisonWT3 Model Comparison

S ll S t

WT3 Model ComparisonWT3 Model Comparison

L S t

Against GE1.5 Manufacturer Model

Small System Large System

WT4 Generic ModelWT4 Generic ModelWT4 Generic ModelWT4 Generic Model

Basic Description

Modules: WT4T, WT4E, WT4G

No generator model. Just converter represented t ll d t i j tias controlled current injection

Default model data provided in documentation (GE 2.x)

PlantFeeders

Machine dynamics not modeled (it decoupled from the grid by the converter)

No special initialization or run time scriptgenerator

Feedersactodc

dctoac

No special initialization or run-time script needed

Plant level reactive control options available for wind farm model (PF control Q control andfull power wind farm model (PF control, Q control and voltage control)

WT4 Generic ModelWT4 Generic ModelWT4 Generic ModelWT4 Generic Model

WT4GGenerator/Converter Model

Fromt4

High VoltageReactive Current

Management

Isorc

(efd)-1

1+ 0.02s

s0

I Qcmd

wt4e

From

g

Low VoltageActive CurrentManagement

IPcmd

(ladifd)1

1+ 0.02s

s1

LVPL & rrpwr

IPlv

wt4t

Vterm

1LVPL

LVPL

VLvplsw = 0 Lvpl1

jX"11+ 0.02s

Low Voltage Power Logic

Vbrkpt(0.90)

zerox(0.50)

s2Lvplsw = 1

WT4 Generic ModelWT4 Generic ModelWT4 Generic ModelWT4 Generic Model

WT4E Vreg

Kiv/s+

Vrfq(vref)

11+ sTc

11+ sTr

Qmax

1/fN

Qords4

-K

Qwv

+

+ΣΣ

Converter Electrical Control Model

WindCONTROLEmulator

Qmins5s3

Kpv1+ sTv

s2

wv

Qcmd

Qmin

Qmax

Qref(vref) 0

varflg

1

PFAref tan(vref)

+

-1

Pelec

min

0

pfaflg

1

( )tan

x

s6

(vref)

11+ sTp

1

Qord(vref)

Qcmd

Qgen

Vref

Vmax

K i / sIQcmd

K i / s

-Iqmx

ΣΣ++

Vterm

Kvi / s

Vmins0 s1

Kqi / s

-Iqmn

(efd)to Wind

GeneratorModelwt4gConverter Current LimitP,Q Priority Flag

Σ

Pord

Vterm

Ipmx..

IPcmd

(ladifd)to Wind

Generator Modelwt4g

Porx

(vsig)from Wind

Turbine Modelwt4t

WT4 Generic ModelWT4 Generic ModelWT4 Generic ModelWT4 Generic Model

WT4E P,Q Priority Flag

(pqflag)

Converter CurrentLimiter Model

IqmnIqmx

10

Iqmn Iqmx

Vt

-1

P PriorityQ Priority

-1

Iqhl Minimum

Vt

Iqmxv

Iqmxv

1.6qmax

1.0

ImaxTDImaxTD

2 - IPcmd2

Minimum

IPcmd

Minimum

q

ImaxTD2 - IQcmd

2IQcmd

Minimum

Iphl

Minimum

IpmxIpmx

MinimumMinimum

WT4 Generic ModelWT4 Generic ModelWT4 Generic ModelWT4 Generic Model

WT4T

dP PP

Turbine Model

Σ1 + sTpw

1Kpp +

s

Kip

dPmx

+-

+

-Pord

PrefPref

Pelec

From Wind To wt4e

piin piou

s0 s1

dPmn

sKf

Generator Modelwt4g(pelec)

To wt4e(vsig)

s2

1 + sTf

WT4 Fault TestWT4 Fault TestWT4 Fault TestWT4 Fault Test9-cycle, 3-phase fault at POI, clear fault by tripping line

V1

VIp

V5 Pg

Qg

Iq

WT4 Fault TestWT4 Fault TestWT4 Fault TestWT4 Fault Test9-cycle, 3-phase fault at POI, clear fault by tripping line

V1

P

Ip

Pg

Qg

V5

Iq

WT4 Frequency Drop TestWT4 Frequency Drop TestWT4 Frequency Drop TestWT4 Frequency Drop Test1% drop at t = 1 sec

V1

Qg

V5

Pg

FrequencyFrequency at Bus 5

WT4 Model ComparisonWT4 Model ComparisonWT4 Model ComparisonWT4 Model ComparisonAgainst GE 2.5 MW Manufacturer Model

Terminal VoltageTerminal Voltage

PelecPelec

QelecQelec

At T=1.0 sec., place fault at At T=1.0 sec., place fault at POI, clear in 250 msPOI, clear in 250 ms

WT4 Model TestingWT4 Model TestingWT4 Model TestingWT4 Model TestingAgainst GE 2.5 MW Manufacturer Model

WIPCMNDWIPCMND

PelecPelecPelecPelec

QelecQelec

At T=0 1 sec converter current limit wasAt T=0 1 sec converter current limit wasAt T 0.1 sec., converter current limit was At T 0.1 sec., converter current limit was reduced from 1.7 p.u. to 0.8 p.u. and reduced from 1.7 p.u. to 0.8 p.u. and restored back to 1.7 p.u. at T=4.1 sec.restored back to 1.7 p.u. at T=4.1 sec.

