45
Gravitino Dark Matter with Broken R-Parity Michael Grefe Departamento de F´ ısica Te´ orica Instituto de F´ ısica Te´ orica UAM/CSIC Universidad Aut´ onoma de Madrid Instituto de F´ ısica Corpuscular – CSIC/Universitat de Val` encia Val ` encia – 21 June 2012 Based on JCAP 0901 (2009) 029, JCAP 1004 (2010) 017, arXiv:1111.6779 [hep-ph] and ongoing work. Collaborators: L. Covi, T. Delahaye, A. Ibarra, D. Tran, G. Vertongen Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC Val` encia – 21 June 2012 1 / 32

Gravitino Dark Matter with Broken R-Paritymgrefe/files/Grefe_IFIC2012.pdfMichael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC Valencia – 21 June 2012 10

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • Gravitino Dark Matter with Broken R-Parity

    Michael Grefe

    Departamento de Fı́sica TeóricaInstituto de Fı́sica Teórica UAM/CSICUniversidad Autónoma de Madrid

    Instituto de Fı́sica Corpuscular – CSIC/Universitat de València

    València – 21 June 2012

    Based on JCAP 0901 (2009) 029, JCAP 1004 (2010) 017,arXiv:1111.6779 [hep-ph] and ongoing work.

    Collaborators: L. Covi, T. Delahaye, A. Ibarra, D. Tran, G. Vertongen

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 1 / 32

  • Outline

    I Motivation for Unstable Gravitino Dark Matter

    I Gravitino Dark Matter with Broken R Parity

    I Indirect Detection of Gravitino Dark Matter

    I Implications for the LHC

    I Limits on the Amount of R-Parity Violation

    I Conclusions and Outlook

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 2 / 32

  • Motivation for Unstable Gravitino Dark Matter

    Motivation for Unstable Gravitino Dark Matter

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 3 / 32

  • Motivation for Unstable Gravitino Dark Matter

    What Do We Know about Dark Matter?

    I Dark matter is observed on various scales through its gravitational interaction

    I Dark matter contributes significantly to the energy density of the universe

    [van Albada et al. (1985)] [Clowe et al. (2006)] [NASA / WMAP Science Team]

    I Dark matter properties known from observations:• No electromagnetic and strong interactions• At least gravitational and at most weak-scale interactions• Non-baryonic• Cold (maybe warm)• Long-lived on cosmological time scales but not necessarily stable! [NASA / WMAP Science Team]

    Particle dark matter could be a (super)WIMP with lifetime� age of the universe!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 4 / 32

  • Motivation for Unstable Gravitino Dark Matter

    What Do We Know about Dark Matter?

    I Dark matter is observed on various scales through its gravitational interaction

    I Dark matter contributes significantly to the energy density of the universe

    [van Albada et al. (1985)] [Clowe et al. (2006)] [NASA / WMAP Science Team]

    I Dark matter properties known from observations:• No electromagnetic and strong interactions• At least gravitational and at most weak-scale interactions• Non-baryonic• Cold (maybe warm)• Long-lived on cosmological time scales but not necessarily stable! [NASA / WMAP Science Team]

    Particle dark matter could be a (super)WIMP with lifetime� age of the universe!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 4 / 32

  • Motivation for Unstable Gravitino Dark Matter

    How Can We Unveil the Nature of Dark Matter?

    I There are three main search strategies for dark matter:

    • Direct detection of dark matter in the scattering off matter nuclei• Production of dark matter particles at colliders• Indirect detection of dark matter in cosmic ray signatures

    [Max-Planck-Institut für Kernphysik]

    ]2WIMP Mass [GeV/c6 7 8 910 20 30 40 50 100 200 300 400 1000

    ]2W

    IMP-

    Nuc

    leon

    Cro

    ss S

    ectio

    n [c

    m

    -4510

    -4410

    -4310

    -4210

    -4110

    -4010

    -3910

    ]2WIMP Mass [GeV/c6 7 8 910 20 30 40 50 100 200 300 400 1000

    ]2W

    IMP-

    Nuc

    leon

    Cro

    ss S

    ectio

    n [c

    m

    -4510

    -4410

    -4310

    -4210

    -4110

    -4010

    -3910

    DAMA/I

    DAMA/Na

    CoGeNT

    CDMS

    EDELWEISS

    XENON100 (2010)

    XENON100 (2011) Buchmueller et al.

    [CERN] [Aprile et al. (2011)] [AMS collaboration]

    A combination will be necessary to identify the nature of particle dark matter!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 5 / 32

  • Motivation for Unstable Gravitino Dark Matter

    How Can We Unveil the Nature of Dark Matter?

    I There are three main search strategies for dark matter:

    • Direct detection of dark matter in the scattering off matter nuclei• Production of dark matter particles at colliders• Indirect detection of dark matter in cosmic ray signatures

    [Max-Planck-Institut für Kernphysik]

    ]2WIMP Mass [GeV/c6 7 8 910 20 30 40 50 100 200 300 400 1000

    ]2W

    IMP-

    Nuc

    leon

    Cro

    ss S

    ectio

    n [c

    m

    -4510

    -4410

    -4310

    -4210

    -4110

    -4010

    -3910

    ]2WIMP Mass [GeV/c6 7 8 910 20 30 40 50 100 200 300 400 1000

    ]2W

    IMP-

    Nuc

    leon

    Cro

    ss S

    ectio

    n [c

    m

    -4510

    -4410

    -4310

    -4210

    -4110

    -4010

    -3910

    DAMA/I

    DAMA/Na

    CoGeNT

    CDMS

    EDELWEISS

    XENON100 (2010)

    XENON100 (2011) Buchmueller et al.

