36

Geologic Analysis NFR

Embed Size (px)

DESCRIPTION

geología

Citation preview

GeologicAnalysisof NaturallyFractured Reservoirs This Page Intentionally Left BlankGeologicAnalysisof NaturallyFractured Reservoirs SECONDEDITION ByR.A. Nelson BPAmoco Houston, TX GP PO Gulf Professional Publishing AnI mpr i nt of El sevi erBostonOxfordAucklandJohannesburgMelbourneNewDelhi Gulf ProfessionalPublishmgisanimprintof Elsevier. Copyright 92001byButterworth-Heinemann ~ , Amemberof theReedElsevier group Allrightsreserved. Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmittedinanyformorbyanymeans,electronic,mechanical,photocopying, recording,orotherwise,withoutthepriorwrittenpermissionof thepublisher. Permissionsmay besoughtdirectlyfromElsevler's Scienceand TechnologyRtghtsDepartmentm Oxford,UKPhone(44)1865 843830,Fax(44)1865853333,e-madpermlsslons@elsevlerco uk Youmay also completeyour request on-hnevia theElsevier homepagehttp//www elsevter comby selecting"Customer Support"andthen"Obtaining Perrmssions" ~_~Recognizingthe~mportance of preservingwhathasbeenwritten,Elsevier printsItsbooksonacid-freepaperwheneverpossible. q Elseviersupportstheeffortsof AmericanForestsandthe GlobalReLeaf programInitscampaignforthebetterment of trees, forests,andourenvironment. Libraryof CongressCataloging-in-PublicationData Nelson,RonaldA. Geologic analysisof naturallyfracturedreservoirs /byR.A.Nelson. --2nded. p.cm. Includesbibliographicalreferencesandindex. ISBN-13: 978-0-88415-317-7(alk.Paper)ISBN-10: 0-88415-317-7(alk.Paper) 1.Rocks--Fracture. 2.Rocks,Sedimentary.3.Hydrocarbonreservoirs.I.Title. QE431.6.P5N452001 553.2' 8----dc212001017058 ISBN-13: 978-0-88415-317-7 ISBN-10: 0-88415-317-7 BritishLibraryCataloguing-in-PublicationData A cataloguerecordforthisbookisavailablefromtheBritishLibrary. Thepubhsheroffersspeclaldiscountsonbulkordersof thisbook. Formformat~on,pleasecontact: Managerof SpecialSales Butterworth-Heinemann 225Wildwood Avenue Woburn,MA01801-2041 Tel:781-904-2500 Fax:781-904-2620 ForinformationonallGulfProfessionalPublishingpublicationsavailable,contactour World WideWebhomepageat:http://www.gulfpp.com 1 0 9 8 7 6 5 4 3 2PrintedintheUnitedStatesof America TomycolleaguesRobertoAguilera,Mel Friedman, andDaveStearns,andtomy f ri endsintheindustry whohavetaughtmesomuchovertheyears. This Page Intentionally Left BlankCont ent s A c k n o w l e d g m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x iF o r e w o r d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x i i iP r e f a c e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x v i iN o t a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x i x1 . E v a l u a t i n g F r a c t u r e d R e s e r v o i r s " I n t r o d u c t i o n . . . . . . . . . . . 1 AvoidFractureDenial,1 Problems,2 Definitions,3 TheEvaluationSequence,4 BasicTypesofEvaluation,4 EarlyExplorationEvaluations,5 Evaluationsof EconomicPotential,5 EvaluationsforRecovery PlanningandModeling,6 GeneralSequenceofStudy,7 FractureSystemOrigin,7 GenericClassification,9 GeologicClassification,10 FracturedPropertiesAffectingReservoirPerformance, 32 Introduction,32 FractureMorphology,37 FractureWidthandPermeability, 64 FractureSpacing,79 FractureandMatrixPorosityCommunication, 82 Introduction,82 vii Basicsof Fractureand MatrixPorosity,83 Cross-Flowina Two-PorositySystem,95 Examplesof Cross-Flowin ThinSection,96 InhibitedCross-Flow,96 Estimationof PorosityInteraction,100 2. Re s e r v o i r M a n a g e m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Classificationof FracturedReservoirs,101 Reservoir Types,101 PositiveReservoirAttributes,107 PotentialProblems,109 StrategiesofFracturedReservoirManagement,110 ReservoirDescription,113 ThoughtsonRiskAnalysisinFracturedReservoirs,123 3.D e t e c t i ngandP r e di c t i ngFr a c t ur eO c c u r r e n c e andI nt ensi t y. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 5Detection,125 DirectDetection,125 IndirectDetection,127 Applicationof DirectandIndirectTechniques,135 PredictionofSubsurfaceFractureSpacing,135 Composition,137 Porosity,137 GrainSize,141 BedThickness,141 StructuralPosition,146 Summary,150 PickingWell Locationsand Well PathsinFolded FracturedReservoirs,152 FractureIntensity,153 Well Trajectory,160 vii~ 4. An a l y s i s of An i s o t r o p i c Re s e r v oi r s . . . . . . . . . . . . . . . . . . 1 6 3Stylolites,163 Stylolitesand TheirContributiontoReservoir Anisotropy,165 Effectof StyloliteZonesonPorosityandPermeability,172 StylolitesasanIndicatorof MechanicalProperties,173 DevelopmentofPermeabilityTensorsforAnisotropicReservoirs,185 Crossbedding,186 Fractures,189 OtherFactors,193 PermeabilityTensorsfor CrossbeddingandFractures,198 RelativeEffect of RockParameters,202 Permeability AnisotropyandStylolites,204 CombinedTensors,206 StatisticalDatainReservoirModeling, 207 ReservoirDomainsor Compartments,207 Averaging Techniquesin ThreeDimensions,212 Three-DimensionalCorrelationof Reservoir PropertiesinFracturedReservoirs,215 StatisticalCharacterizationof BlockSizes,217 StimulationinFracturedReservoirs,217 5. An a l y s i s P r o c e d u r e s inFr a c t ur e dRe s e r v oi r s . . . . . . . . . 