36
Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids, Structures and Materials Department of Aerospace Engineering and Engineering Mechanics The University of Texas at Austin

Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Embed Size (px)

Citation preview

Page 1: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Graphene: Continuum Mechanics and Atomistic Modeling

Rui Huang

Center for Mechanics of Solids, Structures and Materials

Department of Aerospace Engineering and Engineering Mechanics

The University of Texas at Austin

Page 2: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Acknowledgments

� Qiang Lu (postdoc)

� Wei Gao (graduate student)

� Zachery Aitken (undergraduate student, now at Caltech)

� Prof. Marino Arroyo (Spain)

� Prof. Li Shi (UT/ME)

� Funding: NSF (ARRA)

Page 3: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

From Wikipedia:

Graphene is a one-atom-thick planar sheet of sp2-bonded carbon

atoms that are densely packed in a honeycomb crystal lattice. The term

Graphene was coined as a combination of graphite and the suffix -ene

by Hanns-Peter Boehm, who described single-layer carbon foils in

1962. Graphene is most easily visualized as an atomic-scale chicken

wire made of carbon atoms and their bonds.

Page 4: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Graphene Based Devices

Garcia-Sanchez, et al., 2008.

Suspended nanoribbons for NEMS devicesPatterned graphene on oxide for bipolar

p-n-p junctions

Ozyilmaz et al., 2007.

Page 5: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Mechanical properties of monolayer graphene

• High in-plane stiffness

• High tensile strength

• High bending stiffness (relative to its own weight)

� Isotropic, linearly elastic under infinitesimal deformation

� Anisotropic, nonlinear under finite deformation

� Graphene nanoribbons: edge effects? size dependent?

� Substrate-supported graphene: adhesive interactions?

Page 6: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Nonlinear Continuum Mechanics of 2D Sheets

2D-to-3D deformation gradient:

In-plane deformation: 2D Green-Lagrange strain tensor

Bending: 2D curvature tensor (strain gradient)

d d=x F X

X1

X2

x1

x3x2

J

iiJ

X

xF

∂=

( )JKiKiJJK FFE δ−=2

1

2

iI iIJ i i

J I J

F xn n

X X X

∂ ∂Κ = =

∂ ∂ ∂

Strain energy (hyperelasticity): ( )∫ Φ=A

dAU ΚE,

Lu and Huang, Int. J. Applied Mechanics 1, 443-467 (2009).

Page 7: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

2D Stresses and Moments

2nd Piola-Kirchoff stress and moment

(work conjugates)

Tangent moduli:

IJ

IJE

S∂

Φ∂=

IJ

IJMΚ∂

Φ∂=

KLIJKL

IJIJKL

EEE

SC

∂∂

Φ∂=

∂=

2

KLIJKL

IJIJKL

MD

Κ∂Κ∂

Φ∂=

Κ∂

∂=

2

KLIJIJ

KL

KL

IJIJKL

EE

MS

Κ∂∂

Φ∂=

∂=

Κ∂

∂=Λ

2Intrinsic coupling between

tension and bending

Κ

Κ

Κ

ΛΛΛ

ΛΛΛ

ΛΛΛ

+

=

12

22

11

333231

232221

131211

12

22

11

333231

232221

131211

12

22

11

22 d

d

d

dE

dE

dE

CCC

CCC

CCC

dS

dS

dS

ΛΛΛ

ΛΛΛ

ΛΛΛ

+

Κ

Κ

Κ

=

12

22

11

332313

322212

312111

12

22

11

333231

232221

131211

12

22

11

22 dE

dE

dE

d

d

d

DDD

DDD

DDD

dM

dM

dM

An incremental form of

the generally nonlinear

and anisotropic behavior:

Lu and Huang, Int. J. Applied Mechanics 1, 443-467 (2009).

Page 8: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Units for 2D quantities

( )ΚE,Φ strain energy density function: J/m2

IJ

IJE

S∂

Φ∂= 2D stress: N/m

KLIJKL

IJIJKL

EEE

SC

∂∂

Φ∂=

∂=

2

2D in-plane modulus: N/m

IJ

IJMΚ∂

Φ∂= moment intensity: (N-m)/m

KLIJKL

IJIJKL

MD

Κ∂Κ∂

Φ∂=

Κ∂

∂=

2

bending modulus: N-m

KLIJIJ

KL

KL

IJIJKL

EE

MS

Κ∂∂

Φ∂=

∂=

Κ∂

∂=Λ

2

coupling modulus: N

�Analogous to the 2D plate/shell theories (but no thickness).

