176
Grundlagen der Physik II Elektromagnetismus Vorlesungsskript A. Stampa Universität GH Essen (Version 1999)

Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Embed Size (px)

Citation preview

Page 1: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Grundlagen der Physik II

Elektromagnetismus

Vorlesungsskript

A. Stampa

Universität GH Essen

(Version 1999)

Page 2: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Inhalt

Seite

KAPITEL A: Einleitung 6

KAPITEL B: Elektrostatik 8

1. Ladung 8a) Was ist Ladung? 8b) Eigenschaften der Ladung 9c) Techniken zur Aufladung eines Körpers 10d) Nachweis von Ladungen 11e) Anwendungen 12

KAPITEL C: Das eloktrostatische Feld 13

1. Definition der Feldstärke 132. Feldlinien, Fluß 143. Das Gaußsche Gesetz 15

a) Welchen Fluß erzeugt eine Ladung 15b) Beispiele zur Anwendung des Gaußschen Gesetzes 17c) Die differentielle Form des Gaußschen Gesetzes 20

4. Arbeit im elektrischen Feld 21a) Das Potential 21b) Spannung 23

5. Kapazität 25a) Ladung und Spannung 25b) Eigenschaften der Kapazität 26c) Die Berechnung von C 27d) Die Energie des geladenen Kondensators 29e) Verschaltung von Kapazitäten 30

6. Materie in elektrischen Feldern 32a) Der Dipol 32b) Polarisierbarkeit 35c) Metalle im elektrischen Feld 36d) Isolatoren 37

7. Elemente der Vektoranalysis 40a) Einleitung 40b) Die Divergenz eines Vektorfeldes 41c) Der Integralsatz von Gauß 42d) Anwendung: das Gaußsche Gesetz in Differentialform 43e) Die Rotation eines Vektorfeldes 44f) Der Integralsatz von Stokes 45g) Anwendung: die Zirkulationsfreiheit eines Vektorfeldes 46

2

Harald Schüler
Harald Schüler
Harald Schüler
Harald Schüler
Page 3: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

KAPITEL D: Stationäre Ströme 48

1. Strom 48a) Stromrichtung 48b) Geschwindigkeit der Ladungsträger 49

2. Das Ohmsche Gesetz 50a) Physikalische Grundlage 50b) Das elektrische Feld bei Anwesenheit von Strömen 53c) Abhängigkeit der Leitfähigkeit von verschiedenen Faktoren 53

3. Bauelemente, bei denen das Ohmsche Gesetz nicht gilt 554. Elektrolyse 57

a) Was ist Elektrolyse? 57b) Die Faradayschen Gesetze 58c) Leitfähigkeit von Elektrolyten 58d) Das elektrochemische Potential 61e) Die Debyesche Abschirmlänge 63f) Die Spannungsreihe 65g) Galvanische Elemente 65

5. Thermoelektrische Effekte 67

KAPITEL E: Schaltungstheorie 68

1. Bauelemente 68a) Ideale Bauelemente 68b) Linearität 69c) Reale Elemente 70d) Festlegung der Vorzeichen 71

2. Die Kirchhoffschen Gesetze 72a) Knoten und Maschen 72b) Knotenregel 72c) Maschenregel 73d) Einfache Schaltungen mit Quellen und Widerständen 73

3. Einige Konsequenzen der Linearität 75a) Der Überlagerungssatz 75b) Zerlegung von Signalen 76c) Sätze von Thevenin und Norton 77

4. Berechnungsverfahren von linearen Netzwerken 79a) Die Methode der Knotenpunktspotentiale 79b) Methode der Maschenströme 81

5. LRC - Netzwerke 82a) Gewinnung der Differentialgleichung 82b) Anfangsbedingungen 83c) Der allgemeine Fall 90

6. Schaltungen mit Transistoren 93a) Der pn Übergang 93b) Funktionsweise des Transistors 93c) Kennlinienfelder des bipolaren Transistors 94d) Ein Transistorverstärker 96

3

Harald Schüler
Harald Schüler
Page 4: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

e) Der Operationsverstärker 977. Digitalschaltungen 98

a) Schaltungselemente 99b) Kombinatorische Schaltungen 100c) Sequentielle Netzwerke 102d) Fehlerkorrekturen 103

KAPITEL F: Das Magnetfeld 105

1. Statische Magnetfelder 105a) Geschichtliches 105b) Was ist Magnetfeld? 106c) Transformation elektrischer Felder 109d) Bewegung geladener Teilchen im Magnetfeld 116e) Berechnung des Magnetfeldes von Strömen 121f) Kraft zwischen stromführenden Drähten 127g) Elektromagnetische Kraft zwischen zwei Teilchen 128h) Der Verschiebungsstrom 131

2. Das Induktionsgesetz 132a) Die Bewegung eines Leiters im homogenen Magnetfeld 132b) Induktion in eine Leiterschleife 133c) Das allgemeine Induktionsgesetz 134d) Differentielle Form des Induktionsgesetzes 136e) Beispiele 136f) Das Vorzeichen der induzierten Spannung 138

3. Induktivität 140a) Definition der Induktivität 140b) Selbstinduktivität 141

4. Materie im Magnetfeld 146a) Magnetisches Moment einer Stromschleife 146b) Magnetisches Dipolmoment in Atomen 148c) Magnetisierung M 149d) Dia- Para- und Ferromagnetismus 151

KAPITEL G: Wechselstromkreise 155

1. Einleitung 1552. Impedanzen 155

a) Definition 155b) Strom und Spannung an L und C 156c) Wechselstromleistung 157

3. Berechnung von Netzwerken 158a) Die Grundgesetze 158b) Beispiele 158

4. Schwingkreise 160a) Der Parallelschwingkreis 160b) Der LC - Transformator 167c) Der Serienschwingkreis 168

4

Harald Schüler
Harald Schüler
Page 5: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

KAPITEL H: Die Maxwellschen Gleichungen 170

1. Die Grundgleichungen 1702. Einfluß von Materie 1713. Technische Hilfsbegriffe 1724. Stetigkeitsbedingungen 1725. Typen von partiellen Diff. Gleichungen, die sich aus den Maxwell Gleichungen ergeben 173

a) Die Potentialgleichung 173b) DieWellengleichung 173c) Die Diffusionsgleichung 175

5

Harald Schüler
Page 6: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

KAPITEL A

Einleitung

Die Erscheinungen des Elektromagnetismus beruhen auf der Mechanik von Teilchen, zwi-

schen denen elektromagnetische Kräfte existieren. Insofern ist die Elektrodynamik ein Spezi-

alfall der Mechanik. Wie in der Mechanik beschreibt man die Kraftwirkung über Felder. Die

Wechselwirkung zweier geladener Teilchen teilt man in zwei Teilaspekte auf:

Ein geladenes Teilchen erzeugt um sich ein Feld - wenn es ruht ein elektrostatisches

Feld, wenn es sich bewegt außerdem ein magnetisches Feld.