2 2 3ScreeningToolsinDefiningaFracturedReservoir,223 DataTypesandConstraintsasaFunctionof WhentheFracturedReservoirisDiscovered, 226 CoreandOutcropAnalysis,229 FractureStratigraphyandtheInterrelationof Deformation, Petrology,andPetrophysics,229 DeterminingNaturalVersusInducedFractures,230 Data Acquisition,239 CoringinFracturedReservoirs,240 UsefulChecklists,246 DataPresentation,248 PressureandProductionAnalysisfor QuantifyingFractureSystemProperties,251 Logging Techniques, 251 Well Testing, 251 NumericalModelinginGeology,252 A p p e n d i x A: Li s t o f D o c u m e n t e d F r a c t u r e d Re s e r v o i r s . . . . 255 A p p e n d i x B:P r o c e d u r e s Che c k l i s t . . . . . . . . . . . . . . . . . . . . 2 7 7A p p e n d i x C:Av e r a g i n g T e c h n i q u e s . . . . . . . . . . . . . . . . . . . 2 7 9Gl o s s a r y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Co n v e r s i o n Fa c t or s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 85Re f e r e n c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 7I ndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 3Acknowledgments I wishtoacknowledgethesupportandguidanceof mycolleaguesDavid W.Stearns,RobertoAguilera,andMelvinFriedmanthatmadethissecond editionpossible.I alsoacknowledgethemanagementof B P Amocoandthe formerAmocoProductionCo.withoutwhoseencouragementandpermis- sionthismanuscriptwouldnothavebeenpublished.Iamgratefultothe AmericanAssociationofPetroleumGeologists(AAPG),theAmerican GeophysicalUnion,theInternationalSocietyofRockMechanics,the SocietyofPetroleumEngineers,andtheCanadianSocietyofPetroleum Engineersforpermissiontodrawmaterialfromtheirpublications.Lastly,I thankallofthoseattendeesofthefracturedreservoircoursesthatIhave taughtovertheyearswhohavetrulytaughtmetheartandpracticeof frac- turedreservoiranalysis. xi This Page Intentionally Left BlankForeword Fracturesareauniversalelementinsedimentaryrocklayers,somuch thattheyarevirtuallyomnipresentinoutcropsofsedimentaryrocks.Think ofalltheoutcropsofsedimentaryrocksthatyouhaveeverseenandtryto recallalayerthatwascompletelyunfractured,withthepossibleexception of extremelyductilerock,suchassalt or certainshales,youwillnot beable torecallanyunfracturedrockssimplybecausetheydonotexist.Further,it hasbeendemonstratedoverandoveragainthatthevastmajorityoffrac- turesobservedinoutcroparenotsolelytheresultofsurfaceconditions.In otherwords,thefracturesseeninoutcropalsoexistinthesubsurface. Therefore,itfollowsthathydrocarbonreservoirsinsedimentaryrockall containfracturesandmostofthemarefracturedenoughtobetreatedas fracturedreservoirs. Thoughthegeologicalfracturesnecessarytoconcludethatfracturesare commoninthesubsurfacehavebeenknownforatleastthelasthalfcen- tury,thepracticeoftreatingreservoirsasfracturedrockmasseshasbeen extremelyslowinbecomingastandardindustrypractice.Whyisthisso? Probablythegreatestcontributortothewidespreadreluctancetofacethe realityoffracturedreservoirsisbecausefracturedreservoirsareextremely complexandtherefore,muchmoredifficulttodealwiththanareunfrac- turedreservoirs.Thecomplexitycomesfromthevastnumberofbothde- pendentandindependentvariablesthatdictatefinalreservoirresponse. Considerforaminutejustafewoftheobvious,straightforwardreservoir variables,andtheirinteractions,thatmustbeincludedinareservoiranaly- sis.Calculatingreservoirstorage dependsonknowingbothmatrixandfrac- tureporosities.Fracturepermeability,matrixpermeability,andespecially theirinteraction,allcontributetothebehavior of agivenreservoir.Fracture geometry,fracturespacing,fracturesurfacearea,andfractureopeningall combinewithfracturemorphologyandporespacedistributiontocreate truereservoirpermeabilityand/orpermeabilityanisotropy.Fluidpressure declinewithtimechangesthevalueofsomevariablesbutnotthevalueof others.Therefore,initialcalculationsdonotapplythroughoutthelifeof the reservoirandsome parametersmust be recalculatedatseveralintervalsdur- ingthelifeof thereservoir. xii~ Anyonewhohasdealtwithfracturedreservoirsrealizesthatthesevari- ablesare onlya fewof the numerousvariablesthat haveto beevaluatedand properlycombinedinordertopredictreservoirperformance.Isthereany doubt,then,thatreservoircomplexityisamajorcontributortothereluc- tanceeventoattemptsystematictreatmentofreservoirsasfracturedrock masses? Anotherfactorthatisadeterrenttodoingsystematicfracturedreservoir analysisisthatalmostallfracturedreservoirsrespondinamannerunique tothatspecificreservoir.Thatis,despitetheexistenceofagood,working fracturedreservoirclassification,eachfracturedreservoirrespondsinits owndistinctiveway.Asaconsequence,applyinggeneralrulesof thumbto specificfracturedreservoirscanbedangerouslymisleading. Boththecomplexityandindividualityoffracturedreservoirs,then, stronglyarguefor theneedfor a referencebookthat dealsina practicalway withprovenmethodsof dealingwithfracturedreservoirs.Thisbookserves thatfunction.Inthefirsteditionof thisbook,RonNelsonshortenedtheef- fortittooksomeonenewtogetintoreservoiranalysis.Hedidthisbygoing beyondhislucidacademicdiscussionoftheimportantgeologicandengi- neeringfactorsthatmustbeconsideredinfracturedreservoiranalysis.In additiontotechnicaldetails,he alsousedhisvast experiencetodiscusshow to organize,collect,anddealwithfracturedreservoirdatawhileatthesame timestayingwithinthe practicallimitsdemandedbymost corporations.His coveragein1985wascompleteforthestateoftheartthatexistedatthat time.However,theinfluencethatthefirsteditionhadonindustryisnobet- ter demonstratedthanbythefactthatsince1985theindustry-widelevelof sophisticationintreatingfracturedreservoirshasacceleratedenormously. In addition,sincethepublicationof thefirstedition,Nelsonhasundertaken theorganizationandpresentationofnumerousAmericanAssociationof PetroleumGeology(AAPG)fracturedreservoirworkshopsalloverthe