Page 9: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

(n,n): armchair

(n,0): zigzag

(2n,n)

αααα

Atomistic Modeling of Graphene

• 2nd-generation REBO potential (Brenner et al., 2002)

– Bond angle effect (second-nearest neighbors)

– Dihedral angle effect (third-nearest neighbors)

– Radical energetics (defects and edges)

• Molecular Mechanics: energy minimization for static equilibrium states.

• Stress and moment calculations

– Energy derivation

– Virial stress calculations

– Direct force evaluation

Page 10: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

0 0.05 0.1 0.15 0.2 0.25 0.3−7.5

−7

−6.5

−6

Nominal strain ε

En

erg

y (

eV

)

A

B

C

D

Uniaxial Stretch of Monolayer GrapheneE

ner

gy p

er a

tom

(eV

)

Lu and Huang, Int. J. Applied Mechanics 1, 443-467 (2009).

0 0.05 0.1 0.15 0.2 0.25 0.30

5

10

15

20

25

30

35

40

Nominal strain ε

No

min

al str

ess P

11 (

N/m

)

α = 0 (zigzag)

α = 10.89o

α = 19.11o

α = 30o (armchair)

A

C D

B

εε

d

dP

Φ=)(11

Nominal stress-strain

relation:

Page 11: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Anisotropic tangent moduli

0 0.05 0.1 0.15 0.2 0.25 0.3−30

−20

−10

0

10

20

30

Green−Lagrange strain E11

C3

1 (

N/m

)

(n,n): armchair

(n,0): zigzag

(2n,n)

αααα

Graphene is linear and isotropic under

infinitesimal deformation, but becomes nonlinear

and anisotropic under finite deformation.

Coupling between

tension and shear

0 0.05 0.1 0.15 0.2 0.25 0.3−50

0

50

100

150

200

250

300

350

C11 (

N/m

)

α = 0 (zigzag)

α = 10.89o

α = 19.11o

α = 30o (armchair)

0 0.05 0.1 0.15 0.2 0.25 0.3−50

0

50

100

150

C21 (

N/m

)

=

12

22

11

333231

232221

131211

12

22

11

2dE

dE

dE

CCC

CCC

CCC

dS

dS

dS

Lu and Huang, Int. J. Applied Mechanics 1, 443-467 (2009).

Page 12: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Fracture strength under uniaxial stretch

0 0.05 0.1 0.15 0.2 0.25 0.30

5

10

15

20

25

30

35

40

Nominal strain ε

Nom

inal str

ess P

11 (

N/m

)

α = 0 (zigzag)

α = 10.89o

α = 19.11o

α = 30o (armchair)

Nom

inal fr

actu

re s

train

0 5 10 15 20 25 300.1

0.2

0.3

0.4

0 5 10 15 20 25 3030

32

34

36

Chiral angle (degree)

Nom

inal fr

actu

re s

tress (

N/m

)

02

2

=∂

Φ∂=

εε

PFracture occurs as a result of

intrinsic instability of the

homogeneous deformation:

� The nominal stress and strain to fracture depend on the direction

of uniaxial stretch.Lu and Huang, Int. J. Applied Mechanics 1, 443-467 (2009).

Page 13: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Monolayer graphene under uniaxial tension

0 0.05 0.1 0.15 0.2 0.25 0.30

10

20

30

40

Nominal strain

Nom

inal 2D

str

ess (

N/m

)

zigzag (MM/REBO)

armchair (MM/REBO)

zigzag (Wei et al., 2009)

armchair (Wei et al., 2009)

0 0.05 0.1 0.15 0.2 0.25 0.30

100

200

300

400

Nominal strain

2D

Young's

modulu

s (

N/m

)

zigzag (MM/REBO)

armchair (MM/REBO)

zigzag (Wei et al., 2009)

armchair (Wei et al., 2009)

• Disagreement: the REBO potential underestimates the initial

Young’s modulus.

• Agreement: the fracture stress/strain is higher in the zigzag

direction than in the armchair direction.