WT4 Model VerificationWT4 Model VerificationWT4 Model VerificationWT4 Model VerificationAgainst ABB Converter PSCAD Model

From “WECC - Model Specifications, Validation”, presentation by Slavomir Seman, 7/29/09 at the IEEE PES General Meeting, Calgary, Canada.

WT4 Model VerificationWT4 Model VerificationWT4 Model VerificationWT4 Model VerificationAgainst ABB Converter Full Power Test

From “WECC - Model Specifications, Validation”, presentation by Slavomir Seman, 7/29/09 at the IEEE PES General Meeting, Calgary, Canada.

On Aerodynamic Simplification used in WECC On Aerodynamic Simplification used in WECC Generic Type 3 modelGeneric Type 3 modelypyp

References:– W. W. Price, J.J. Sanchez‐Gasca, “Simplified Wind Turbine Generator Aerodynamic Models for Transient Stability Studies” Proc. IEEE PES PSCE, Atlanta, Georgia, October‐November 2006

– M Behnke A Ellis Y Kazachkov T McCoy E Muljadi WM. Behnke, A. Ellis, Y. Kazachkov, T. McCoy, E. Muljadi, W. Price, J. Sanchez‐Gasca, “Development and Validation of WECC Variable Speed Wind Turbine Dynamic Models for G id I t ti St di ” AWEA Wi dP L A lGrid Integration Studies”, AWEA WindPower, Los Angeles, California, June  2007

Aerodynamic ConversionAerodynamic ConversionAerodynamic ConversionAerodynamic Conversion

Pelec

Pmech ωAerodynamic

Model

W indSpeed Rotor

Modelgen

θ

BladePitch

ω rotor

Pd

Pelec Controlordelec

System

)(3 θλρ CvAhP =

51

),(2

θλpCvrAmechP =

AerodynamicAerodynamic SimplificationSimplificationAerodynamic Aerodynamic SimplificationSimplification

• Assume wind speed is constant for the duration of the typicalAssume wind speed is constant for the duration of the typical period of interest in dynamic simulations (up to about 20 seconds)

• For variable speed Type 3 it was noticed that 

– Rate of change of mechanical power (Pmech) varies linearly with respect to pitch angle (θ ) in the range 0 < θ < 30 degwith respect to pitch angle (θ ) in the range 0 < θ < 30 deg

– Pmech varies linearly with respect to wind speed (Vw) from cut‐in to rated wind speed

– θ varies linearly with respect to Vw for wind speeds above rated

52

Aerodynamic Model SimplificationAerodynamic Model SimplificationAerodynamic Model SimplificationAerodynamic Model Simplification

Detailed 3-D Cp CurveDetailed 3-D Cp Curve.

2-D Cp Curve used in detailed models

0.2

0.3

0.4

0.5

Cp

θ=1o

θ=3o

θ=5o

θ=7o

θ=9o

θ=11o

=13o

Linear relationsallow for simplifications

0 2 4 6 8 10 12 14 16 18 20

0

0.1

λ

θ=13o

θ=15o

53

ExampleExample forfor GEGE 1.5 WTG1.5 WTGExample Example for for GE GE 1.5 WTG1.5 WTG

54

ExampleExample for GEfor GE 1.51.5 WTGWTGExample Example for GE for GE 1.5 1.5 WTGWTG

“Aerodynamic governor” modelAerodynamic governor  model

Pm = Pmo – θ ( θ ‐ θ o ) / 100

Initialization:

P P l (f fl )• Pmo = Pelec (from power flow)• Use Fig. 8 to find Vw for θo = 0• Use Fig. 9 to compute θo if 

d d iPe = Prated and user‐input Vw is greater than rated wind speed

55

Testing of Aerodynamic SimplificationTesting of Aerodynamic SimplificationTesting of Aerodynamic SimplificationTesting of Aerodynamic SimplificationAgainst GE1.5 Manufacturer Model

At rated output At 50% output

Blue = manufacturer standard model, Red = WECC WT3 generic model

On Identification of WTG Model Parameters On Identification of WTG Model Parameters and Model Validation Effortsand Model Validation Efforts

Efforts Underway in North AmericaEfforts Underway in North AmericaEfforts Underway in North AmericaEfforts Underway in North America

• NREL Model Parameter Identification Project– Tune parameters to match performance of manufacturer models) using 

parameter trajectory sensitivity approach

– Parameters to be published in WECC WGMG guidep g

• IEEE DPWPGMG– Collaboration with several WTG manufacturers and industry stakeholders 

in the US and Europein the US and Europe

– Develop specifications and test systems for model validation (underway)

• UWIG/EnerNex– Document generic model validation against measurements

• Hydro QuebecHas done some work in this area– Has done some work in this area

• PSLF and PSSE software developers and consultants

Parameter Sensitivity ApproachParameter Sensitivity ApproachThe output of the simulation and the measured data can be used to find the total error of the measurement Sk

T k( ) dT k( ) k⋅:=Sk

T k( )the total error of the measurement.