    [CERN] [Aprile et al. (2011)] [AMS collaboration]

    A combination will be necessary to identify the nature of particle dark matter!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 5 / 32

  • Motivation for Unstable Gravitino Dark Matter

    Why Are We Interested in Unstable Gravitino Dark Matter?

    I Smallness of observed neutrino masses motivates seesaw mechanism

    I Can explain baryon asymmetry via thermal leptogenesis [Fukugita, Yanagida (1986)]• Requires high reheating temperature after inflation: TR & 109 GeV [Davidson, Ibarra (2002)]

    I Supergravity predicts the gravitino as the spin-3/2 superpartner of the graviton

    I Gravitinos are abundantly produced in thermal scatterings:

    Ω3/2h2 ' 0.27

    (TR

    1010 GeV

    )(100 GeV

    m3/2

    )(mg̃

    1 TeV

    )2[Bolz et al. (2001)]

    I Problem in scenarios with neutralino dark matter:

    • Gravitino decays suppressed by Planck scale: τ3/2 ∼M2Pl

    m33/2≈ 3 years

    (100 GeV

    m3/2

    )3• Late decays with τ & O(1–1000 s) in conflict with BBN ⇒ Cosmological gravitino problem

    Possible solution: Gravitino is the LSP and thus stable!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 6 / 32

  • Motivation for Unstable Gravitino Dark Matter

    Why Are We Interested in Unstable Gravitino Dark Matter?

    I Smallness of observed neutrino masses motivates seesaw mechanism

    I Can explain baryon asymmetry via thermal leptogenesis [Fukugita, Yanagida (1986)]• Requires high reheating temperature after inflation: TR & 109 GeV [Davidson, Ibarra (2002)]

    I Supergravity predicts the gravitino as the spin-3/2 superpartner of the graviton

    I Gravitinos are abundantly produced in thermal scatterings:

    Ω3/2h2 ' 0.27

    (TR

    1010 GeV

    )(100 GeV

    m3/2

    )(mg̃

    1 TeV

    )2[Bolz et al. (2001)]

    I Problem in scenarios with neutralino dark matter:

    • Gravitino decays suppressed by Planck scale: τ3/2 ∼M2Pl

    m33/2≈ 3 years

    (100 GeV

    m3/2

    )3• Late decays with τ & O(1–1000 s) in conflict with BBN ⇒ Cosmological gravitino problem

    Possible solution: Gravitino is the LSP and thus stable!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 6 / 32

  • Motivation for Unstable Gravitino Dark Matter

    Why Are We Interested in Unstable Gravitino Dark Matter?

    I Gravitino relic density:

    Ω3/2h2 ' 0.27

    (TR

    1010 GeV

    )(100 GeV

    m3/2

    )(mg̃

    1 TeV

    )2I Correct relic density possible for m3/2 > O(10) GeV ⇒ Gravitino dark matterI Still problematic:• NLSP can only decay to gravitino LSP:

    τNLSP '48πM2Plm

    23/2

    m5NLSP≈ 9 days

    ( m3/210 GeV

    )2 (150 GeVmNLSP

    )5• Late NLSP decays are in conflict with BBN ⇒ Cosmological gravitino problem

    Possible solution: R-parity is not exactly conserved!

    I Other options:• Choose harmless NLSP like sneutrino [Covi, Kraml (2007)]• Dilute NLSP density by late entropy production [Buchmüller et al. (2006)]

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 7 / 32

  • Motivation for Unstable Gravitino Dark Matter

    Why Are We Interested in Unstable Gravitino Dark Matter?

    I Gravitino relic density:

    Ω3/2h2 ' 0.27

    (TR

    1010 GeV

    )(100 GeV

    m3/2

    )(mg̃

    1 TeV

    )2I Correct relic density possible for m3/2 > O(10) GeV ⇒ Gravitino dark matterI Still problematic:• NLSP can only decay to gravitino LSP:

    τNLSP '48πM2Plm

    23/2

    m5NLSP≈ 9 days

    ( m3/210 GeV

    )2 (150 GeVmNLSP

    )5• Late NLSP decays are in conflict with BBN ⇒ Cosmological gravitino problem

    Possible solution: R-parity is not exactly conserved!

    I Other options:• Choose harmless NLSP like sneutrino [Covi, Kraml (2007)]• Dilute NLSP density by late entropy production [Buchmüller et al. (2006)]

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 7 / 32

  • Gravitino Dark Matter with Broken R-Parity

    Gravitino Dark Matter with Broken R-Parity

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 8 / 32

  • Gravitino Dark Matter with Broken R-Parity

    Gravitino Dark Matter with Bilinear R-Parity Violation

    I Bilinear R-parity violation: W/Rp = µiHuLi , −Lsoft/Rp

    = BiHu ˜̀i + m2Hd `i H∗d

    ˜̀i + h.c.

    • Only lepton number violated ⇒ Proton remains stable!

    I R-parity violation parametrized by non-vanishing sneutrino VEV: ξ =〈ν̃〉v

    I Cosmological bounds on R-violating couplings• Lower bound: The NLSP must decay fast enough to evade BBN constraints: ξ & O(10−11)• Upper bound: No washout of the lepton/baryon asymmetry: ξ . O(10−7)

    I Tiny bilinear R-parity violation can be related to U(1)B–L breaking [Buchmüller et al. (2007)]

    I Gravitino decay suppressed by Planck scale and small R-parity violation

    • Gravitino decay width: Γ3/2 ∝ξ2 m33/2

    M2Pl[Takayama, Yamaguchi (2000)]

    • The gravitino lifetime by far exceeds the age of the universe (τ3/2 � 1017 s)

    The unstable gravitino is a well-motivated and viable dark matter candidate!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 9 / 32

  • Gravitino Dark Matter with Broken R-Parity

    Gravitino Dark Matter with Bilinear R-Parity Violation

    I Bilinear R-parity violation: W/Rp = µiHuLi , −Lsoft/Rp

    = BiHu ˜̀i + m2Hd `i H∗d

    ˜̀i + h.c.