Page 14: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Bending Modulus of Monolayer Graphene

0 0.5 1 1.5 2 2.5 30

0.05

0.1

0.15

Bending curvature (1/nm)

Str

ain

en

erg

y p

er

ato

m (

eV

/ato

m)

B1, armchair

B1, zigzag

B2, armchair

B2, zigzag

B2*, armchair

B2*, zigzag

0 0.5 1 1.5 2 2.50

0.05

0.1

0.15

0.2

0.25

Bending curvature (1/nm)

Bendin

g m

odulu

s (

nN

−nm

)

B1, armchair

B1, zigzag

B2, armchair

B2, zigzag

B2*, armchair

B2*, zigzag

• Bending moment-curvature is nearly linear, with slight

anisotropy.

• Including the dihedral angle effect leads to higher

bending energy and bending modulus.

Lu, Arroyo, and Huang, J. Phys. D: Appl. Phys. 42, 102002 (2009).

Page 15: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

0 0.5 1 1.5 2 2.50

0.05

0.1

0.15

0.2

0.25

Bending curvature (1/nm)

Bendin

g m

odulu

s (

nN

−nm

)

B1, armchair

B1, zigzag

B2, armchair

B2, zigzag

B2*, armchair

B2*, zigzag

Effect of dihedral angle

i

j

k

l

θθθθijk

θθθθjil

θθθθq4

θθθθq2θθθθq1

θθθθq3

ΘΘΘΘq3

ΘΘΘΘq4ΘΘΘΘq1

ΘΘΘΘq2

Lu, Arroyo, and Huang, J. Phys. D: Appl. Phys. 42, 102002 (2009).

)()( ijAijijRij rVbrVV −=

RC

ij

DH

ijjiijij bbbb Π+++= −− )(21 πσπσ

( )[ ]∑≠

Θ−=),(,

20 )()(cos12 jilk

jlcikcijkl

DH

ij rfrfT

b ijljikijkl nn ⋅=Θcos

Page 16: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Physical Origin of Bending Modulus

Bending modulus of a thin elastic plate:

For monolayer graphene, bending moment and

bending stiffness result from multibody interatomic

interactions (second and third nearest neighbors).

• D = 0.83 eV (0.133 nN-nm) by REBO-1

• D = 1.4 eV (0.225 nN-nm) by REBO-2

• D = 1.5 eV (0.238 nN-nm) by first principle

0 0( ) 14

2 3

ijA

ijk

bV r TD

σ π

θ

− ∂= − ∂

3~ Ehd

dMD

κ= h

Lu, Arroyo, and Huang, J. Phys. D: Appl. Phys. 42, 102002 (2009).

Page 17: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Coupling between bending and stretching

0 0.005 0.01 0.015 0.020.113

0.114

0.115

0.116

0.117

0.118

Strain ε = R/R0 − 1

Str

ain

energ

y p

er

ato

m (

eV

/ato

m)

R

Lu, Arroyo, and Huang, J. Phys. D: Appl. Phys. 42, 102002 (2009).

( ) ( ) ( ) 2200

20

2

1

2

1

2

1, εκκσεκκκεκ CDMDW +−++−+≈

� The tube radius increases upon

relaxation, leading to simultaneous

bending and stretching.

nm 397.00 =R

Page 18: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

AIREBO vs REBO

AIREBO: Adaptive intermolecular REBO potential (Stuart et al.

2000); implemented in LAMMPS.

• Add a LJ term for long-range weak interactions

• Add a torsional term to improve the dihedral angle effect of

single bond (C-C and C-H)

• Modified parameters in the spline function of REBO

Effects on mechanical properties of graphene:

• The equilibrium bond length is slightly shorter (1.397 Ǻ vs

1.420 Ǻ)

• Increase the in-plane stiffness (good)

• Screw up the bending modulus (bad)

Page 19: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Excess Edge Energy and Edge Force

1.391

1.425

1.420

1.420

1.367

1.412

1.425

1.398

1.425

1.4201.421

1.420

Edge energy (eV/nm ) Edge force (eV/nm) r0

Armchair Zigzag Armchair Zigzag (nm)

DFT [17]

(GPAW)9.8 13.2 - - 0.142

DFT [18]

(VASP)10 12 -14.5 -5 0.142

DFT [22]

(SIESTA)12.43 15.33 -26.40 -22.48 0.142

MM [20]

(AIREBO)- - -10.5 -20.5 0.140

MD [21] - - -20.4 -16.4 0.146

MM

(REBO)10.91 10.41 -8.53 -16.22 0.142

Zigzag edge:

Armchair edge:

fZfZ

fAfA

0 0.2 0.4 0.6 0.8 1−7.4

−7.3

−7.2

−7.1

−7

−6.9

−6.8

1/W (nm−1

)

Energ

y p

er

ato

m (

eV

)

armchair, un−relaxed

armchair, 1−D relaxation

zigzag, un−relaxed

zigzag, 1−D relaxation

Eq. (6), γ = 11.1 eV/nm

Eq. (6), γ = 10.6 eV/nm

Lu and Huang, Phys. Rev. B 81, 155410 (2010).