Das zweite Teilchen erfährt in diesem Feld eine Kraft

Dadurch, daß man Methoden entwickelt, das Feld einer Ladungsverteilung (bzw. einer Strom-

verteilung) zu berechnen, vereinfacht sich die Behandlung der Bewegung eines Teilchens un-

ter dem Einfluß vieler anderer drastisch. Die Berechnung der Bewegung einzelner Teilchen ist

für Teilchenstrahlen, etwa in Beschleunigern oder Elektronenstrahl Apparaturen wie Elektro-

nenmikroskopen wichtig, in beschränktem Maße für die Plasmaphysik, z.B. bei der Bewegung

geladener Teilchen im Magnetfeld der Erde. In Atomen und Festkörpern bewegen sich gelade-

ne Teilchen nach Regeln der Quantenmechanik. Die Quantenmechanik wird in dem hier be-

handelten Teil des Grundkurses beiseite gelassen. Wir beschränken uns auf die klassische

Elektrodynamik.

Der Kern der klassischen Elektrodynamik ist die Beschreibung der Felder aus Ladungs- und

Stromverteilungen und die Abhängigkeit der Felder untereinander. Die Grundgesetze sind die

Maxwellschen Gleichungen, die wir hier in folgender Form benutzen:

∇ × E = −•B

∇ × B = µ0 j + ε0

•E

∇ • B = 0

∇ • E =ρε0

ist der Nabla Operator ∇ ∇ =

∂∂x∂∂y∂∂z

6

Harald Schüler
Page 7: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Hinzu treten Gleichungen, die den Einfluß der Materie beschreiben. Die mathematischen

Grundlagen liefert die Vektoranalysis, d.h. die Theorie des Differenzierens von Vektorfeldern.

Die Maxwellsche Theorie ist der Prototyp aller Feldtheorien. Sie ist die Grundlage der elek-

tromagnetischen Wellen und damit der optischen Erscdheinungen. Die Anwendung der Ma-

xwellschen Theorie auf mechanische Probleme erfordert eine Neufassung der Begriffe Impuls

und Energie.

Die Maxwellsche Theorie in Verbindung mit geeigneten Materialgleichungen ist auch die

Grundlage der Theorie der elektrischen Schaltungen. Hier interessiert man sich für Ströme

und Spannungen in einem Netzwerk aus zwei- oder mehrbeinigen Bauelementen wie Wider-

ständen, Strom- und Spannungsquellen, Schaltern, Kondensatoren, Dioden Transistoren u. Ä..

7

Page 8: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

KAPITEL B

Elektrostatik

1. Ladung

a) Was ist Ladung?

Die stabile Materie besteht aus Elektronen, Protonen, Neutronen und Neutrinos. Zwischen

diesen Teilchen gibt es außer der Gravitationskraft die elektrostatische und die magnetische

Kraft. Wenn Teilchen ruhen, ist die magnetische Kraft Null und es wirkt nur die elektrostati-

sche Kraft. Mit diesem Sonderfall befaßt sich die Elektrostatik. In der Elektrostatik gibt es wie

in der Gravitation anziehende Kräfte, z.B. zwischen Elektron und Proton, aber im Gegensatz

zu ihr auch abstoßende Kräfte wie zwischen Elektronen untereinander oder Protonen unterein-

ander. Außerdem gibt es Teilchen, auf die keine elektrostatische Kraft wirkt, wie die Neutro-

nen und Neutrinos. Man sagt, Elektronen sind negativ, Protonen positiv geladen, Neutronen

und Neutrinos sind ungeladen. Ob ein Teilchen geladen oder ungeladen ist erkennt man also

daran - zumindest, wenn man Kernkräfte ausschließen kann, etwa weil der Abstand zwischen

den Teilchen sehr viel größer als die Kernradien ist - daß neben der Gravitation eine weitere

Kraftwirkung auftritt. Gleichnamige Ladungen stoßen sich ab, ungleichnamige ziehen sich an.

Die Kraft ist proportional zu 1/r2 wie beim Gravitationsgesetz. Die elektrostatische Kraft zwi-

schen den Elementarteilchen ist um den Faktor 1040 größer als die Gravitationskraft. Daß man

sie bei großen Körpern nicht bemerkt, liegt daran, daß sich positive und negative Ladungen

anziehen und deswegen in Körpern nahe beieinander liegen, so daß schon Untereinheiten wie

Atome normalerweise aus gleich vielen negativen und positiven Teilchen bestehen und daher

nach außen neutral erscheinen.

Die Bezeichnung "positiv" und "negativ" ist natürlich völlig willkürlich. Es würde sich nichts

an den Aussagen der Physik ändern, wenn man den Elektronen eine positive Ladung zuschrie-

be und den Protonen eine negative. Man könnte auch ganz andere Begriffe verwenden, viel-

leicht "weiblich" und "männlich". Das Anziehungs- und Abstoßungsverhalten geladener Teil-

chen würde damit leidlich suggeriert. Vielleicht auch die Tatsache, daß bei großer Nähe zwei-

er entgegengesetzt geladener Teilchen die Anziehung auf ein drittes Teilchen stark reduziert

ist.

8

Harald Schüler
Page 9: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Die Differenz von Protonen und Elektronen in einem Körper nennt man die Ladung des Kör-

pers. Die Einheit der Ladung wird über die Kraftwirkung eines Stromes im Magnetischen Feld

festgelegt. Primär ergibt sich daraus die Einheit des Stromes. Sie ist Ampere. Wegen

I =dQdt

folgt dann für die Einheit der Ladung

.[Q] = [I][ t] = As = Cb(Coulomb)

Um einen makroskopischen Körper zu laden, genügt es, einen prozentual geringen Teil der

Elektronen fortzunehmen oder hinzuzufügen, Für alle Effekte, die nicht die Differenz von

Elektronen und Protonen betreffen, kann man ne = np setzen. Diese Eigenschaft nennt man

Quasineutralität.

b) Eigenschaften der Ladung

Die Ladung Q hat folgende Eigenschaften

α) Bei allen frei beobachtbaren Elementarteilchen ist der Betrag der Ladung gleich der Ele-

mentarladung e0 = 1,6021892•10-19±4,6•10-25As oder ein Vielfaches. Quarks, die als Bausteine

von Protonen und Neutronen gefordert werden, haben als Ladung ein Vielfaches von .13

e0

Nach heutigem Wissen sind sie allerdings nicht als freie Teilchen beobachtbar.

Während man bei makroskopischen Körpern sehr erfolgreich, und zwar um so erfolgreicher,

je komplexer die Körper sind, von der Regel ausgehen kann, daß es keine Gegenstände gibt,

die genau gleich sind, zeigt die Natur im Mikroskopischen einen ausgesprochenen Hang zur

Uniformierung. Die Elementarladung ist also nicht als ein Mittelwert von vielen Ladungen zu

verstehen, deren Betrag um den Mittelwert schwankt, sondern wie Messungen zeigen, als ein

Wert, der von allen Teilchen, sogar unabhängig davon, ob es sich um positive oder negative

Teilchen handelt, exakt eingehalten wird.

β) Die Ladung bleibt erhalten.