world. Theseactivitiesnotonlypermittedhimtheopportunitytopromulgate theideasexpressedinthefirstedition,theyalsopermittedhimtheoppor- tunitytolistento othersconcerningtheirneedsrelativeto dealingwithfrac- turedreservoirs.Nowintheupdatedsecondedition,Nelsonhasextended thefirsteditionbycouplinghisownresearchandexperiencewiththewide exposurehereceivedfromlisteningtotheproblemsofothergeoscientists duringthelast15yearsofgivingannualAAPGseminars. Thesecondeditionnotonlystillincludesthecardinalaspectsoffrac- turedreservoirsthatwerecontainedinthefirstedition,butitalsoincorpo- rateswhatisnewin15yearsof progressintreatingfracturedreservoirs.In additiontotherudimentsofthefirstedition,Nelsonhasincludedsixen- tirelynewsections,whichrangefrom"howtoavoidfracturedenial"to "positivereservoirattributes"to"screeningtoolsindefiningafractured xiv reservoir."Also,inthesecondeditionnewadvancesindirectionaldrilling areintegratedintofracturedreservoirtreatment. IwasfortunateenoughtoparticipatepersonallywithNelsonin10or12 oftheAAPGfracturedreservoirseminars,andthereisnodoubtthatthe mostfrequentrequestfordatanotpresentedintheseseminarswastoin- cludeasummaryof fracturedreservoircasehistories.Nelsonhasremedied thisrequestbyincludingatotallynewappendixinthesecondeditionin whichhepresentshistoricproductionchartsfor25fracturedreservoirson whichhehaspersonallyworked. Anothernewfeatureincludedinthesecondeditionwillaidinsolvinga frequentcommunicationproblem.Itisnotunusualfortheperson(s)with themosttechnicalbackgroundinfracturedreservoirstopresentahighly shortenedversionofaproposedprojecttopeoplewithmuchlesstechnical background.Toaidinthistask,acompanionwebsiteisalsoofferedwith thesecondeditionsothatanytableorillustrationinthebookcanbedown- loadedandprojectedaspartofacommunicationeffort. Justasthefirsteditionwas,theneweditionisequallyindispensableasa shelf referenceforanypersonworkingwithfracturedreservoirs,eventhose whoownafirstedition. DavidW.Stearns UniversityofOklahoma XV This Page Intentionally Left BlankPref ace Muchhashappenedinthefieldoffracturedreservoiranalysissincethe publicationofthefirsteditionofthistextin1985.Manymorereservoirs havebeenidentifiedasbeingfracture-controlledandgreatstrideshave beenmadeintheintegrationoftheworkandapproachesofthemanydis- ciplinesneededtoworksuccessfullywiththesereservoirs.Indeed,fromex- plorationthroughblow-down, theeffectivemanagementof thesereservoirs requirestheapplicationofmulti-disciplinaryapproachesmorethanvirtu- allyanyothertypeof petroleumreservoir. In thissecondedition,I havetriedtoretaintheemphasisonrockdata ap- proachestothestudyofthesereservoirswhileaddingmorematerialon theirproductionhistoriesandcharacteristics.Inaddition,practicalcheck- listshavebeenaddedtohelpdetermineifyouaredealingwithafractured reservoir ornotaswellasproceduresfor howtoapproachthestudyof frac- turedreservoirsdependingonwheninitshistorywe"discover"thatitis fractured.Ibelievethatthematerialincludedinthissecondeditionwill allowustomoveawayfromthehistorical"fracturedenial"thatourreser- voirworkershavesufferedfromformanyyears. Anadditionhasbeenmadeto thiseditionintheformof companionweb- site(http:/ / www. bh. com/ companions/ 0884153177). Thissiteincludes.pdf filesoftheslidesthatIhaveusedinthevariousAAPGfracturedreservoir coursesthatIhavetaughtoverthelast20years.Theseincludemanymore illustrationsthanareusedinthetextandcanbeusedbythepurchaseras trainingresourcematerial. xvii This Page Intentionally Left BlankNot at i on a, b, n A B1 B 2 B 3 BI1,BIz,B33 B U B. II d D c E F 1 F~ F 3 FI I,F22,F33 F ij F. U g h k Bk kf kfr k r K kll, kzz, k33 kH90 =variousconstants =cross-sectionalarea =plugpermeabi l i t yparalleltobeddi ng =plugpermeabi l i t y45 ~ tobeddi ng =plugpermeabi l i t y90 ~ tobeddi ng - maxi mum, intermediate, andmi ni mumprincipalbeddi ng permeabi l i t ytensorcomponent s =beddi ngpermeabi l i t ytensor =rotatedbeddingpermeabi l i t ytensor =averageconstitutivegraindi amet er oftherock =averagefracturespacing( averagedistancebet weenparallel fractures) =fracturewidth =Young' selasticmodul us =plugpermeabi l i t yparalleltofracture =plugpermeabi l i t y45 ~ tofracture =plugpermeabi l i t y90 ~ tofracture - max i mum, intermediate, andmi ni mumprincipalfracture permeabi l i t ytensorcomponent s =fracturepermeabilitytensor =rotatedfracturepermeabi l i t ytensor =accelerationofgravity =hydraulichead =intrinsicpermeabi l i t y =meanpermeabi l i t y =fracturepermeabi l i t y =totalpermeabi l i t y(rockplusfracturesyst em)=rockormatrixpermeabi l i t y =hydraul i cconductivity - max i mum, intermediate, andmi ni mumprincipalperme-abilitytensorcomponent s =horizontal90 ~frommaxi mumhorizontalwhol e- coreper- meability xix kHmax kv 1 M U M,lj N NB NF P p Q R S11, 822, 833 S 11 S. Ij Sv S h V~ V P o~,13 E CY! CY3 I~"h l~' nlea n O v * r =max i mumhori zont al whol e- cor eper meabi l i t y =verticalintrinsicwhol e- cor eper meabi l i t y =length =mat ri xper meabi l i t y =rot at edmat ri xper meabi l i t yt ensor =di mensi onl esscoeffi ci ent charact eri st i cofthemedi um =per meabi l i t ypl ugwithnovisiblebeddi ng =per meabi l i t ypl ugwi t hnovisiblefractures =fluidpressure =poreorfor mat i onpressure =fl owrate =ar andoml ytakenper meabi l i t yplug - ma x i mu m, i nt er medi at e, andmi ni mumtotalpr i nci palstresses =styloliteper meabi l i t yt ensor =rotatedstyloliteper meabi l i t yt ensor =totalverticalstress(s v +Pp) =totalhori zont al