γγ

W

SU

NUWU 0

00

2)( +=+=

Page 20: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Edge buckling of GNRs

2 4 6 8 10 1210.27

10.275

10.28

10.285

10.29

Buckle wavelength λ (nm)

Excess e

nerg

y (

eV

/nm

)

y = 2e−05*x4 − 0.00071*x

3 + 0.0093*x

2 − 0.054*x + 10

2 4 6 8 10 12 14 1610.87

10.875

10.88

10.885

10.89

Buckle wavelength λ (nm)

Excess e

nerg

y (

eV

/nm

)

y = 2.2e−06*x4 − 0.00011*x

3 + 0.0019*x

2 − 0.014*x + 11

Zigzag GNR

Armchair GNR

Intrinsic wavelength ~ 6.2 nm

Intrinsic wavelength ~ 8.0 nm

�The wavelengths for edge buckling do not scale with D/f.

Lu and Huang, Phys. Rev. B 81, 155410 (2010).

Page 21: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Zigzag GNRs Armchair GNRs

GNRs under Uniaxial Tension

FF

( ) ( ) ( )LWLU εγεε 2+Φ=

δεδ FLU =

ε

γ

εεσ

d

d

Wd

d

d

dU

WLW

F 21+

Φ===

Page 22: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

GNRs under Uniaxial Tension

( )ε

γ

εεσ

d

d

Wd

d

W

F 2+

Φ==

FF

Zigzag GNRs Armchair GNRs

Lu and Huang, arXiv:1007.3298 (2010).

Page 23: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

2D Young’s Moduli of GNRs

( )ε

γ

εεσ

d

d

Wd

d 2+

Φ=

( )2

2

2

2 2

ε

γ

εε

d

d

Wd

dE +

Φ=

Young’s modulus under

infinitesimal strain:

edgebulkE

WEE 000

2+=

The nonlinear dependence of the excess edge energy on strain leads

to anisotropic, width-dependent Young’s modulus for GNRs.

Lu and Huang, arXiv:1007.3298 (2010).

Page 24: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Fracture of graphene nanoribbons

Zigzag edge

Armchair edge

Lu and Huang, arXiv:1007.3298 (2010).

Page 25: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Graphene on Oxide Substrates

Ozyilmaz et al., 2007.

HR-STM image (Stolyarova et al., 2007)

The 3D morphology is important for the transport properties of graphene-based devices.

Ishigami et al., 2007.

RMS2

Correlation

length

Page 26: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Van der Waals Interaction

Lennard-Jones potential for

particle-particle interactions:

Monolayer-substrate interaction

(energy per unit area):

Γ−=

9

0

3

00

2

1

2

3)(

h

h

h

hhU

hr h

U

0h0

-Γ0

Aitken and Huang, J. Appl. Phys. 107, 123531 (2010).

1 2

6 12( )

LJ

C CW r

r r= − +

Page 27: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Van der Waals Thickness and Energy

Gupta et al., 2006.

� Interlayer spacing in graphite ~ 0.34 nm;

� AFM measurements of h0 for graphene on oxide range from 0.4 to 0.9 nm;

� The adhesion energy (Γ0) has not been measured directly;

� Theoretically estimated values for Γ0 range from 0.6 to 0.8 eV/nm2.

Sonde et al., 2009.

Page 28: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Flat Graphene on Flat Surface

( )3 9

0 00

3 1

2 2vdW

h hU z

z z

= −Γ −

max 230 MPaσ =

0 0.6h nm=

Representative values:

( )

Γ=

10

0

4

0

0

0

2

9

z

h

z

h

hzvdWσ

maxσ

z

Interfacial

strength:0

0max 466.1

h

Γ=σ

Initial

stiffness: 2

0

00

27

hk

Γ=

2eV/nm 6.00 =Γ

MPa/nm 72000 =k

Aitken and Huang, J. Appl. Phys. 107, 123531 (2010).