Abb. 1: Ein sich drehender Kreisel hat mehr Mas-

se als ein ruhender, seine Ladung bleibt gleich

9

Page 10: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Dies Gesetz ähnelt der Massenerhaltung für chemische Prozesse, ist aber strenger, da sich

nach der Relativitätstheorie die Masse eines Teilchens mit der Geschwindigkeit ändert. In

Abb. 1 würde bei einer Gravitationskraft die linke Waagschale sinken, wenn man den Kreisel

in Drehung versetzt. Bei einer elektrostatischen Kraft bliebe die Waage austariert. Insbesonde-

re bleibt auch bei Kernprozessen die Ladung erhalten. Man kann z.B. ein Elektron nicht über

die Einsteinsche Formel E = mc2 in Strahlungsenergie umsetzen, da dadurch eine Ladung ver-

nichtet würde. Bei einem Elektron - Positron Paar ist dies möglich, da die Gesamtladung Null

bleibt.

γ) Es gibt Körper, in denen Ladungen sich frei bewegen können.

δ) Die Kräfte von Ladungen überlagern sich linear.

d.h. wirkt von A auf P eine Kraft FA und von B auf P eine Kraft FB, so ist die Gesamtkraft

Fges= FA + FB.

ε) Die Kraft zwischen zwei punktförmigen geladenen Körpern ist .F ∼Q1Q2

2

Im Gaußschen cgs - System setzt man die Proportionalitätskonstante willkürlich gleich 1 und

dimensionslos. In SI - Einheiten sind die Einheiten für F, Q und r festgelegt. Daher ergibt sich

eine experimentell zu ermittelnde Konstante. Man schreibt

(1)F = 14πε0

Q1Q2

r2

Gleichung (1) ist das Coulombgesetz. Die Konstante merkt man sich am besten über die

Beziehung

14πε0

= 9 ⋅ 109 Nm2

(As)2

ε0 ist die elektrische Feldkonstante oder die Dielektrizitätskonstante des Vakuums.

c) Techniken zur Aufladung eines Körpers

α) Reibungselektrizität

Die seit dem Altertum verwendete Methode ist das Reiben zweier Körper. Da die Kräfte der

Körper auf die Elektronen verschieden groß sind, gehen diese bei engem Kontakt von einem

zum andern über. Das Vorzeichen der Ladung hängt dabei vom Stoff und dessen Oberflächen-

beschaffenheit ab. Zu diesen Prozessen kann man alle zählen, bei denen durch engen Kontakt

10

Page 11: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

unterschiedlicher Materialien Ladung entsteht wie beim Transport von feinkörnigem Material

auf Förderbändern und durch feine Tröpfchen in der Dusche oder in Gewitterwolken. Gewit-

terwolken sind riesige elektrostatische Generatoren, die Energie des thermischen Aufwindes

in elektrostatische Energie überführen, wobei Spannungen von größenordnungsmäßig 8·108 V

entstehen. In der Technik wird Reibung zur Erzeugung hoher Spannungen in Bandgeneratoren

(van de Graaf - Generatoren) ausgenutzt. Dies sind nicht nur Spielzeuge, mit denen im Phy-

sikunterricht Elektrostatik demonstriert wird, sondern wichtige Geräte in der Kernphysik zu

Erzeugung von Spannungen zur Beschleunigung von Teilchen.

β) Äußerer Lichtelektrischer Effekt

Beim lichtelektrischen Effekt werden durch elektromagnetische Strahlung wie Licht oder

Röntgenstrahlung Elektronen aus einer Metalloberfläche ausgelöst. Die quantitative Deutung

dieses Effektes spielte eine zentrale Rolle bei der Entwicklung der Quantenmechanik. Er bietet

eine der empfindlichsten Methoden zum Nachweis von Licht mit sogenannten Photomultipli-

ern oder auf deutsch Sekundärelektronenvervielfachern.

γ) Piezoeffekt

Beim Piezoeffekt (entdeckt durch die Brüder Curie) wird bei der Verformung eines Kristalls

Ladung an der Oberfläche angesammelt. Piezokristalle, z.B. Bariumtitanat, werden in Gasan-

zündern benutzt oder in Meßvorrichtungen zur schnellen Druckmessung.

δ) In Hochspannungsnetzgeräten greift man auf die Energie, die das Netz liefert, zurück. Die-

se wird in Generatoren eines Kraftwerks letztenendes über die Lorentzkraft erzeugt.

ε)Andere Mechanismen zur Ladungserzeugung sind Thermoemission, Teilchenstöße z.B. Se-

kundärelektronenerzeugung u.a.m.

d) Nachweis von Ladungen

Abb. 2: Das Elektrometer

Ladungen weist man in der Elektrostatik über ihre Kraftwirkung nach. Empfindliche Nach-

weisgeräte sind Elektrometer (Abb. 2).

11

Page 12: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb.3: Im Versuch von Millikan kann man die Ladung von

Öltröpfchen bis herab zu einer Elementarladung messen.

Im Öltröpfchenversuch nach Millikan bringt man einzelne Elementarladungen auf feine Öl-

tröpfchen, die in einem geladenen Kondensator in Schwebe gehalten werden. Im Feldef-

fekttransistor (FET) erzeugt eine Ladung ein Feld, das einen Querstrom behindern kann. mit

kleinen Ladungen können große Querströme gesteuert werdsen. Dies ist die Grundlage von

elektronischen Geräten zur Ladungsmessung.

e) Anwendungen der Elektrostatik

Auf Plastikteilen wie Schallplatten stört die elektrostatische Aufladung, da durch sie geladene

Staubpartikel angezogen werden. Da Reibungselektrizität ein Oberflächeneffekt ist, ist sie bei

kleinen Partikeln besonders ausgeprägt. Man kann sie daher z.B. zur Entstaubung von Rauch

benutzen. In Kopergeräten wird die Anziehung von Staub ausgenutzt. Das Herzstück in ihnen

ist eine dünne Schicht amorphen Selens auf einer geerdeten Metallwalze. Selen ist eine Isola-

tor, der bei Belichtung leitend wird. Die Selenschicht wird mit positiver Ladung besprüht und

belichtet. Die belichteten Stellen werden leitfähig und führen die Ladungen an die geerdete

Platte ab. Negativ geladene Farbstoffteilchen des Toners werden auf die Selenschicht gesprüht

und bleiben auf den geladenen Stellen, die dem dunklem Muster der Vorlage entsprechen, haf-

ten. Ein Papier, das positiv geladen wird, wird auf die Selenwalze gelegt und zieht die Farb-

partikel an, die mit intensivem Licht eingebrtannt werden.

Andere Anwendungen sind Trennung von Salzgemischen, Elektrosprühverfahren, Beschleuni-

gung von Teilchen in der Hochenergiephysik.