stress(S h +Pp) =bulkvol ume =porevol ume =anglesbet weenfractureplanesandpressuregr adi ent=strainc omponent=Poi sson' sratio =vi scosi t y =densi t y =stress =max i mumprincipaleffectivestressc omponent=i nt ermedi at eeffectiveprincipalstressc omponent=mi ni mumprincipaleffectivestressc omponent=hori zont al effectivestressc omponent=meanstress =verticaleffectivestressc omponent=porosi t y =fractureporosi t y( porevol umetototalvol ume)=matrixorrockporosi t y( porevol umetototalvol ume)XX 1 EvaluatingFractured Reservoirs:I ntroduction AVOI DFRACTUREDENI AL Fracturedreservoirsmakeupalargeandincreasingpercentageofthe world' shydrocarbonreserves.InB P Amocoalone,currentandfuturefields invarioustypesof fracturedreservoirsare estimatedtoaccountforsome21 billionbarrelsofoilequivalent(BBOE).However,inspiteoftheimpor- tanceoffracturedreservoirs,weintheindustrytendtodenythepresence of fracturesinourreservoirs.Thisfracturedenialisprobablyduetoourde- siretoavoidcomplicationinourtechnicalworkandreductionofcycle timesinourexplorationandproduction(E&P)efforts.Indeed,fractured reservoirsaremorecomplicatedthanmatrixreservoirs,andtheydorequire moretimeandmoneytobeevaluatedcorrectly.Thetendencyistoignore thepresenceandeffectof naturalfracturesforaslonginthefieldhistoryas possible.Theproblemswiththisdenialoravoidanceinclude:1)oftenir- reparablelossofrecoveryfactor;2)primaryrecoverypatternsthatarein- appropriateforsecondaryrecovery;3)inefficientcapitalexpenditure duringdevelopment;4)drillingofunnecessaryin-fillwells;and5)im- properassessmentof economicopportunities. Itisimportanttodeterminetheeffectofnaturalfracturesinourreser- voirsasearlyaspossiblesothatourevaluationsandplanningcanbedone correctlyfromdayone.Fracturedenialdoesnothingpositiveforourex- plorationanddevelopmentactivitiesandcanonlyleadtopoorertechnical andeconomicperformance. Remember : Finding fracturesisnotenough. 2GeologicAnalysisofNaturallyFracturedReservoirs Fracturedreservoirsareverycomplicatedanddifficulttoevaluate. Effectiveevaluation,prediction,andplanninginthesereservoirsrequirean earlyrecognitionoftheroleof thenaturalfracturesystemandasystematic approachtothegatheringandanalysisofpertinentdata.However,care shouldalwaysbetakentomakesurethatthedegreeofanalysisandevalu- ationiscommensuratewiththeparticularproblembeingaddressed.Itis easytoget lostin detailanddataacquisition,andlosesightof theeconomic questions. Pr obl ems Interestinnaturalfracturestudiesinsurfaceandsubsurfaceformations hasincreaseddramaticallyinthepastyears.Thishasbeenbroughtaboutby greaterindustryknowledgeoftheeffectoffracturesonsubsurfacefluid flowandbyasignificantandeverincreasingpercentageofoilandgasdis- coverieswherenaturalfracturesplayasignificantroleinproduction. Fracturedreservoirspossessmanyinherentobstaclestoproperanalysisdue todifficultiesinprediction,evaluation,andcharacterization,butpossess verypositiveattributesaswell.Severalobstaclesstemfrom: 1.Agenerallackofin-depthquantitativeapproachestodescriptionand characterizationofhighlyanisotropicreservoirs. 2.Failureofgeologistsandengineerstorecognizefracturesand/orthe regularityoftheirdistribution. 3.Over-simplisticapproachesinthedescriptionoffracturedistributions andmorphologies.4.Theneedforadeterministicsolutiontomodelingfluidflowinfrac- turedporousmedia,whileunderstandingthatourdatalimitations forceustowardstochasticsolutions,atbest. Theseobstaclesarecompoundedbytheimproperuseornonuseofthe manytechniquesavailabletodetectnaturalsubsurfacefractures.While mostofthesetechniquesdowork,seldomaretheysignificantbythem- selves,andoftentheymayevencloudtherealissuesofevaluation. Remember: Finding fracturesisnotenough. Detectingsubsurfacefracturesorpredictingtheiroccurrenceisindeed onlythefirst,mostbasicstepinfullyevaluatingafracturedreservoir.The keytoeconomicallyproducingthesereservoirsliesin: 1.Evaluatingrecoverablereservesasafunctionofwellcosts. 2.Predictingoptimumwelllocationsandwellperformancewithtime underavarietyofpotentialcompletionanddevelopmentscenarios. EvaluatingFracturedReservoirs:Introduction3 3.Obtainingsufficientrockandfracturedatatomakethesecalculations possible. Ingeneral,thisbookwillemphasizetechniquesaddressingthelasttwo keyissues.Thebookwillshowthebreadthof rockdataandproductiondata thatcanbeusedinevaluatingfracturedreservoirs.Thesedataarerequired toaddressallof theseissuesatvarioustimesduringthehistoryof thefield. Therefore,thismaterialshouldbeconsideredthedatabasenecessaryto makethemajoreconomicandengineeringdecisionsatvariousdecision pointsfromexploration,toproduction,toharvest.Whilesomeof thisdatais notfullyuseduntillatertimesduringfieldhistory,muchofthestatic(ver- susdynamic)datacanonlybeobtainedearly,inworkinglifewiththefield. Def i ni t i ons Theword"fracture"hasbeendefinedinvariousways.Somedefinitions arepurelydescriptive(Dennis,1967)whileothersaremechanical(Ranalli andGale,1976).Therangeindefinitionsgenerallyreflectsthedifferentin- terestsoftheauthors.Becausethisbookaddressestheeffectnaturallyoc- curringfractureshaveonreservoirrock,thedefinitionwillberestricted heretoareservoircontext. Areservoir fractureisanaturallyoccurringmacroscopicplanardiscon- tinuityinrockduetodeformationorphysicaldiagenesis.If relatedtobrit- tlefailure,itwasprobablyinitiallyopen,butmayhavebeensubsequently alteredormineralized.Ifrelatedtomoreductilefailure,itmayexistasa bandofhighlydeformedcountryrock.Asaresult,naturalreservoirfrac- turesmayhaveeitherapositiveornegativeeffectonfluidflowwithinthe