    • Only lepton number violated ⇒ Proton remains stable!

    I R-parity violation parametrized by non-vanishing sneutrino VEV: ξ =〈ν̃〉v

    I Cosmological bounds on R-violating couplings• Lower bound: The NLSP must decay fast enough to evade BBN constraints: ξ & O(10−11)• Upper bound: No washout of the lepton/baryon asymmetry: ξ . O(10−7)

    I Tiny bilinear R-parity violation can be related to U(1)B–L breaking [Buchmüller et al. (2007)]

    I Gravitino decay suppressed by Planck scale and small R-parity violation

    • Gravitino decay width: Γ3/2 ∝ξ2 m33/2

    M2Pl[Takayama, Yamaguchi (2000)]

    • The gravitino lifetime by far exceeds the age of the universe (τ3/2 � 1017 s)

    The unstable gravitino is a well-motivated and viable dark matter candidate!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 9 / 32

  • Gravitino Dark Matter with Broken R-Parity

    Phenomenology of Unstable Gravitino Dark Matter

    I Rich phenomenology instead of elusive gravitinos:

    • A long-lived NLSP could be observed at the LHC [Buchmüller et al. (2007), Bobrovskyi et al. (2010, 2011)]

    • Gravitino decays lead to possibly observable signals at indirect detection experiments[Takayama, Yamaguchi (2000), Buchmüller et al. (2007), Bertone et al. (2007), Ibarra, Tran (2008), Ishiwata et al. (2008) etc.]

    Gravitinos could be indirectly observed at colliders and in the spectra of cosmic rays!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 10 / 32

  • Gravitino Dark Matter with Broken R-Parity

    Bilinear R-Parity Violation: Neutralino–Neutrino Mixing

    I Bilinear R-parity violation extends neutralino mass matrix to include neutrinos

    I 7× 7 matrix with basis ψ0i = (−i γ̃, −i Z̃ , H̃0u , H̃0d , νi )T

    M7N =

    M1c2W + M2 s

    2W (M2 −M1) sW cW 0 0 0

    (M2 −M1) sW cW M1s2W + M2 c2W mZ sβ −mZ cβ −mZ ξj0 mZ sβ 0 −µ 00 −mZ cβ −µ 0 00 −mZ ξi 0 0 0

    I Diagonalized by unitary matrix N7

    I Mixing to neutrinos via neutrino–zino coupling: N7νi X ' −ξi UXZ̃I Analytical approximation shows dependence on SUSY parameters

    • Uγ̃Z̃ ' mZ sin θW cos θWM2−M1M1 M2

    • UZ̃ Z̃ ' −mZ(

    sin2 θWM1

    +cos2 θW

    M2

    )

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 11 / 32

  • Gravitino Dark Matter with Broken R-Parity

    Bilinear R-Parity Violation: Chargino–Charged Lepton Mixing

    I Bilinear R-parity violation extends chargino mass matrix to include charged leptons

    I 5× 5 matrix with basis vectors ψ− = (−iW̃−, H̃−d , `−i )

    T andψ+ = (−iW̃ +, H̃+u , ec +i )

    T

    M5C =

    M2√

    2 mW sβ 0√2 mW cβ µ −m`ij ξi cβ√2 mW ξi 0 m`ij

    I Diagonalized by unitary matrices U5 and V 5

    I Mixing to left-handed leptons via lepton–wino coupling: U5`i X ' −√

    2 ξi UXW̃I Mixing to right-handed leptons suppressed and negligibleI Analytical approximation shows dependence on SUSY parameters• UW̃W̃ '

    mWM2

    I Bilinear R-parity also induces mass mixing in the scalar sector• Mixing between SM-like Higgs and sneutrino proportional to sneutrino VEV

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 12 / 32

  • Gravitino Dark Matter with Broken R-Parity

    Gravitino Decay Channels: 2-body Decays

    I Several two-body decay channels: ψ3/2 → γ νi , Z νi , W `i , h νi

    + ...

    • Γγνi 'ξ2i m

    33/2

    32πM2Pl|Uγ̃Z̃ |

    2 ∝ξ2i m

    33/2

    M2Pl

    (M2−M1M1 M2

    )2• ΓZνi '

    ξ2i m33/2

    32πM2Pl

    (1− m

    2Z

    m23/2

    )2{U2

    Z̃ Z̃f(

    m2Zm23/2

    )+ ...

    }• ΓW +`−i

    'ξ2i m

    33/2

    32πM2Pl

    (1− m

    2W

    m23/2

    )2{U2

    W̃W̃f(

    m2Wm23/2

    )+ ...

    }• Γhνi '

    ξ2i m33/2

    196πM2Pl

    (1− m

    2h

    m23/2

    )4I Dependence on mass mixings → dependence on gaugino masses

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 13 / 32

  • Gravitino Dark Matter with Broken R-Parity

    Gravitino Decay Channels: 3-body Decays

    I For m3/2 < mW also three-body decays can play an important role [Choi et al. (2010)]

    + ...