Page 29: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Strain-Induced Instability

� The competition between the elastic strain energy of graphene and the van der Waals

interaction energy sets a critical strain for instability as well as the equilibrium

corrugation wavelength beyond the critical strain.

44344214342143421PlaneIn

gg

BendingPlaneIn

g

CDCU

−−

+

+

≈ 4

4

2

422

64

32

4

2

4

λ

πδ

λ

π

λ

πε

+

+−Γ≈

4

0

2

0

08

675

4

271

~

hhU

gg

vdW

δδ

Elastic strain energy

of graphene:

Van der Waals

Interaction Energy:

h0

substrate

z

x

ελ

+=

λ

πδ

xhz gg

2sin0

vdWg UUU~~~

+=Total free energy:

Aitken and Huang, J. Appl. Phys. 107, 123531 (2010).

Page 30: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Strain-Induced Corrugation of Graphene

41

0

2

0

272

Γ=

Dhc πλ

0

036

Ch

Dc

Γ−=ε

0074.0−=cε

nmc 68.2=λ

Representative values:

N/m353=C eV5.1=D

0 0.6h nm=2

eV/nm 6.00 =Γ

� On a flat surface, a graphene monolayer is flat and stable below a critical

compressive strain;

� Beyond the critical strain, the monolayer corrugates with increasing amplitude

and decreasing wavelength.

Aitken and Huang, J. Appl. Phys. 107, 123531 (2010).

Page 31: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Graphene on a Corrugated Surface

( ) ( ) ( ) ( )2

0

2

2

0

2

0

1,~~

hhU

hhhUhUhU

sgsg

vdWgvdW

δδδδδ +

+

+≈

( ) ( )hkh

h

h

h

hhU vdW

42

5

2

9 2

0

11

0

5

001 =

+

Γ=

( )

Γ=

λ

π

λ

π

λ

π

λπ

hK

h

hhK

h

hhU

2

24

29 656

11

0

3

323

5

00

3

2

substrate

z

x

λ

h

h

s

and find to

energy total the minimize

and Given

λδ ,

=

λ

πδ

xz ss

2sin

+=

λ

πδ

xhz gg

2sin

van der Waals

interaction energy:

vdWg UUU~~~~~

+=

Total free energy:

Aitken and Huang, J. Appl. Phys. 107, 123531 (2010).

Page 32: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Substrate Induced Corrugation of Graphene

ΓΓ=

0

2

0000

,;,εδλ

δ

δ C

h

D

hhf s

s

g

� Conformal at long wavelengths.

� Non-conformal at short wavelengths.

� Transition between the two states depends on the amplitude of substrate

surface corrugation, becoming more abrupt with increasing amplitude.

ΓΓ=

0

2

00000

,;,εδλ C

h

D

hhg

h

h s

Aitken and Huang, J. Appl. Phys. 107, 123531 (2010).

Page 33: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Effect on Adhesion Energy

� The adhesion energy decreases as the corrugation wavelength decreases,

approaching a plateau at the short‐wavelength limit.

� The adhesion energy decreases with increasing amplitude of the substrate

surface corrugation.

� Better adhesion at the conformal state than the non-conformal state.

Aitken and Huang, J. Appl. Phys. 107, 123531 (2010).

Page 34: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Effects of Mismatch Strain

� A tensile strain tends to flatten the supported graphene, while a

compressive strain tends to increase the corrugation amplitude.

� A “snap-through” instability occurs at a critical tensile strain.

� A “buckling” instability occurs at a critical compressive strain.

Aitken and Huang, J. Appl. Phys. 107, 123531 (2010).

Page 35: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Critical Strain for Buckling Instability

• With increasing amplitude of the substrate surface corrugation:

– The critical compressive strain for buckling decreases.

– The corresponding buckling wavelength increases.

Aitken and Huang, J. Appl. Phys. 107, 123531 (2010).

Page 36: Graphene: Continuum Mechanics and Atomistic Modeling …ruihuang/talks/IHPC2011_1.pdf · Graphene: Continuum Mechanics and Atomistic Modeling Rui Huang Center for Mechanics of Solids,

Summary

� Nonlinear continuum mechanics for 2D graphene monolayer

� Atomistic modeling of graphene under bending and stretching

� Excess edge energy, edge forces, and induced edge buckling

� Graphene nanoribbons under uniaxial tension: edge effects on elastic modulus and fracture

� Graphene on substrates: van der Waals interaction and corrugation; strain-induced corrugation