rock.Thisbroaddefinitionallowsthistexttoaddressfluidflowanisotropy createdbynumerousfeaturesregardlessofanymechanicaldifferencesin theirgenerationandpropagation(extensionversusshear,mode1versus mode2,fractureversusmicrofault,etc.).Thisdefinitionalsomakesitpos- sibletotreateffectsof variousfracturemorphologiesonfluidflow.Forex- ample,onecanlookattheeffectofhighlypermeableopenfractureson reservoirbehavior,butcanalsoconsiderthestronganisotropyinrockper- meabilitycreatedbylow-permeabilitydeformedfractures. Thedefinitionof a reservoirfractureisabroadone,andthedefinitionof a"fracturedreservoir"evenmoreso.Becausenaturalfracturesystemscan haveavarietyofeffectsonreservoirperformanceinprimary,secondary, andtertiaryrecovery,andbecausetheseeffectsmustoftenbepredicted longbeforetheyareevidencedinproductiondata,anoperationaldefinition ofafracturedreservoirbecomesanecessity.Afracturedreservoirisde- finedasa reservoir in whichnaturallyoccurringfractureseither have,or are 4Geologic AnalysisofNaturallyFracturedReservoirs predictedtohave,asignificanteffectonreservoirfluidfloweitherinthe formofincreasedreservoirpermeabilityand/orreservesorincreasedper- meabilityanisotropy.Thequalifier,or"arepredictedtohaveasignificant effect,"isimportantoperationallybecausethedatanecessarytoquantifya fracturedreservoirmustbecollectedveryearlyinthelifeof areservoir.We must often,therefore,predictthe"significanteffect"andtreat theformation asafracturedreservoirpriortotruesubstantiationbyproductionhistory. THEEVALUATI ONSEQUENCE Theremainderof thischapterpresentsthecriticalattributesthatmustbe evaluatedtoquantifyfracturedreservoirsinalogical,workablesequence: origin,properties,fracture/matrixinteraction,reservoirtypingand,eventu- ally,wellplacementandcompletion. BASI C TYPESOFEVALUATI ON Explorationandproductioncannotbeseparatedfromevaluationinfrac- turedreservoirs.Itisofparamountimportancetoknowwhatwearelook- ingforandwhatwehavefoundintermsofreservoirproperties.Thereare threebasictypesof evaluationtobeaddressedinfracturedreservoiranaly- sis(Nelson,1982).Theyarelistedinorderofincreasingcomplexity, amountofdata,andtimetocompletion: I.Earlyexplorationevaluationstodetermineorpredictgrossreservoir quality. 2.Evaluationsofeconomicpotential(reserves,flowrates,etc.). 3.Evaluationsforrecoveryplanninganddetailedreservoirmodeling. Thesearedistinctlydifferenttypesofevaluation,requiringvarious amountsofbothqualitativeandquantitativedata.Theywereperformedin thepastatdifferenttimeswithinthehistoryofafieldorprospect.Today, however,workcyclesintheindustryaremuchmorecompressed, forcing ustoaddresssomeofthemoredetailedmodelingaspectsearlyinthe "prospectphase." EvaluatingFracturedReservoirs:Introduction5 EarlyExplorationEvaluations Economically, themostfrequentandoftenmostcriticalfractureevalua- tionisthatperformedearlyintheexplorationphaseof ahydrocarbonplay. Thepurposeistobetter definethepropertiesof interestandtodetermineor predictthegrossreservoirqualityofadiscovery.Theseevaluationsonly dealwithageneralknowledgeofthestructureandstratigraphicsequence (petrophysicalandmechanicalattributes),logsuitesthatarenotdesigned specificallyfornaturalfractureevaluation,andminimalcoreandwell-test data.Evaluationsperformedatthistimearequalitativeatbest,andare probablymorelikespeculationsthantrueevaluations. However,theseevaluationsoftenwill"makeorbreak"aplayinits drillinginfancy.Forexample, coresfromanearlywellcuttingintothe CambriansectioninAmalFieldinLibyawouldhaveshownapermeable fracturesystemwithnosignificantrockmatrixcontributiontoreservoir floworstorage(fracturedreservoirType1,seeChapter2).Becauseweare alwaysskepticalofsuchreservoirs,extremecautionwouldhavebeenad- vised,includingthepossibilityofabandoningtheplay.However, knowl- edgethatthefracturesystempresentisfold-related(tectonicinorigin)and should,therefore,bedevelopedovertheentire100,000acresofstructural closure,andthattheentirequartzitepackage,whichis800ft.thick,and shouldfractureasaunit,wouldhaveallowedworkerstopredicttheenor- mouspotentialofthisdiscovery(1,044millionbarrelsofoil[MMBO]).Theearlyexplorationevaluationdatamostoftenusedare: 1.Generalgeological/ geophysicaldataonstructuralforms. 2.Agoodlithologicdescriptionofthestratigraphicsection. 3.Mechanicaldataontheparticularrocksofinterestoronsimilar lithologies. 4.Matrixpropertiesfromlogsorasinterpretedfromnearbyareas. 5.Drillstemtest(DST)orinitialpotential(IP)flowrates. 6.Coreanalysis(standardorwholecore). 7.Boreholeimaginglogs. 8.Insitustressdata. EvaluationsofEconomicPotential Afterithasbeenproventhatfracturesareanintegralportionofthetotal reservoirqualityandmorequantitativedataareavailable,evaluationsof 6Geologic AnalysisofNaturallyFracturedReservoirs economicpotentialaremade.Thepurposeistoestimatereservesandflow ratestomoreaccuratelydeterminethepotentialworthofthereservoir. Estimatesoffracturespacingandwidthbecomemoreimportantaswell asknowledgeoffracture-matrixporosityinteraction.Alsoimportantare laboratoryestimatesofrelativeflowwithinfracturesandmatrixatsimu- lateddepth. Inadditiontoearlyexplorationdata,otherinformationshouldinclude: 1.Extendedtimepressuretests. 2.3-Dwhole-corepermeabilityanalyses(orientedif possible),borehole imaginglogs. 3.Laboratorydataonmatrixandfracturepropertiesundersimulated depthanddepletionconditions. 