    •dΓZ∗νi

    ds ∝ξ2i m

    33/2

    M2Pl((s−m2Z )

    2+m2Z Γ2Z )

    (1− s

    m23/2

    )2{s U2

    Z̃ Z̃f(

    sm23/2

    )+ ...

    }•

    dΓW +∗`−i

    ds ∝ξ2i m

    33/2

    M2Pl((s−m2W )

    2+m2W Γ2W )

    (1− s

    m23/2

    )2{s U2

    W̃W̃f(

    sm23/2

    )+ ...

    }•

    dΓh∗νids ∝

    ξ2i m33/2 m

    2f s

    M2Pl v2((s−m2h)

    2+m2hΓ2h)

    (1− s

    m23/2

    )4I I will concentrate on 2-body dacays in this talk

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 14 / 32

  • Gravitino Dark Matter with Broken R-Parity

    Gravitino Branching Ratios and Final State Particle Spectra

    I Branching ratios are independent of strength of R-parity violation

    I Ratio between γ νi and other channels is model-dependent

    ΓΝi

    Γ*Z*Νi

    W{i

    W*{i

    ZΝi

    hΝi

    10 100 1000 10 000

    10-5

    10-4

    10-3

    0.01

    0.1

    1

    Gravitino Mass HGeVL

    Bra

    nchi

    ngR

    atio

    ΝΤ

    ΝΜ

    Νe

    dH´ 103L

    p

    e

    Γ

    Ν

    e

    Νi

    Ψ32 ® Z Νi , m32 = 100 GeV

    0.01 0.1 1 10 100

    0.001

    0.01

    0.1

    1

    10

    100

    Kinetic Energy HGeVL

    Spec

    trum

    dNdHl

    og10

    TL

    I Gravitino decays produce spectra of stable cosmic rays: γ, e, p, νe/µ/τ , d• Two-body decay spectra generated with PYTHIA• Deuteron coalescence treated on event-by-event basis in PYTHIA [Kadastik et al. (2009)]

    Basis for phenomenology of indirect gravitino dark matter searches!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 15 / 32

  • Gravitino Dark Matter with Broken R-Parity

    Gravitino Branching Ratios and Final State Particle Spectra

    I Branching ratios are independent of strength of R-parity violation

    I Ratio between γ νi and other channels is model-dependent

    ΓΝi

    Γ*Z*Νi

    W{i

    W*{i

    ZΝi

    hΝi

    10 100 1000 10 000

    10-5

    10-4

    10-3

    0.01

    0.1

    1

    Gravitino Mass HGeVL

    Bra

    nchi

    ngR

    atio

    ΝΤ

    ΝΜ

    Νe

    dH´ 103L

    p

    e

    Γ

    Ν

    e

    Νi

    Ψ32 ® Z Νi , m32 = 100 GeV

    0.01 0.1 1 10 100

    0.001

    0.01

    0.1

    1

    10

    100

    Kinetic Energy HGeVL

    Spec

    trum

    dNdHl

    og10

    TL

    I Gravitino decays produce spectra of stable cosmic rays: γ, e, p, νe/µ/τ , d• Two-body decay spectra generated with PYTHIA• Deuteron coalescence treated on event-by-event basis in PYTHIA [Kadastik et al. (2009)]

    Basis for phenomenology of indirect gravitino dark matter searches!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 15 / 32

  • Indirect Detection of Gravitino Dark Matter

    Indirect Detection of Gravitino Dark Matter

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 16 / 32

  • Indirect Detection of Gravitino Dark Matter

    Cosmic-Ray Propagation

    I Cosmic rays from gravitino decays propagate through the Milky Way

    I Experiments observe spectra of gamma rays, charged cosmic rays and neutrinos

    [NASA E/PO, SSU, Aurore Simonnet] [AMS-02 Collaboration] [IceCube Collaboration]

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 17 / 32

  • Indirect Detection of Gravitino Dark Matter

    What Is the Difference of Dark Matter Annihilations and Decays?

    I Different angular distribution of the gamma-ray/neutrino flux from the galactic halo:

    Dark Matter Annihilation

    dJhalodE

    =〈σv〉DM8πm2DM

    dNdE

    ∫l.o.s.

    ρ2halo(~l) d~l

    particle physics astrophysics

    Dark Matter Decay

    dJhalodE

    =1

    4π τDM mDMdNdE

    ∫l.o.s.

    ρhalo(~l) d~l

    particle physics astrophysics

    value at galactic anticenter

    annihilation

    decay

    Einasto

    NFW

    Isothermal

    -180 ° -90 ° 0 ° 90 ° 180 °

    1

    10

    100

    Galactic Longitude

    Lin

    e-of

    -Si

    ghtI

    nteg

    ralN

    orm

    aliz

    edto

    Ant

    icen

    ter

    Annihilation (e.g. WIMP dark matter)• Annihilation cross section related to relic density• Strong signal from peaked structures• Uncertainties from choice of halo profile

    Decay (e.g. unstable gravitino dark matter)• Lifetime unrelated to production in the early

    universe

    • Less anisotropic signal• Less sensitive to the halo model

    Directional detection can distinguish unstable gravitino from standard WIMPs!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 18 / 32

  • Indirect Detection of Gravitino Dark Matter

    What Is the Difference of Dark Matter Annihilations and Decays?

    I Different angular distribution of the gamma-ray/neutrino flux from the galactic halo:

    Dark Matter Annihilation

    dJhalodE

    =〈σv〉DM8πm2DM

    dNdE

    ∫l.o.s.

    ρ2halo(~l) d~l

    particle physics astrophysics

    Dark Matter Decay

    dJhalodE

    =1

    4π τDM mDMdNdE

    ∫l.o.s.