12

Page 13: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

KAPITEL C

Das Elektrostatische Feld

1. Definition der Feldstärke

Bringt man in die Umgebung einer Ladung Q0 eine Probeladung Qp, so wirkt auf diese die

Kraft . Es existiert also ein Kraftfeld, das von Q0 und Qp abhängig ist. ManF = 14πε0

Q0Qp

r2rr

möchte das Feld aber lieber als Eigenschaft von Q0 alleine sehen. Um eine Größe zu erhalten,

die unabhängig von Qp ist, definiert man die elektrische Feldstärke

(1)E = FQp

Abb. 4: Die Richtung der Feldstärke ist die

der Kraft auf eine positive Ladung

Ist E bekannt, läßt sich mit dieser Formel F berechnen. Die Richtung ist gegeben durch die

Richtung der Kraft auf eine positive Probeladung. Die Kraft zwischen zwei geladenen Kör-

pern der Ladung Q1 bzw. Q2 und dem Abstand r rechnet man dann so aus: Zuerst bestimmt

man das Feld von Q1, indem man die Kraft auf die Probeladung bei r bestimmt.

F = 14πε0

Q1Qp

r2

Nach Definition von E erhält man daraus die Feldstärke

E = 14πε0

Q1

r2

Die Kraft auf Q2 ist dann F = Q2E

F = 14πε0

Q1Q2

r2

13

Harald Schüler
Page 14: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 5: Das Feld einer Punktladung hat eine höhere Symmetrie

als die Kraft zwischen zwei Ladungen

Für ein geladenes Punktteilchen hat man natürlich nicht viel gewonnen. Bei komplizierten La-

dungsverteilungen vereinfacht sich u.U. die Rechnung erheblich, da die Symmetrie erhöht

wurde. Z. B. ist die Berechnung der Kraft einer ausgedehnten kugelförmigen Ladungsvertei-

lung auf ein Elektron ein achsensymmetrisches Problem, das heißt das Resultat hängt von

zwei Variablen r und z ab, wobei z entlang der Richtung der Verbindungslinie beider Ladun-

gen zählt, r der Abstand von dieser Verbindungslinie ist. Die Bestimmung der Feldstärke einer

kugelförmigen Ladungsverteilung ist hingegen ein kugelsymmetrisches Problem, d.h. alles

hängt nur von einer Variablen r ab. Wir werden dies in den Beispielen des nächsten Abschnit-

tes ausnutzen. Man beachte, daß man das Feld der Probeladung nicht zu berechnen braucht.

Warum spricht man dann überhaupt von einer "Probe"ladung und stellt sich diese klein vor?

Die Probeladung hat im Prinzip eine Rückwirkung auf die Ladungsverteilung, die das Feld er-

zeugt, d.h. führt man eine Probeladung in die Nähe einer anfangs kugelsymmetrischen La-

dungsverteilung, so können durch das Feld der Probeladung Verschiebungen erzeugt werden.

Wir wollen also diese Verschiebungen vernachlässigen dürfen.

Ein wesentlicher zweiter Aspekt, der mit der Einführung von Feldern verbunden ist, besteht

darin, daß Felder sich nach der Relativitätstheorie nur mit endlicher Geschwindigkeit im

Raum ausbreiten können. Wir betrachten zunächst nur Situationen, in denen die endliche Aus-

breitungsgeschwindigkeit der Felder keine Rolle spielt.

2. Feldlinien, Fluß

Die Feldlinie ist eine Kurve im Raum, die so konstruiert ist, daß in jedem Punkt E tangential

zur Kurve verläuft. Durch jeden Punkt des Raumes läßt sich eine Feldlinie konstruieren. Bei

graphischen Darstellungen eines Feldlinienbildes zeichnet man eine willkürliche Anzahl von

Feldlinien. Die Feldliniendichte, d.h. die Anzahl der Feldlinien pro senkrecht zu E stehender

Fläche zeichnet man proportional zu E.

E = NA

14

Page 15: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Mit dieser Definition ist für ein allgemeines Kraftgesetz nicht gewährleistet, daß keine Kraftli-

nien im Ladungsfreien Raum enden. N = EAn kann man als Definition der Anzahl von Feldli-

nien auffassen. Um von ganzen Zahlen frei zu kommen, sagt man

Φ = EAn = EA cos α = E • A

Abb. 6: Der Fluß durch die Fläche A hängt vom Winkel zwi-

schen Feld und Flächennormalen ab.

ist der Fluß des elektrischen Feldes durch A. α ist der Winkel zwischen Feldrichtung und Flä-

chennormalen. Für den Fall, daß sich E über die Fläche ändert, verallgemeinert man die Defi-

nition zu

(2)Φ = ∫ E • dA

In einem Geschwindigkeitsfeld v(r) ist das Flüssigkeitsvolumen, das durch dieΦ = ∫ v • dA

Fläche des Integrationsbereichs tritt. Der Fluß ist mit einem Vorzeichen behaftet. Wenn cosα

negativ ist, ist auch Φ negativ. Das Vorzeichen gibt an, welchen Richtungssinn die Feldstärke

hat. Bei geschlossenen Flächen gilt die Konvention, daß bei einem positiven Vorzeichen die

Feldlinien aus den geschlossenen Bereich hinausführen.

3. Das Gaußsche Gesetz

a) Welchen Fluß erzeugt eine Ladung?

Für eine Kugeloberfläche vom Radius R mit einer Punktladung Q im Mittelpunkt (Abb. 7)

steht E überall senkrecht auf der Fläche und |E| ist konstant. Der Gesamtfluß durch die Kuge-

loberfläche ist damit

Φges = E ⋅ AKugel

15

Page 16: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 7: Der Fluß, der aus einer Punktladung

kommt, läßt sich sofort hinschreiben.

Da und A = 4πR2 folgt . Der Gesamtfluß ist unabhängig vom Kugelra-E =Q

4πε R2Φges =

dius. Im Feldlinienbild heißt das, daß die Anzahl der Feldlinien (die ja proportional zum Fluß

ist) auf jeder Kugel um die Ladung gleich groß ist. Die Feldlinien enden nicht im ladungsfrei-

en Raum sondern nur auf der Ladung. In einer stationären Flüssigkeitsströmung hätte der Fluß

dieses Verhalten, wenn sich eine punktförmige Quelle im Kugelmittelpunkt befindet. Die ge-

samte Flüssigkeitsmenge, die die Quelle hergibt, tritt dann durch eine solche Kugelfläche hin-

durch. Sie tritt dann aber auch durch jede andere Oberfläche, die die Quelle ganz umgibt, un-

abhängig von der Form der Oberfläche und von der Verteilung der Quellstärke innerhalb der

geschlossenen Fläche.

Abb. 8: Von dem Fluß durch eine Kugelschale um eine Punktladung

läßt sich auf den Fluß durch eine beliebige Fläche schließen, die die

Punktladung umgibt.

Dieser Satz gilt für die elektrische Feldstärke auch und heißt dann Gesetz von Gauß. Formal

sieht man seine Gültigkeit etwa so ein: Für die Kugeloberfläche ist bewiesen, daß

, wenn eine Punktladung im Mittelpunkt liegt. Bei einer beliebig geformten Flä-∫ E • dA =Qε

che, die die Kugel ganz umgibt, kann jedes Flächenelement dA mit Strahlen durch den Mittel-

punkt der Kugel auf ein Flächenelement der Kugel dAK projiziert werden (Abb. 8). Durch die

radiale Verschiebung ergibt sich keine Flußänderung, da die Feldstärke mit 1/r2 abnimmt, das

Flächenelement mit r2 zunimmt. Auch durch die Kippung ergibt sich keine Flußändereung

nach der Definition des Flusses (dAn = dA cosα). Soweit der Beweis für eine Punktladung. Da

sich für mehrere Ladungen die Feldbeiträge der einzelnen Ladungen an jeder Stelle der Ober-

fläche addieren ( ), und für jede Ladung der Gaußsche Satz gilt,E = Σ E i

∫ Ei • dA =Qi

ε0

16

Page 17: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

gilt er auch für die Gesamtladung Q.