4.Estimationsoffracture/matrixinteraction. EvaluationsforRecoveryPlanningandModeling Duringfulldevelopmentofamajorfield,severaldepletionschemes mustbeevaluatedtooptimizerecoveryand/oreconomicfactors.Anim- portanttoolisreservoirmodeling:usingcomputer-assistedmathematical modelstoinvestigatecompositionalbehaviorandrelativeflowratesunder zhangingreservoirpressureandtemperatureconditions.Increatingsuch modelsforfracturedreservoirs,themostdetailedquantitativefracture analysesarerequired.Theseinvolvenotonlystatisticalanalysesoffracture propertiesandpatterns,butalsodetailedknowledgeof3-Ddistributionsof fractureswithinthereservoir.Thisrequiresafoot-by-footdescriptionand Jocumentationofnumerouscoresandorimagelogs.Suchin-depthanaly- sesarecostlyandtimeconsuming, andaredeemedappropriateinonlythe larger,complicatedreservoirs. Thetypesofdatamostoftenusedinrecoveryplanningevaluationsare: 1.Detailedstructuremapscoveringseveralhorizonsaboveandbelow theproducingformation. 2.Detailedcoredescriptionsincludinglithology,mineralogy,textures, andafoot-by-footdocumentationoffractureoccurrence,orientation, andmorphology. 3.Interpretedboreholeimagerylogsinallwells,especiallythosethat areuncored. 4.3-Dwhole-coreanalyseswithatleastoneorientedcoreinthefield. 5.Mechanicaldataderivedfromcoresamplesofinterest. EvaluatingFracturedReservoirs:Introduction7 6.Long-termflowtestsandmultiplewelltests. 7.Estimationofinitialinsitustressstateinthereservoir. 8.Laboratorydataonbothmatrixandfracturepropertiesundersimu- lateddepthanddepletionconditions. 9.Laboratorydataonfracture/matrixinteraction. GE NE RALSEQUENCEOFSTUDY Theorderofinvestigationinfracturedreservoirsisimportantinthat studycanbesuspendedatanytimeifthereservoirqualityappearstobe poor.If,for example, thefracturenetworkinitially detectedwasinterpreted, becauseoftheorigin,tobeoflimitedaerialextent,furtherevaluationand data generationmay beconsideredunnecessary.Thenextthreesectionsdis- cussthefirstthreephasesofthisevaluationsequence.Thefourth (Classificationof Reservoir Type)andfifth(OptimumLocationsandPaths) phaseswillbediscussedinlaterchapters. FRACTURESYSTEMORI GI N Theoriginofthefracturesystemispostulatedfromdataonfracturedip, morphology,strike(ifavailable),relativeabundance, andtheangularrela- tionshipsbetweenfracturesets.Thesedatacanbeobtainedfromfull-diam- etercore(orientedorconventional),boreholeimaginglogoutput,orother lessorientedloggingtools,andappliedtoempiricalmodelsof fracturegen- eration.Availablefracturemodelsrangefromtectonictoothersofprima- rilydiageneticorigin(StearnsandFriedman, 1972;andNelson,1979).Itis onlybyaproperfitof fracturedatatooneofthesegeneticmodelsthatany effectiveextrapolationorinterpolationof fracturedistributioncanbemade. Theinterpretationoffracturesystemorigininvolvesacombinedgeo- logical/rockmechanicsapproachtotheproblem.Itisassumedthatnatural fracturepatternsdepictthelocalstateofstressatthetimeof fracturing,and thatsubsurfacerocksfractureinamannerqualitativelysimilartoequiva- lentrocksinlaboratorytestsperformedatanalogousenvironmentalcondi- tions.Naturalfracturepatternsareinterpretedinlightof laboratory-derived fracturepatterns(HandinandHager,1957)andintermsofpostulated 8Geologic AnalysisofNaturallyFracturedReservoirs paleo-stressfieldsandstraindistributionsatthetimeof fracturing.Ingen- eral,anyphysicalormathematicalmodelof deformationthatdepictsstress orstrainfieldscan,byvariouslevelsof extrapolation,beusedasafracture distributionmodel(Hafner,1951 ; OdE,1957;andLorenzandothers,1993). Ageneticclassificationschemefornaturalfracturesystems,whichisan expansionof thatfoundinStearnsandFriedman(1972),permitsseparation ofcomplicatednaturalfracturesystemsintosuperimposedcomponentsof differentorigin.Suchpartitioningcanmakedelineationofstructure (Friedman,1969;andFriedmanandStearns,1971)andpredictionofin- creasedfracture-relatedreservoirquality(McCalebandWillingham,1967; andStearnsandFriedman,1972)fromfracturedatamoretractable.Stearns andFriedman(1972)classify fracturesintothoseobservedinlaboratoryex- perimentsandthoseobservedinoutcropandsubsurfacesettings.Their classificationscheme,togetherwithmodificationssuggestedbythisbook, formsausefulbasisforfracturemodels(Table1-1).Themajormodifica- tiontoStearns' andFriedman' sschemeistheadditionof twocategoriesof naturallyoccurringfractures:contractionalfracturesandsurface-related fractures.Aminormodificationtotheexperimentalfractureclassification istheadditionofacategorysimilartoextensionfracturesinmorphology andorientation,buthavingadifferentstressstateatgenerationandrock strength:tensionfractures. Tabl e1 - 1E x per i ment al andNat ur al Fr act ur eCl assi f i cat i on ExperimentalFractureClassification 1.Shear fractures 2.Extensionfractures 3.Tensilefractures NaturallyOccurringFractureClassification 1.Tectonicfractures(duetosurfaceforces) 2.Regionalfractures(dueto surfaceforcesor bodyforces) 3.Contractionalfractures(duetobodyforces) 4.Surface-relatedfractures(duetobodyforces) EvaluatingFracturedReservoirs:Introduction9 Gener i cCl assi f i cat i on Threefracturetypesareobservedtoformatconsistentandpredictable anglestothethreeprincipalstressdirectionsduringlaboratorycompres- sion,extension,andtensiletests.Allbrittlefractureinrockmustconform tooneofthesebasicfracturetypes:shear,extension,andtensionfractures. ShearFractures Shearfractureshaveasenseofdisplacementparalleltothefracture plane.Theyformatsomeacuteangletothemaxi mumcompressiveprinci- palstressdirection(cy~) andat anobtuseangletothemi ni mum compressive stressdirection(cy3)withintherocksample.Potentially,twoshearfracture orientationscandevelopineverylaboratoryfractureexperiment, oneonei- thersideof,andorientedatthesameangleto,cy~. Inlaboratoryexperi- ments,thesefracturesformparallelto(3"2andatanobtuseangletocy3 (Figure1-1).Shearfracturesformwhenallthreeprincipalstressesare compressive(compressivestressesareconsideredpositiveforthiswork). Theacuteanglebetweenshearfracturesiscalledtheconjugateangleandis dependentprimarilyon: 1.Themechanicalpropertiesofthematerial. 