    ρhalo(~l) d~l

    particle physics astrophysics

    value at galactic anticenter

    annihilation

    decay

    Einasto

    NFW

    Isothermal

    -180 ° -90 ° 0 ° 90 ° 180 °

    1

    10

    100

    Galactic Longitude

    Lin

    e-of

    -Si

    ghtI

    nteg

    ralN

    orm

    aliz

    edto

    Ant

    icen

    ter

    Annihilation (e.g. WIMP dark matter)• Annihilation cross section related to relic density• Strong signal from peaked structures• Uncertainties from choice of halo profile

    Decay (e.g. unstable gravitino dark matter)• Lifetime unrelated to production in the early

    universe

    • Less anisotropic signal• Less sensitive to the halo model

    Directional detection can distinguish unstable gravitino from standard WIMPs!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 18 / 32

  • Indirect Detection of Gravitino Dark Matter

    Gravitino Decay Signals in Cosmic-Ray Spectra

    antiproton flux isotropic diffuse gamma-ray flux

    ª

    ª

    ª

    ó

    ó

    ó

    ¨

    ¨§

    §

    §

    §

    òò

    ò

    òòò

    ò

    ò

    òò

    òòò

    ø

    ø

    øø

    øøø

    øø

    øø

    øøø

    ô

    ô

    ôô

    ô

    ô

    ô

    ô

    ô

    ÷

    ÷

    ÷

    ÷÷÷

    ÷

    ÷

    ÷

    ààà

    à

    àà

    à

    à

    ààà

    àà

    ááá

    áááááá

    áááá

    áááááááááááááááá

    ì

    ì

    ì

    ìì

    æ

    æ

    æ

    æ

    ææ

    ææ

    ææææææ

    ææææ æ æ

    æ æ æ

    background

    Τ32 = 1027 s

    m32 = 100 GeV 1 TeV 10 TeV

    1 10 100 1000 10 000

    10-3

    0.01

    0.1

    1

    10

    100

    Kinetic Energy HGeVL

    T3´

    Ant

    ipro

    ton

    FluxHG

    eV2

    m-

    2s-

    1sr-

    1L

    ó IMAXìAMS-01æ PAMELA

    ª MASS-91¨ CAPRICE94§ CAPRICE98

    ò BESS 95+97ø BESS 98ô BESS 99÷ BESS 00à BESS-Polará BESS-Polar II

    ì

    ì

    ìì ì

    ìì

    ì ì ì

    ìì

    ìà

    àààà

    àà

    à

    à

    àà

    æ

    æ

    æ

    æ

    æ

    ææ

    ææ

    Τ32 = 1027 s

    m32 = 100 GeV 1 TeV 10 TeV

    0.1 1 10 100 1000 10 000

    0.0001

    0.0003

    0.001

    0.003

    0.01

    0.03

    Energy HGeVL

    E2´

    Gam

    ma-

    Ray

    FluxHG

    eVm-

    2s-

    1sr-

    1L

    ì EGRET HSreekumar et al.L

    à EGRET HStrong et al.L

    æ Fermi LAT

    I Observed antiproton spectrum well described by astrophysical background• No need for contribution from dark matter

    I Isotropic diffuse gamma-ray spectrum exhibits power-law behaviour• Source not completely understood, but no sign of spectral features of a particle decay

    I Even without astrophysical backgrounds lifetimes below O(1026–1027) s excluded• Gravitino decay cannot be the origin of the PAMELA and Fermi LAT cosmic-ray anomalies

    Astrophysical sources like pulsars required to explain cosmic-ray excesses!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 19 / 32

  • Indirect Detection of Gravitino Dark Matter

    Gravitino Decay Signals in Cosmic-Ray Spectra

    antiproton flux isotropic diffuse gamma-ray flux

    ª

    ª

    ª

    ó

    ó

    ó

    ¨

    ¨§

    §

    §

    §

    òò

    ò

    òòò

    ò

    ò

    òò

    òòò

    ø

    ø

    øø

    øøø

    øø

    øø

    øøø

    ô

    ô

    ôô

    ô

    ô

    ô

    ô

    ô

    ÷

    ÷

    ÷

    ÷÷÷

    ÷

    ÷

    ÷

    ààà

    à

    àà

    à

    à

    ààà

    àà

    ááá

    áááááá

    áááá

    áááááááááááááááá

    ì

    ì

    ì

    ìì

    æ

    æ

    æ

    æ

    ææ

    ææ

    ææææææ

    ææææ æ æ

    æ æ æ

    background

    Τ32 = 1027 s

    m32 = 100 GeV 1 TeV 10 TeV

    1 10 100 1000 10 000

    10-3

    0.01

    0.1

    1

    10

    100

    Kinetic Energy HGeVL

    T3´

    Ant

    ipro

    ton

    FluxHG

    eV2

    m-

    2s-

    1sr-

    1L

    ó IMAXìAMS-01æ PAMELA

    ª MASS-91¨ CAPRICE94§ CAPRICE98

    ò BESS 95+97ø BESS 98ô BESS 99÷ BESS 00à BESS-Polará BESS-Polar II

    ì

    ì

    ìì ì

    ìì

    ì ì ì

    ìì

    ìà

    àààà

    àà

    à

    à

    àà

    æ

    æ

    æ

    æ

    æ

    ææ

    ææ

    Τ32 = 1027 s

    m32 = 100 GeV 1 TeV 10 TeV

    0.1 1 10 100 1000 10 000

    0.0001

    0.0003

    0.001

    0.003

    0.01

    0.03

    Energy HGeVL

    E2´

    Gam

    ma-

    Ray

    FluxHG

    eVm-

    2s-

    1sr-

    1L

    ì EGRET HSreekumar et al.L

    à EGRET HStrong et al.L

    æ Fermi LAT

    I Observed antiproton spectrum well described by astrophysical background• No need for contribution from dark matter