∫ E • dA = ∫ Σ Ei • dA = Σ ∫ E i • dA = Σ Qi

ε =Qε

Der Gesamtfluß des elektrischen Feldes, das aus einer Ladung Q tritt, ist Q/ε0.

(3)∫ E • dA =Qε0

Das Gaußsche Gesetz ist eine Formulierung einer der Maxwellschen Gleichungen. D.h. es

wird statt des Coulombschen Gesetzes als Grundgesetz genommen. Die Implikationen von

Coulomb und Gauß Gesetz sind gleich. Ursprünglich ist das Coulomb Gesetz ein Fernwir-

kungsgesetz, d.h. man nimmt eine gleichzeitige Wirkung der Kräfte an beiden Partnern an. Im

Lichte der Relativitätstheorie muß man voraussetzen, daß sich E mit endlicher Geschwindig-

keit ausbreitet. Dieser Übergang zu Feldern mit endlicher Ausbreitungsgeschwindigkeit geht

nicht ohne Komplikationen ab. Man gerät dann z.B. mit dem Gesetz actio = reactio in

Schwierigkeiten.

Das Gaußsche Gesetz kann in Einzelfällen benutzt werden, um die elektrische Feldstärke in

der Umgebung einer Ladungsverteilung auszurechnen. Hierzu legt man eine Fläche durch den

Punkt, an dem E berechnet werden soll. Die Form der Fläche wählt man so, daß E auf ihr oder

zumindest auf bestimmten Stücken von ihr konstant ist.

b) Beispiele zur Anwendung des Gaußschen Gesetzes

α) Feld außerhalb einer kugelförmigen Ladungswolke der Ladung Q im Abstand r vom

Mittelpunkt.

Abb. 9: Das Feld einer kugelförmigen Ladungswolke

läßt sich aus dem Gaußschen Gesetz ermitteln.

Als Referenzfläche wird eine Kugel mit dem Radius r um den Mittelpunkt gewählt. Nach dem

Gaußschen Gesetz kann man dann schreiben

17

Page 18: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Φ = EA =Qε

Daraus folgt .E =Q

4πε r2

Das Feld ist das gleiche wie von einer Punktladung im Mittelpunkt der Ladungskugel. Von

der Feldverteilung kann man nicht eindeutig auf die Ladungsverteilung schließen.

β) Feld innerhalb einer geladenen Hohlkugel vom Radius R

Abb. 10: Das Feld innerhalb einer geladenen Kugelschale

muß verschwinden

Nach dem Gaußschen Gesetz gilt für eine Kugel mit dem Radius r, wobei r < R (Abb. 10)

EA =Qε

Da sich innerhalb dieser Kugel keine Ladung befindet, muß Q = 0 gesetzt werden. Es folgt

E = 0. Man beachte, daß hier die Ladungsverteilung außerhalb der betrachteten Kugelschale

überhaupt nicht eingeht.

γ) Das Feld zwischen zwei geladenen Metallplatten

Abb. 11: Zwei geladene Metallplatten können als Ausschnitt aus

zwei großen geladenen Kugelschalen betrachtet werden

Zunächst werden zwei konzentrische geladenen Kugeln betrachtet (Abb.11). Nach dem Gauß-

schen Gesetz ist mit der gleichen Argumentation wie oben unter β das Feld im Außenraum

Null, da für Q die algebraische Summe zu nehmen ist, und diese verschwindet, wenn die bei-

den Kugelschalen gleiche Ladungsbeträge besitzen, was z.B. dann der Fall ist wenn sie da-

durch geladen werden, daß Ladung von der einen auf die andere übertragen wird. Im Innern

18

Page 19: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

der kleineren Kugel ist die Feldstärke nach der Argumentation unter β ebenfalls Null. Insge-

samt Ea = 0 (Abb. 11). Das Feld ist also auf den Raum zwischen den Kugeln beschränkt.

Abb.12: Das Gaußsche Gesetz angewandt auf einen

Plattenkondensator

Zwei ebene Platten bilden einen Ausschnitt aus dem "Kugelkondensator". Wenn man von

Randeffekten absehen darf - dies ist der Fall, wenn der Abstand der beiden Platten d klein ge-

genüber der Linearausdehnung der Platten ist - wird das Feld durch das Herausschneiden der

beiden Platten aus der Kugel nur wenig gestört, und es gilt auch hier Ea = 0 und E = const im

Innern. Das Gaußsche Gesetz wird auf die in Abb. 12 angedeutete Fläche angewandt. Diese

wird in eine zwischen den Platten und eine außerhalb aufgeteilt. Die Flächengröße zwischen

den Platten ist gleich der Plattenfläche A. Auf ihr wird E als konstant angenommen, während

die äußere Fläche beliebig groß ist. Auf ihr soll E verschwinden. Das Gaußsche Gesetz

schreibt sich dann

∫ E • dA+ ∫ E • dA =Qε0

Die Integrale lassen sich lösen: . Es folgt∫ E • dA = EA ∫ E • dA = 0

E =Q

Aε0

Man kann das Feld eines Plattenkondensators auch durch folgende Betrachtung ermitteln: Wir

gehen von einer geladenen Platte aus. Die umgekehrte Ladung sei im Unendlichen. Aus Sym-

metriegründen ist das Feld in einem Halbraum homogen und inbeiden Halbräumen vom Be-

trage her gleich aber entgegengesetzt. Der gesamte Fluß, der die beiden Seiten der Platte ver-

läßt ist nach dem Gaußschen Gesetz

E1 ⋅ 2A =Qε0

E1 =Q

2Aε0

19

Page 20: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Bringt man zwei solcher Platten mit gleichen Ladungen entgegengesetzten Vorzeichens auf

den Gegenseitigen Abstand d, so addieren sich in jedem der Teilräume die Felder der einzel-

nen Platten. Im Innenraum ergibt sich eine Verdopplung, E = 2E1 im Außenraum eine Aus-

löschung der Felder der Einzelplatten.

c) Die differentielle Form des Gaußschen Gesetzes

Abb. 13: Die Änderung der elektrischen Feldstärke

in einem Volumenelement

Es wird eine eindimensionale Ladungsverteilung betrachtet, d.h. eine Ladungsdichte ,ρ =∆Q∆V

die nur von einer Koordinate x abhängig sei. Man kann diese als Ausschnitt aus einer kugel-

förmigen Verteilung auffassen mit ∆x = ∆r << R. Die Feldstärke hat dann nur die Komponen-

te Ex. Das Gaußsche Gesetz auf das Volumenelement ∆V = ∆x·A angewandt ergibt (s. Abb.