2.Theabsolutemagnitudeofthemi ni mumprincipalstress(c~3). 3.Themagnitudeof theintermediateprincipalstress(cy2) relativetoboth themaxi mum(cy l)andmi ni mum(cy3)principalstresses(asG2ap- proachesc~ ltheanglebetweenc~andthefractureplanedecreases). o"1 A O"2 0"3~~O"3 0" 1 Figure1-1.Potential fractureplanesdevelopedinlaboratorycompressiontests. Extension fractures(A)and shear fractures(B and C) are shown. 10Geologic AnalysisofNaturallyFracturedReservoirs ExtensionFractures Extensionfractureshaveasenseofdisplacementperpendiculartoand awayfromthefractureplane.Theyformparalleltocy~ and(Y2 andperpen- diculartoo 3 (Figure1-1).Thesefracturesalsoformwhenallthreeprinci- palstressesarecompressive.Inlaboratoryfractureexperiments, extension fracturescanandoftendoformsynchronouslywithshearfractures. TensionFractures Tensionfracturesalsohaveasenseof displacementperpendiculartoand awayfromthefractureplaneandformparalleltocy~ ando 2.Intermsof ori- entationofcy~andsenseofdisplacement, thesefracturesresembleexten- sionfractures.However,toformatensionfracture,atleastoneprincipal stress(cy3)mustbenegative(tensile).Toformanextensionfracture,all threeprincipalstressesmustbepositive(compressive).Thedistinctionbe- tweenthetwoisimportantbecauserockshaveamuchlower(10to50times lower)fracturestrengthintensionteststhantheydoinextensiontests.This becomesimportantinmathematicalpredictionofsubsurfacefracturing. Also,itislikelythattruetensilefracturesonlyoccurinnearsubsurfaceen- vironment,whileextensionfracturescanoccurinalllowmeanstresssub- ~urfaceconditions.Ingeneral,Iwillcallextensionfracturesthosethatare paralleltooI andperpendiculartoo 3 wheno 3 iscompressive(positive)or whenitssignisunknown;tensilefractureswillbereferredtoonlywhenev- idencesuggestso 3 isnegative. Geol ogi cCl assi f i cat i on ThegeneticnaturalfractureclassificationpresentedinSteamsand Friedman(1972)andexpandedhereisbuiltontwofundamentalassumptions: 1.Naturalfracturepatterns(conjugateshearandextensionortensile fractures)faithfullydepictthelocalstateofstressatthetimeoffrac- turing. 2.Subsurfacerocksfractureinamannerqualitativelysimilartoequiva- lentrocksinlaboratorytestsperformedatanalogousenvironmental conditions. Thus,weassumethatnaturalfracturepatternsreflectthesamegeometry withrespecttoappliedloadsasdofracturesgeneratedinlaboratoryexper- EvaluatingFracturedReservoirs:Introduction11 iments.Iftheseassumptionsarecorrect,thennaturallyoccurringfractures canbeclassifiedonthebasisoftheoriginoftheircausativeforcesasde- terminedfromlaboratorydataandfracturesystemgeometry(Table1-1). Therefore,thisclassificationreliesheavilyonthepreviouslypresentedex- perimentalorgenericfractureclassification. Therearetwoschoolsofthoughtonthebestmeanstoobserveandde- scribecomplexnaturalfracturesystemsinoutcrop.Oneassumesthatfrac- turedatamustbehandledstatisticallytobemeaningful.Thus,by combininglargeamountsof datafrommanyoutcropstogetherandsearch- ingforpreferredorientations,it isbelievedthatobjectivityininterpretation canbeobtained(CurrieandReik,1977).Whilethiscombiningofdatais necessaryatsomestageof afracturestudy,Ibelievethisapproachtobein- efficient dueto the greatlossof interpretiveprecisionwhendataarelumped togetherpriortointerpretation.Forexample,anorientationplotcontaining 10,000fracturemeasurementsfrommanyplacesonafoldwilldisplay grosstrendsinthedatabutwillnotallowdescriptionofsubtlechangesin orientationandinferredstressstatesfromoutcroptooutcrop. Asecondapproachinvolvestheinterpretationofindividualoutcropdata withrespecttothemodeof originpriortostatisticaltreatment(Stearnsand Friedman,1972).Theseinterpreteddatasetscanthenbeaddedtogetherse- quentiallytoarriveatacombineddescription.Thecombineddatasetwill havemorestatisticalmeaningandisalsomoreeasilyinterpretedforstress analysisduetopriorinterpretationofthestatisticallylesssignificantindi- vidualdatasets. Thisapproachtofractureinterpretationnecessitatestheuseofagenetic naturalfractureclassificationsuchasthatusedinthisbook.Determining theoriginofloadsthatcausedfracturingattheoutcropscaleincreasesthe precisionof structuralinterpretationonallscales.Thiscanbeaccomplished becausefracturesforminaconsistentgeometrywithrespecttothethree principalstressdirections,thusdelineatingthepaleo-stressfieldatthetime of fracture(comparefigures1-Iand1-2). Thegeologicclassificationdescribedbelowhasimportantramifica- tionstopervasiveness, orthedegreetowhichthefracturesystemisde- velopedovermultiplescalesofsize.Forexample,tectonicfractures relatedtofoldingarepervasivebecausethesamefracturetypesandori- entationsareseenfromaerialphotographsoftheoutcrop,tohandsam- plesfromtheoutcrop,tothinsectionstakenfromtheoutcroporcore.On theotherhand,regionalfracturesarenonpervasivebecausetheycanusu- allybeseenononlyalimitednumberof scales,i.e.,downtooutcropscale only.Ageneralizationof thepervasivenessof thevariousgeologicalclas- sificationsisgiveninTable1-2. 