    I Isotropic diffuse gamma-ray spectrum exhibits power-law behaviour• Source not completely understood, but no sign of spectral features of a particle decay

    I Even without astrophysical backgrounds lifetimes below O(1026–1027) s excluded• Gravitino decay cannot be the origin of the PAMELA and Fermi LAT cosmic-ray anomalies

    Astrophysical sources like pulsars required to explain cosmic-ray excesses!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 19 / 32

  • Indirect Detection of Gravitino Dark Matter

    Antideuteron Signals from Gravitino Decays

    I In particular sensitive at low energies due to small astrophysical background

    I AMS-02 and GAPS will be able to put strong constraints on light gravitinos

    BESS 97-00

    GA

    PSHL

    DBL

    GA

    PSHU

    LD

    BL

    AM

    S-02

    AM

    S-02

    background

    Τ32 = 1027 s

    m32 = 100 GeV 1 TeV 10 TeV

    ΦF = 500 MV

    0.1 1 10 100 1000

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    Kinetic Energy per Nucleon HGeVnL

    HTnL´

    Ant

    ideu

    tero

    nFl

    uxHm-

    2s-

    1sr-

    1 L

    Antideuterons are a valuable channel for light gravitino searches!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 20 / 32

  • Indirect Detection of Gravitino Dark Matter

    Antideuteron Signals from Gravitino Decays

    I In particular sensitive at low energies due to small astrophysical background

    I AMS-02 and GAPS will be able to put strong constraints on light gravitinos

    BESS 97-00

    GA

    PSHL

    DBL

    GA

    PSHU

    LD

    BL

    AM

    S-02

    AM

    S-02

    background

    Τ32 = 1027 s

    m32 = 100 GeV 1 TeV 10 TeV

    ΦF = 500 MV

    0.1 1 10 100 1000

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    Kinetic Energy per Nucleon HGeVnL

    HTnL´

    Ant

    ideu

    tero

    nFl

    uxHm-

    2s-

    1sr-

    1 L

    Antideuterons are a valuable channel for light gravitino searches!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 20 / 32

  • Indirect Detection of Gravitino Dark Matter

    Neutrino Signals from Gravitino Decays

    I Neutrinos provide directional information like gamma rays

    I Gravitino signal features neutrino line at the end of the spectrumI Atmospheric neutrinos are the dominant background for the gravitino signal• Discrimination of neutrino flavours would allow to reduce the background• Signal-to-background ratio best at the end of the spectrum and for large gravitino masses

    ô ôô

    ô

    ô ô

    ô

    ò

    òò ò

    òò

    ò

    òò

    ò

    ò

    ì

    ì

    ì

    ì

    ì

    ì

    ì

    ì

    ì

    æ

    æ

    æ

    æ

    æ

    æ

    æ

    æ

    æ

    æ

    æ

    ΝΤΝe

    ΝΜ

    Τ32 = 1026 s

    m32 = 100 GeV 1 TeV 10 TeV

    1 10 100 1000 10 000 100 000

    10-4

    10-3

    0.01

    0.1

    1

    10

    100

    103

    EnergyHGeVL

    E2´

    Neu

    trin

    oF

    luxH

    GeV

    m-

    2s-

    1sr-

    1L

    ô FréjusΝeò FréjusΝΜ

    Super-KamiokandeΝΜAMANDA -II ForwardΝΜ

    ì AMANDA -II Unfolding ΝΜIceCube-40ΝΜ

    æ IceCube-40 UnfoldingΝΜ

    Neutrinos are a valuable channel for heavy gravitino searches!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 21 / 32

  • Indirect Detection of Gravitino Dark Matter

    Neutrino Signals from Gravitino Decays

    I Neutrinos provide directional information like gamma rays

    I Gravitino signal features neutrino line at the end of the spectrumI Atmospheric neutrinos are the dominant background for the gravitino signal• Discrimination of neutrino flavours would allow to reduce the background• Signal-to-background ratio best at the end of the spectrum and for large gravitino masses

    ô ôô

    ô

    ô ô

    ô

    ò

    òò ò

    òò

    ò

    òò

    ò

    ò

    ì

    ì

    ì

    ì

    ì

    ì

    ì

    ì

    ì

    æ

    æ

    æ

    æ

    æ

    æ

    æ

    æ

    æ

    æ

    æ

    ΝΤΝe

    ΝΜ

    Τ32 = 1026 s

    m32 = 100 GeV 1 TeV 10 TeV

    1 10 100 1000 10 000 100 000

    10-4

    10-3

    0.01

    0.1

    1

    10

    100

    103

    EnergyHGeVL

    E2´

    Neu

    trin

    oF

    luxH

    GeV

    m-

    2s-

    1sr-

    1L

    ô FréjusΝeò FréjusΝΜ

    Super-KamiokandeΝΜAMANDA -II ForwardΝΜ

    ì AMANDA -II Unfolding ΝΜIceCube-40ΝΜ

    æ IceCube-40 UnfoldingΝΜ

    Neutrinos are a valuable channel for heavy gravitino searches!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 21 / 32

  • Indirect Detection of Gravitino Dark Matter

    Neutrino Detection with Upward Through-Going Muons

    I Muon tracks from charged current DIS of muon neutrinos off nuclei outside the detector