13):

−EA + (E + ∆E)A =ρ(x)A∆x

ε0

Dabei wurde berücksichtigt, daß durch die Randflächen kein Fluß tritt. Es bleibt übrig:

, im Grenzfall ∆Ex

∆x=

ρ(x)ε0

dEdx

=ρ(x)ε0

Wenn ρ auch von den anderen Ortskoordinaten abhängig ist, ergibt sich auch in den anderen

Richtungen ein elektrisches Feld. Der allgemeine Fall wird am elegantesten mit der Vektor-

analysis behandelt (s. Abschnitt 7 dieses Kapitels). Wir können uns aber jetzt schon vorstel-

len, daß die Verallgemeinerung auf drei kartesische Koordinaten folgendermaßen aussieht:

∂Ex

∂x+

∂Ey

∂y+ Ez

∂z=

ρε0

Man schreibt

20

Page 21: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

(4)∇ • E =ρε0

wobei der Nablaoperator ist. Man spricht "Divergenz E" und schreibt häu-∇ =

∂/∂x∂/∂y∂/∂z

∇ • E

fig auch "div E".

4. Arbeit im elektrischen Feld

a) Das Potential

Bewegt man eine Probeladung im elektrischen Feld von einem Punkt A zu einem Punkt B, so

ist wie im Gravitationsfeld die Arbeit unabhängig von der Form des Weges zwischen A und

B. Bewegt man sie von A nach B und von B nach A zurück, so ist die Gesamtarbeit Wges = 0.

(5)

CA

B

∫ F • dr =

CA

B

∫ F • dr → ∫ F • dr = 0

Abb. 14: Die Arbeit, die notwendig ist, in einem elektrischen Feld ei-

ne Ladung entlang dem Weg c1 zu transportieren, ist die gleiche wie

entlang c2.

Für Jemanden, der an den Energiesatz glaubt - und welcher Physiker möchte dies geliebte

Grundprinzip aufgeben? - scheint diese Aussage selbstverständlich: besagt sie doch nur, daß

man kein Perpetuum Mobile bauen kann, indem man nur genügend geschickt eine Ladung in

einem elektrischen Feld kreisen läßt. Man muß allerdings nicht vorschnell folgern, daß es

überhaupt keine Felder F(r) geben darf, für die . Magnetfelder haben genau diese∫ F • dr ≠ 0

Eigenschaft.

Man beweist Gleichung (5), indem man ihn zuerst für eine Punktladung zeigt. Hier gehen bei

der Berechnung der Arbeit nur die Anteile ein, die entlang der radialen Komponenten des We-

gelementes dr verrichtet werden und diese sind unabhängig vom Weg. Für eine Ladungsver-

teilung ergibt sich der Satz dann aus dem Superpositionsprinzip.

Fges = F1 + F2 = Σ F i

21

Page 22: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

∫ Fges • dr = ∫ F1 • dr + ∫ F2 • dr + ... = 0

Die rechte Seite verschwindet, da jedes einzelne Integral verschwindet. In einem elektrosta-

tischen Feld lassen sich also Teilchen nicht durch einen zyklischen Prozeß beschleunigen.

Man kann daher eine potentielle Energie definieren

Wpot(r) = −r

r

∫ F • dr

Der Anfangspunkt r0 kann beliebig gewählt werden, da im Grunde nur Potentialdifferenzen

interessieren. Bewegt man sich mit einer Probeladung auf einer Fläche, die immer senkrecht

auf E steht, so wird keine Arbeit geleistet (cosα = 0!). Auf der gesamten Fläche hat die Probe-

ladung die gleiche Energie. Man nennt sie daher Äquipotentialfläche. Metallflächen sind in

der Elektrostatik Äquipotentialflächen. Statt eines Anfangspunktes wählt man also bei der Be-

rechnung der potentiellen Energie eine Äquipotentialfläche als Nullniveau aus. Bei kugelsym-

metrischen Ladungen wählt man r0 = ∞ oder die Kugeloberfläche aus. Bei elektrischen Schal-

tungen häufig die Erdoberfläche ("Masse").

Um eine Feldgröße zu erhalten, die unabhängig von der Größe der Probeladung ist, definiert

man wie beim elektrischen Feld das elektrische Potential:

(6)ϕ =Wpot

Qp

Da an jeder Stelle aufgrund der Definition der Arbeit W ~ F und aufgrund des Gaußschen Ge-

setzes F ~ Q, ist ϕ unabhängig von Qp. Die Einheit des Potentials ergibt sich aus Gleichung

(6)

[ϕ] = NmAs

= JouleAs

= V(Volt)

Oft wird in elektrischen Problemen die Grundeinheit kg mit der Beziehung

1VAs = 1J = 1kgm2

2

eliminiert. Es erscheint dann in der Dimension statt der Einheit kg die Einheit V.

22

Page 23: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Wenn das Potential bekannt ist, läßt sich die potentielle Energie eines Körpers der Ladung Qp

über die Beziehung (6) berechnen:

.Wpot = ϕQp

Teilt man die Gleichung an beiden Seiten durch Qp und beachtet, daßWpot = −∫ F(r) • dr

Wpot/Qp = ϕ, und F/Qp = E, so sieht man, daß

(7)ϕ = −

r

r0∫ E • dr

Aus Gleichung (7) ergibt sich die Einheit der Feldstärke bezogen auf die Einheit Volt statt kg.

[E] = Vm

Wenn ϕ bekannt ist, läßt sich durch Umkehren der Gleichung (7) eine beliebige Komponente

von E berechnen. Man leitet ϕ nach dieser Ortskoordinate ab und läßt die anderen konstant.

, , ∂ϕ∂x

= −Ex∂ϕ∂y

= −Ey∂ϕ∂z

= −Ez

Man schreibt mit dem Nabla Operator und spricht "Gradient von ϕ".∇ϕ = − E ∇ =

∂/∂x∂/∂y∂/∂z

grad ϕ ist ein Vektor, der in Richtung -E zeigt und den Betrag von E hat. In elektrostatischen

Problemen, in denen E ausgerechnet werden soll, ist es häufig einfacher, zuerst das Potential

zu bestimmen und daraus durch Gradiendenbildung E zu ermitteln.

b) Spannung

Abb. 15: Zwischen Körpern, die geladen sind,

herrscht eine Spannung.

Die Potentialdifferenz zwischen zwei Punkten nennt man Spannung. U = ϕ(B) - ϕ(A). Sie ist

wie das Potential ein Skalar und hat die gleiche Dimension Volt. Um das Vorzeichen

23

Page 24: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

eindeutig festzulegen, verläßt man sich in der Technik nicht auf einen Formalismus, etwa in-

dem man in der Beziehung eins der beiden Vorzeichen festlegt, sondern manU =±B

∫ E • dr

zeichnet in die Schaltbilder Meßpfeile (auch Zählpfeile genannt). Der Meßpfeil gibt mit seiner

Spitze an, wo der - Pol des Meßinstrumentes anzuschließen ist, um die Spannung mit dem

vorgesehenen Vorzeichen korrekt anzuzeigen. Man beachte, daß zwischen zwei Raumpunkten

in der Umgebung einer Ladung eine Spannung herrschen kann, unabhängig davon, ob hier

Elektroden oder andere Materie im Raum sind. Mit einem normalen Voltmeter würde man al-

lerdings im Vakuum oder im Luft erfüllten Raum nichts messen, da es zur Anzeige La-

dungstransport benötigt.