12Geol ogi cAnal ysi sofNatural l yFracturedReservoi rs Table1 - 2ScalesofNaturalFractureDevel opmentfortheGeol ogi cCl assi fi cati on OrdersofMagnitudeinSizeSpanned TectonicFractures RegionalFractures ContractionalFractures Surface-RelatedFractures 9-10Orders 5 2 4-5 Figure 1-2aProbableconjugateshear fracturesin outcrop fromTnnJdad, courtesy ofSSerra andD.BFello. Figure1-2bConjugatefold-relatedfracturesexpressedonabeddingplaneincarbonate rocks~n theWesternWyomingThrustBeltFieldofvIewisabout3ft.PhotocourtesyofS. Serra EvaluatingFracturedReservoirs:Introduction13 Tectoni cFractures Tectonicfracturesarethosewhoseorigincan,onthe basisof orientation, distribution,andmorphology,beattributedtoorassociatedwith alocaltec- tonicevent.Theyareformedbytheapplicationofsurfaceforces.Thisau- thorhasobservedthatthemajorityoftectonicfracturesinoutcroptendto beshearfractures.However,locallyIhaveseenexamplesof foldsincom- pressiveenvironmentswherethedeformationisdominatedbyextension fractures.Tectonicfracturesforminnetworkswithspecificspatialrelation- shipstofoldsandfaults. Fault-Related FractureSystems Faultplanesare,bydefinition,planesofshearmotion.Themajorityof fracturesdevelopedin the vicinity of faultsareshear fractures parallelto the fault,shearfracturesconjugatetothefault,orextensionfracturesbisecting theacuteanglebetweenthesetwosheardirections(thezoneof faultslipor gougeiscomplex,andhasitsowninternaldeformationmorphology). Thesethreeorientations(Figure1-3)correspondtothethreepotentialfrac- turedirectionsduringlaboratoryfractureexperiments(Figure1-1)andare developedrelativetothelocalstateofstresscausingthefault.Thefaultis a result of the samestressfield that causedthe fractures.Thefractureswarm predatesthe through-goingfaultandactsasaprocesszoneconditioningthe rockmassfortheeventualfaultoffset.Therearecaseswherelarge-scale slipdidnotoccur,leavingonlytheprecursivefractureswarm.Inthese cases,theorientationof theswarmitself,aswellastheinternalfractureori- entationsareneededtoascribeafault-relatedorigin.Severalauthorshave notedanddocumentedthefault-fracturerelationship:Stearns(1964), Yamaguchi(1965),Norris(1966),Stearns(1968a,1968b,1972),Skehan (1968),Friedman(1969,1975),TchalenkoandAmbraseys(1970),Stearns andFriedman(1972),andFreund(1974). Becauseoftherelationshipbetweenfaultingandfracturing,itispossi- bletodeterminethedirectionoftheprincipalstressesorloadsatthetime offormation.Also,knowingtheorientationofafaultplaneandthefrac- turesassociatedwithit,thesenseofmovementofthefaultcanbedeter- mined(Figure1-4).Therelationshipoffracturestofaultsexistsonall scales.Indeed,Friedman(1969)wasabletousetheorientationofmicro- scopicfracturesfromorientedcoresintheSaticoyFieldofCaliforniato determinetheorientationanddipof anearbyfault.Anoutcropexampleof fracturesassociatedwithanormalfaultintheSinaiinEgyptisshownin Figure1-5. 14GeologicAnalysisofNaturallyFracturedReservoirs THEORETICAL POSITION OFFAULT CONJUGATE ,~..,'~o IFORFAULI T \ \ \ \ ATTITUDE OFFAULT MEASURED INFIELD O lFigure1-3Rose diagram ofshearfracturesassociated w~th normal defaultAfterStearns (1968b) ~! AC o l A&C I d e a l i z e d f r a c t u r e pa t t e r n 02060~0B0 f or n o r ~l f a u l t s ande x t e n - AnEl ec ot ea x l e t o f r a c t u r e pl ane s i v a p a r t of f ol d~3 i e lAkC Gh I d e a l i z e d f r a c t u r e pa t t e r nf o r r ev er s ef a u l t and020406080 compr essi vepa r t of 8f o l d Ansl ec or ea x i s t o f r a c t u r e pl ane Q! ,(c Or i e n t a t i o n of s t r e s s I d e a l i z e d f r a c t u r e pa t t e r n 020406080 f i e | d e vhent hev a r i o u s f o r r ev er s ef a u l t AnBl ecor ea x l e t o f r a c t u r e pl ane St oupsof f a u l t s v e r ei n i t i a t e dFigure1-4Relattonshtps between stress states, thefaultandfractureonentationsdenved from those stressstates, andtheresultant diph~stograms subsequentlyobtainedfromcore analysesAfterPrice (1966) andFriedman (1969), courtesyofPergamon Press, Ltd., and the American AssociationofPetroleum Geologists (AAPG) Eval uat i ngFr act ur edReser voi r s: I nt r oduct i on15 Fi gure1-5A normalfault~n theM~ocene clast~c sectionof theGulfofSuez.Thefaultts downto theright(west)andoccursontheS~na= sideof theGulf.Thewidthof theoutcropis about100ft. Note theconjugateshear andextensionfractures~n the footwall(left s=de) of the fault. Thesepre- datedthefaultdisplacementandarerelatedtothesamestressstatethatcausedthefault. While,underidealconditions,itisnowpossibletodeterminetheorienta- tionandsenseof displacementof anearbyfaultbytheanalysisof fractures, itisdifficulttodeterminetheproximityofthefault(Skehan,1968;Pohn, 1981;Shepherdandothers,1982).Theintensityoffracturingassociated withfaultingappearstobeafunctionoflithology,distancefromfaultplane, amountofdisplacementalongthefault,totalstrainintherockmass,depth of burial,andpossiblythetypeof fault(thrust,growth,etc.).Whichof these parameterswilldominatefractureintensityvariesfromfaulttofault. Thereareotherlessfrequentfractureorientationsassociatedwithfault- ingofvariousscales.Onegroupof grain-sizedfracturesoccursatacutean- glestothefaultplaneandiscalledmicroscopicfeatherfractures(Friedman andLogan,1970),Conrad(1974)relatesthesetodisplacementalongthe faultandthenormalstressacrossthefaultplane.Whilethesefeatherfrac- turesareimportantindeterminingafaultingoriginandinmicroscopicex- aminationoffaultplanesforthesenseofshearmotion,theirimportancein macroscopicfractureproductionofhydrocarbonsisprobablyminimal. Otherfracturesassociatedwithfaultsoccurwithintheslipzoneitself. Thesereflectcomplexandchangingstressandstrainstatesinherentinthe slipzoneormylonitezoneitself.Adescriptionofthesecanbefoundin Higgs( 1981).