    Advantages• Muon track reconstruction is well-understood at neutrino telescopes

    Disadvantages• Neutrino–nucleon DIS and propagation energy losses shift muon spectrum to lower energies• Bad energy resolution (0.3 in log10 E) smears out cut-off energy

    Upward Through-Going Muons

    atmospheric background

    Τ32 = 1026 s

    m32 = 100 GeV 1 TeV 10 TeV

    1 10 100 1000 10000 100000

    0.1

    1

    10

    100

    103

    104

    105

    Energy HGeVL

    MuonFluxHkm-2yr-

    1L

    Upward Through-Going Muons

    Τ32 = 1026s

    m32 = 100 GeV 1 TeV 10 TeV

    1 10 100 1000 10000 100000

    0.01

    0.1

    1

    10

    Energy HGeVLStatisticalSignificance

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 22 / 32

  • Indirect Detection of Gravitino Dark Matter

    Neutrino Detection – Improvements Using Showers

    I Hadronic and electromagnetic showers from charged current DIS of electron and tau neutrinosand neutral current interactions of all neutrino flavours inside the detector

    Disadvantages• TeV-scale showers are difficult to discriminate from short muon tracks

    Advantages• 3× larger signal and 3× lower background compared to other channels• Better energy resolution (0.18 in log10 E) helps to distinguish spectral features

    Shower Events

    atmospheric background

    Τ32 = 1026 s

    m32 = 100 GeV 1 TeV 10 TeV

    1 10 100 1000 10 000 100 000

    1

    10

    100

    103

    104

    105

    106

    Energy HGeVL

    Show

    erR

    ateHk

    m-

    3yr-

    1 L

    Shower Events

    Τ32 = 1026 s

    m32 = 100 GeV 1 TeV 10 TeV

    1 10 100 1000 10 000 100 000

    0.01

    0.1

    1

    10

    100

    Energy HGeVLSt

    atis

    tical

    Sign

    ific

    ance

    Showers are potentially the best channel for dark matter searches in neutrinos!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 23 / 32

  • Indirect Detection of Gravitino Dark Matter

    Neutrino Detection – Improvements Using Showers

    I Hadronic and electromagnetic showers from charged current DIS of electron and tau neutrinosand neutral current interactions of all neutrino flavours inside the detector

    Disadvantages• TeV-scale showers are difficult to discriminate from short muon tracks

    Advantages• 3× larger signal and 3× lower background compared to other channels• Better energy resolution (0.18 in log10 E) helps to distinguish spectral features

    Shower Events

    atmospheric background

    Τ32 = 1026 s

    m32 = 100 GeV 1 TeV 10 TeV

    1 10 100 1000 10 000 100 000

    1

    10

    100

    103

    104

    105

    106

    Energy HGeVL

    Show

    erR

    ateHk

    m-

    3yr-

    1 L

    Shower Events

    Τ32 = 1026 s

    m32 = 100 GeV 1 TeV 10 TeV

    1 10 100 1000 10 000 100 000

    0.01

    0.1

    1

    10

    100

    Energy HGeVLSt

    atis

    tical

    Sign

    ific

    ance

    Showers are potentially the best channel for dark matter searches in neutrinos!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 23 / 32

  • Indirect Detection of Gravitino Dark Matter

    Limits on the Gravitino Lifetime

    excluded by diffuse flux

    excluded by line searches

    1 10 100 1000 10 000

    1024

    1025

    1026

    1027

    1028

    1029

    Gravitino Mass HGeVL

    Gra

    vitin

    oL

    ifet

    imeHsL

    Fermi LAT diffuse fluxVertongen et al. photon lineFermi LAT photon line

    excluded by

    antiproton flux

    excluded by electron + positron flux

    excluded

    by

    positron

    fraction

    antideuteron sensitivity

    100 1000 10 000

    1024

    1025

    1026

    1027

    1028

    Gravitino Mass HGeVL

    Gra

    vitin

    oL

    ifet

    imeHsL

    PAMELA e+He+ + e-L

    PAMELA p

    Fermi LAT H.E.S.S. e+ + e-

    I Cosmic-ray data give bounds on gravitino lifetime• Photon line bounds very strong for low gravitino masses• Uncertainties from charged cosmic-ray propagation• Background subtraction will improve bounds• Antideuterons can be complementary to photon line

    searches for low gravitino masses

    • Neutrino bounds are competitive for heavy gravitinos

    Wide range of bounds from multi-messenger approach!

    exclusion from

    through-going muons

    after 1 year at IceCube + DeepCore

    100 1000 10 000

    1024

    1025

    1026

    1027

    Gravitino Mass HGeVL

    Gra

    vitin

    oL

    ifet

    imeHsL

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 24 / 32

  • Implications for the LHC

    Implications for the LHC

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 25 / 32

  • Implications for the LHC

    Implications for the LHC: Stau NLSP

    I NLSP decays before BBN but may be metastable on collider scales

    I Stau decay channels: τ̃R → τ νµ, µ ντ and τ̃L → t̄R bLI Characteristic signatures:• Slow particle with long ionising charged track• Displaced vertex with missing energy and muon track or jet

    I Minimal decay length from washout limit: 4 mm

    101 102 103

    m3/2 [GeV]

    102

    103

    m˜� 1

    [G

    eV

    ]

    100

    1000

    10000

    Stau NLSP: Minimal allowed decay length c��̃1

    [m]

    Min O.P.