Durchläuft ein Teilchen der Ladung Q eine Spannung U, so verliert oder gewinnt es potentiel-

le Energie Wpot = QU. Die Energie, die ein Teilchen mit der Elementarladung e0 gewinnt - oder

verliert - wenn es die Spannung U durchläuft, nennt man U Elektronenvolt (eV). Aus dieser

Definition ergibt sich die Umrechnung

WJoule

= WeV

⋅ e0 = WeV

1, 6 ⋅ 10−19

Die Einheit eV ist an die Verhältnisse im Atom angepaßt. Die hier typischerweise vorkom-

menden Energien wie Anregungsenergie, Dissoziationsenergie haben die Größenordnung von

einigen eV. Wegen der Äquivalenz von Masse und Energie ist die Einheit eV/c2 ein Maß für

die Masse. Man läßt etwas leger das c2 meistens weg und sagt z.B. ein Elektron hat die Ruhe-

masse 0,5 MeV (Megaelektronenvolt). Auch andere Größen, die mit einer Energie zusammen-

hängen, wie z.B. die Frequenz einer Strahlung (E = hν) oder die Temperatur werden häufig in

eV ausgedrückt (10 000K ~ 1eV).

Beispiel:

Ein Elektron starte mit der Geschwindigkeit v = 0 an einer Elektrode und werde durch die

Spannung U an einer zweiten Elektrode beschleunigt. Welche Endgeschwindigkeit erreicht

es?

Energiesatz:

Wpot(A) + Wkin(A) = Wpot(B) + Wkin(B)

Wkin(A) = 0

Wkin(B) = Wpot(A) - Wpot(B) = e0U

24

Page 25: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

12

mv2 = e0U

Die Endgeschwindigkeit ist nicht vom speziellen Verlauf von E oder der Geometrie abhängig.

Möchte man z.B. in einer Beschleunigungsstrecke eine möglichst große Endgeschwindigkeit

erreichen, so ist es unnötig, durch besondere Formgebung der Elektroden oder durch Variation

des Abstandes der Elektroden die Apparatur optimieren zu wollen. Die Endgeschwindigkeit

ist alleine von der angelegten Spannung abhängig.

5. Kapazität

a) Ladung und Spannung

Abb. 16 und 17: Je größer die Ladung, desto größer

die Feldstärke, und zwar an jedem beliebigen Punkt.

Lädt man eine Anordnung von zwei Leitern auf, indem man Ladung von einem Leiter auf den

anderen überführt, so entsteht in der Umgebung der Leiter ein elektrisches Feld, dessen Feld-

stärke an jedem Punkt der Ladung, die auf dem Leiter sitzt, proportional ist.

E ~ Q

Andererseits ist wegen die Spannung der Feldstärke proportional und damitU = ∫ E • dr

U ~ Q

Man schreibt (8)Q = CU

25

Page 26: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

und nennt C die Kapazität der Anordnung. Ihre Dimension ist nach Gleichung (8)

(Farad)[C] = AsV

= F

b) Eigenschaften der Kapazität

Setzt man U = 1V, so ist Q = C. C ist also die Ladung, die eine Kapazität aufnehmen kann, um

einen Spannungsanstieg von 1V zu erzeugen. Man beachte, daß die Kapazität kein Eimer für

Ladungen ist. Das Fassungsvermögen eines Eimers läßt sich angeben, etwa 10l. Die Kapazität

hat im Prinzip ein beliebig hohes Fassungsvermögen, wenn man beliebige Spannungen zuläßt.

Sie verhält sich also eher wie ein Luftballon aus Gummi, den man mit Wasser füllt: Wenn

man etwas mehr hinengibt, wird er einfach größer. Das Ende ist dadurch gegeben, daß er

platzt. Auch die maximale Ladungsmenge, die ein Kondensator faßt, ist dadurch gegeben, daß

er nicht beliebige Spannungen aushält. Die Kapazität ist eine Größe, die nur von der Geome-

trie der Anordnung der Elektroden und von den Eigenschaften des dazwischenliegenden Ma-

terials abhängt. C kann daher für eine räumlich stabile Anordnung von vorneherein bestimmt

werden. Aus einer Spannungsmessung kann dann auf die Ladung oder die Ladungsänderung

geschlossen werden. Die Kapazität ist nur relativ zu einer zweiten Elektrode definiert. Wenn

nur eine Elektrode angegeben ist, meint man implizit, die zweite Elektrode ist die Erde.

In einer Schaltung ist die Gesamtladung Null. Wenn sich an einer Stelle Ladung ansammelt,

sagt man, sie hat gegenüber der Stelle, wo die Ladung fehlt, eine Kapazität. Eine Kapazität hat

also immer zwei Anschlüsse. Genau die Ladung, die in den einen Anschluß hineinfließt, fließt

aus dem anderen heraus. Hier sieht man, daß das Analogon zum Wassereimer völlig

zusammenbricht.

Wenn man eine bestimmte Ladungsmenge auf eine Kapazität bringt, so ändert sich U um so

weniger, je größer C ist. Dies sieht man besonders deutlich, wenn man die Gleichung (8) auf

beiden Seiten differenziert. Da folgtI =•Q

(9)I = C•U

Gleichung (9) ist der Zusammenhang von Strom und Spannung an einem Kondensator bei be-

liebigem Zeitverlauf. Setzt man so ist I = C. C gibt an, wieviel Strom in einen Kon-•U= 1 V

sdensator fließen muß, damit er einen Spannungsanstieg von 1V/s erzeugt. Ein Kondensator er-

laubt es also, Kurvenverläufe, die als Spannung vorliegen, zu differenzieren und solche, die

26

Page 27: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

als Strom vorliegen zu integrieren. Große Kondensatoren werden zum Glätten von Spannun-

gen, z.B. am Ausgang von Netzgeräten benutzt, da sie große Ladungsmengen aufnehmen kön-

nen, ohne daß sich die Spannung an ihnen erhöht (Abb. 18).

Abb. 18: Kondensatoren werden zum Glätten von

Spannungen benutzt

c) Die Berechnung von C

Zur Berechnung von C ermittelt man zunächst - z.B. mit dem Gaußschen Satz - aus einer ge-

gebenen Ladung Q die Feldstärke. Aus errechnet man die Spannung U. Das Er-U = ∫ E • dr

gebnis hat dann die Form Q = ( )U, wobei die Klammer kein U und Q mehr enthält. Da Q =

CU die Kapazität definiert (genaugenommen |Q| = C|U|, d.h. Kapazitäten sind immer positiv),

ist der Klammerausdruck die Kapazität.