Perr = |Pmeas.-Psimulated|

k dk T k( )k

Qerr = |Qmeas.-Qsimulated|

The error and the sensitivity parameter k1 with respect to the error

Actual Wind Plant

p pcan be computed.

Use the other parameters k1, k2, k3, k4 etc Model with the

parameter+

The parameter sensitivity can be observed from the results.

parameter to be tunedInput T(k)-

Parameter kThe trend can be used to drive the changes of the parameters.

Parameter Sensitivity ApproachParameter Sensitivity Approach

Sensitivity of parameter f1 (Sf1) to Perror and Qerror

0.1

0.12

0.06

0.08

Sq_f

1

0.02

0.04

Sp_f

1 an

d Sp_f1Sq_f1

-0.02

00 0.5 1 1.5 2 2.5

-0.04

f1

Parameter Sensitivity ApproachParameter Sensitivity ApproachExample for WECC WT3 Generic Model

• Qualitatively similar results for other outputs.N t th t l t f t h ll d/ l t d i fl

Response of P output Sensitivity of P output to a range of parameters

• Note that a lot of parameters have small and/or correlated influence.• Sensitivities obtained as a by-product of running the simulation.

On Representation of Wind Farms With WECC On Representation of Wind Farms With WECC Generic WTG ModelsGeneric WTG ModelsGeneric WTG ModelsGeneric WTG Models

References:– E. Muljadi, C.P. Butterfield, B. Parsons, A. Ellis, ”Characteristics of 

Variable Speed Wind Turbines Under Normal and Fault Conditions”, IEEE PES GM, Tampa, Florida, June 2007., p , ,

– J. Brochu, R. Gagnon, C. Larose, “Validation of the WECC Single‐Machine Equivalent Power Plant”, Presented at the IEEE PSCE DPWPG‐WG Meeting, Seattle, Washington, March 2009.g, , g ,

– WECC Wind Generation Power Flow Modeling Guide

Wind Power Plant RepresentationWind Power Plant RepresentationWind Power Plant RepresentationWind Power Plant Representation

• WECC WGMG recommendation is to use a single‐machine equivalent for power flow and dynamic representation of Wind Power Plants

W

Pad-mounted Transformer Equivalent

Wind Turbine

Collector System

Equivalent

Interconnection Transmission

Line

Station Transformer(s)

POI or connection to the grid Collector System

Station

W Generator Equivalent

PF CorrectionShunt Capacitors-Plant-level

Reactive Compensation

POI or Connection to the Transmission

System

Interconnection Transmission Line …or in special cases (e.g., heterogeneous 

feeders or WTGs of different types)…

Feeders and Laterals (overhead and/or underground)

Individual WTGs

~

~ Type 4 WTG

Type 1 WTG

Interconnection Transmission

Line

Station Transformer(s)

Pad-mounted Transformer Equivalent

Collector System

Equivalent

POI or Connection to the Transmission

System PF CorrectionShunt Capacitors

Plant-level Reactive Compensation

Equivalent Collector SystemEquivalent Collector System

• Depends on feeder type (OH/UG) and WPP size

• Zeq and Beq, can be computed from WPP conductor schedule, if available

– For radial feeders with N WTGs and I branches: 2nZ

I

∑ I

21

N

nZjXRZ i

ii

eqeqeq

∑==+= ∑

=

=i

ieq BB1

– Where ni is the number of WTGs connected upstream of the 

i-th branch

Thi b i l d il d h– This can be implemented easily on a spreadsheet

Equivalent Collector SystemEquivalent Collector System

• Example with N=18 and I=21:

Detailed Vs. SingleDetailed Vs. Single‐‐Machine RepresentationMachine RepresentationDetailed Vs. SingleDetailed Vs. Single Machine RepresentationMachine Representation

QWT = 0.435 0 -0.4353-phase fault, all WTGs at 12 m/sec

PP34.5 kV

Q34.5 kV

From « Validation of the WECC Single-Machine Equivalent Power Plant », Presented DPWPG-WG Meeting at IEEE PSCE, March 2009 - Jacques Brochu, Richard Gagnon, Christian Larose, Hydro Quebec

Detailed Vs. SingleDetailed Vs. Single‐‐Machine RepresentationMachine RepresentationDetailed Vs. SingleDetailed Vs. Single Machine RepresentationMachine Representation

0.435 0 -0.435QWT =3-phase fault, different wind speed for each feeder

P

1 and 2 feeders

P34.5 kV

4 feeders = Typical

2 and 4 feeders = Typical

Q34.5 kV

1 feeder

From « Validation of the WECC Single-Machine Equivalent Power Plant », Presented DPWPG-WG Meeting at IEEE PSCE, March 2009 - Jacques Brochu, Richard Gagnon, Christian Larose, Hydro Quebec

Questions and DiscussionQuestions and DiscussionQuestions and DiscussionQuestions and Discussion