    O.P. in

    scena

    rio (B)

    m3/2>m�̃1

    EWPT

    [Huang et al. (2011)]

    I Gamma-ray limits from galaxy clusters constrain decay length [Huang et al. (2011)]

    I Minimal decay lengths from current limits: O(100) m – O(10) kmMichael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 26 / 32

  • Implications for the LHC

    Implications for the LHC: Neutralino NLSP

    I Neutralino decay channels: χ̃01 → Z νi ,W +`−i , h νiI Bino decay length is directly related to gravitino decay widthI Characteristic signatures:• Displaced vertices far from the interaction point• For too small R-parity violation indistinguishable from stable neutralino

    decay chain with secondary vertices

    101 102 103

    m3/2 [GeV]

    102

    103

    m˜�

    0 1 [

    GeV

    ]

    1

    10

    100 1

    000

    1000

    0

    Neutralino NLSP: Minimal allowed decay length χ��̃01 [m]

    Min O.P.

    O.P. in

    scena

    rio (A)

    m3/2>m� 01

    EWPT

    [Bobrovskyi et al. (2011)] [Huang et al. (2011)]

    I Gamma-ray limits from galaxy clusters constrain decay length [Huang et al. (2011)]

    I Minimal decay lengths from current limits: O(100) m – O(10) km

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 27 / 32

  • Limits on the Amount of R-Parity Violation

    Limits on the Amount of R-Parity Violation

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 28 / 32

  • Limits on the Amount of R-Parity Violation

    Limits on the Amount of R-Parity Violation

    I Limits on gravitino lifetime constrain the strength of R-parity violation: τ3/2 ∝M2Pl

    ξ2 m33/2• Limits from photon line searches dominate for small gravitino masses• For heavier gravitino bounds from all cosmic-ray channels are comparable

    cosmic-ray limits LHC sensitivity for bino-like NLSP decaysΞ = 10-7

    Ξ = 10-11

    1 10 100 1000 10 000

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    Gravitino Mass HGeVL

    R-

    Pari

    tyV

    iola

    ting

    Para

    met

    erΞ

    IceCube ΝΜ prospects

    Super-Kamiokande ΝΜ

    GAPSAMS-02 d prospects

    PAMELA p

    Fermi LAT diffuse Γ

    Fermi LAT Γ line

    [Bobrovskyi et al. (2011)]I The LHC has the potential to detect NLSP decays beyond cosmic-ray constraints• Good sensitivity with clean decay chain: χ̃01 → Z νi and Z → µ

    +µ−

    • Taking all channels can improve sensitivity another order of magnitude [Bobrovskyi et al. (2011)]

    Indirect and collider searches probe interesting range of R-parity violation!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 29 / 32

  • Limits on the Amount of R-Parity Violation

    Limits on the Amount of R-Parity Violation

    I Limits on gravitino lifetime constrain the strength of R-parity violation: τ3/2 ∝M2Pl

    ξ2 m33/2• Limits from photon line searches dominate for small gravitino masses• For heavier gravitino bounds from all cosmic-ray channels are comparable

    cosmic-ray limits LHC sensitivity for bino-like NLSP decaysΞ = 10-7

    Ξ = 10-11

    1 10 100 1000 10 000

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    Gravitino Mass HGeVL

    R-

    Pari

    tyV

    iola

    ting

    Para

    met

    erΞ

    IceCube ΝΜ prospects

    Super-Kamiokande ΝΜ

    GAPSAMS-02 d prospects

    PAMELA p

    Fermi LAT diffuse Γ

    Fermi LAT Γ line

    [Bobrovskyi et al. (2011)]I The LHC has the potential to detect NLSP decays beyond cosmic-ray constraints• Good sensitivity with clean decay chain: χ̃01 → Z νi and Z → µ

    +µ−

    • Taking all channels can improve sensitivity another order of magnitude [Bobrovskyi et al. (2011)]

    Indirect and collider searches probe interesting range of R-parity violation!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 29 / 32

  • Conclusions and Outlook

    Conclusions and Outlook

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 30 / 32

  • Conclusions and Outlook

    Conclusions

    • Gravitino dark matter with broken R-parity is well motivated from cosmology

    • Consistent with thermal leptogenesis and big bang nucleosynthesis

    • The Gravitino lifetime is naturally in the range of indirect detection experiments

    • Cannot explain the PAMELA and Fermi LAT excesses due to constraints fromgamma rays and antiprotons

    • Multi-messenger approach constrains gravitino lifetime and strength of R-parityviolation

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 31 / 32

  • Conclusions and Outlook

    Outlook

    • Forthcoming experiments like AMS-02 will greatly improve cosmic-ray data

    • Antideuteron searches will probe light gravitino dark matter

    • Neutrino experiments like IceCube will probe heavy gravitino dark matter

    • LHC may discover decays of metastable NLSPs beyond cosmic-ray constraints onR-parity violation

    • We are living in interesting times for dark matter searches!

    Thanks for your attention!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 32 / 32

  • Conclusions and Outlook

    Outlook

    • Forthcoming experiments like AMS-02 will greatly improve cosmic-ray data

    • Antideuteron searches will probe light gravitino dark matter

    • Neutrino experiments like IceCube will probe heavy gravitino dark matter

    • LHC may discover decays of metastable NLSPs beyond cosmic-ray constraints onR-parity violation

    • We are living in interesting times for dark matter searches!

    Thanks for your attention!

    Michael Grefe (IFT UAM/CSIC) Gravitino Dark Matter with Broken R-Parity IFIC València – 21 June 2012 32 / 32

    Motivation for Unstable Gravitino Dark MatterGravitino Dark Matter with Broken R-ParityIndirect Detection of Gravitino Dark MatterImplications for the LHCLimits on the Amount of R-Parity ViolationConclusions and Outlook