α) Die Kapazität eines Plattenkondensators

Abb. 19: Zur Geometrie des Plattenkondensators

Die Geometrie ist in Abb. 19 gezeigt. Nach dem Gaußschen Satz gilt, wenn der Abstand der

Platten klein gegenüber der Linearausdehnung der Platten ist

E =Q

ε0A

Da E konstant ist, wird aus U = , U =Ed. Setzt man hier E nach dem Gaußschen Satz∫ Edx

ein, wird daraus und daher . Als Kapazität erhält man alsoU =Q

ε0Ad Q = ε0A

dU

C = ε0Ad

Die Proportionalität zu A ist anschaulich verständlich, da auf größeren Flächen bei sonst glei-

chen Bedingungen mehr Ladung Platz hat. Die umgekehrte Proportionalität zu d liegt daran,

27

Page 28: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

daß und U bei gleicher Ladung proportional zum Plattenabstand ist. Um eine großeC =QU

Kapazität zu erhalten, muß d möglichst klein sein. In Kondensatoren erreicht man dies, indem

man zur Isolation zwischen den Platten eine Kunststofffolie nimmt, die zusammen mit den

Elektroden aus Metallfolie zu einem Paket gewickelt wird. Die Eigenschaften des Isolations-

materials ("Dielektrizitätskonstante") können außerdem die Kapazität erhöhen. Noch kleinere

Abstände erzeugt man mit elektrolytisch gewonnenen Schichten im "Elko". In Metallpapier-

kondensatoren (MP - Kondensatoren) werden die Elektroden auf beide Seiten des isolierenden

Papiers bedampft. Bei Durchschlägen dampft das Metall in der Umgebung des Loches weg,

wodurch die erforderliche Durchschlagsfestigkeit wieder hergestellt wird. MP - Kondensato-

ren sind selbstheilend.

Lädt man einen Plattenkondensator auf und trennt die Spannungsquelle vom Kondensator, so

bleibt die Ladung konstant. Vergrößert man jetzt den Abstand, so wird C kleiner. Da Q = CU

wird U größer. Eine technisch genutzte Möglichkeit zur Spannungserhöhung besteht darin,

daß man mehrere parallelgeschaltete Kondensatoren auflädt (Abb. 20), und bei der Nutzung

hintereinanderschaltet.

Abb. 20: Das Prinzip der Kaskadenschaltung

β) Kapazität einer geladenen Kugel gegen unendlich

Abb. 21: Diese Kugel soll gegenüber Un-

endlich (= Erde) aufgeladen sein

Der Rechengang ist der gleiche wie beim Plattenkondesator

E =Q

4πε r2

U =∞

∫ Edr =Q

4πε0

∫ 1r2

dr = −Q

4πε0

1r

R

∞=

Q4πε0R

28

Page 29: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Q = 4πε0RU

C = 4πε0R

Aus der Proportionalität von C und R läßt sich ableiten, daß die Feldstärke an metallischen

Oberflächen um so größer ist, je kleiner der Krümmungsradius ist. Als Modell betrachtet man

zwei metallische Kugeln vom Radius R1 und R2, die leitend miteinander verbunden sind

(Abb. 22). Das Potential an ihrer Oberfläche ist konstant, da es sich um metallische Kugeln

handeln soll, daher ist die Spannung gegen Erde gleich.

Abb. 22: zwei miteinander metallisch verbundene

Kugeln haben das gleiche Potential

U1 = U2 = U

Da Q1= C1U = 4πε0R1U und Q2 = C2U = 4πε0R2U folgt . Die Ladung verteilt sich so,Q1

Q2= R1

R2

daß das Verhältnis der Ladungen auf den Kugeln gleich dem ihrer Radien ist. Für die Feldstär-

ken gilt dann nach dem Gaußschen Gesetz

, E1 =Q1

4πε0R2E2 =

Q2

4πε0R2

Hieraus folgt und mit dem obigen Ergebnis E1

E2=

R22Q1

R2Q2

E1

E2= R2

R1

Die Feldstärken verhalten sich umgekehrt wie die Radien der Kugeln.

d) Die Energie eines geladenen Kondensators

Abb. 23: Der Energieinhalt eines Kondensators ergibt sich aus der

Arbeit bei seiner Aufladung

29

Page 30: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Wir haben oben im Abschnitt b) zugleich mit der Definition der Kapazität wichtige Eigen-

schaften für ihre Anwendung gelernt: die Pufferwirkung und die Wirkung als Differentiator

oder Integrator. Eine weitere wichtige Anwendung ist die als Energiespeicher. Der Energiein-

halt eines Kondensators ist gleich dem Aufwand an Energie beim Laden. Die Momentanla-

dung sei Q, die Momentanspannung U = Q/C. Transportiert man von der negativ geladenen

Elektrode zur positiv geladenen die Ladung dQ, so ist die erforderliche Arbeit dW = UdQ,

wegen Q = CU kann man von der unabhängigen Variablen Q auf U transformieren: dQ =

CdU und daher gilt dW = CUdU. Die Gesamtarbeit, die geleistet wird, um den Kondensator

von der Anfangsspannung 0 zur Endspannung U0 zu laden, ist

W = CU0

∫ UdU = 12

CU02

(10)W = 12

CU02

Man kann diese Energie als die des elektrischen Feldes, das die Ladung erzeugt, auffassen. E

ist im Innern des Kondensators konstant E = U0/d, außen praktisch Null. Ersetzt man in Glei-

chung (10) U über diesen Ausdruck und C durch C = ε0A/d, erhält man W = ½ε0AdE2. Da

Ad = V das Volumen ist, das das elektrische Feld einnimmt, kann man die obige Gleichung

schreiben

(11)WV

= 12

ε0E2

Die Energiedichte des elektrischen Feldes im Vakuum ist .12

ε0E2

e) Verschaltung von Kapazitäten

Abb. 24: Die parallelgeschalteten Kon-

densatoren sollen elektrisch den glei-

chen Effekt haben wie ein einziger.

Benötigt man für eine Schaltung einen bestimmten Kapazitätswert, der in dieser Größe aber

nicht zur Verfügung steht, so kann man versuchen, durch Parallel- oder Hintereinanderschal-

ten vorhandener Kondensatoren den erforderlichen Wert zu erhalten.

30

Page 31: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

α) Parallelschaltung

Gesucht ist die Kapazität Cges, die die gleichen Eigenschaften hat wie die Parallelschaltung

von Kondensatoren C1, C2, ...(siehe Abb. 24), d.h. die bei Aufladung mit der Ladung Q zur

gleichen Spannung führt. Die Ladung, die in einen Anschluß fließt, verteilt sich auf die einzel-

nen Kapazitäten

Qges = Q1 + Q2 + ... = C1U1 + C2U2 + ...

Die Spannung ist an allen Kondensatoren gleich, da es sich um verbundene Metallflächen han-

delt. U1 = U2 = U. Man kann sie daher ausklammern

Qges = C1U + C2U + ... = (Σ Ci)U

Da nach der Definition der Kapazität der Faktor vor U die Kapazität der Anordnung darstellt,

erhält man

(12)Cges = Σ Ci

Bei Parallelschaltung addieren sich die Kapazitäten zur Gesamtkapazität.

β) Serienschaltung

Abb. 25: In Reihe geschaltete Konden-

satoren und ihr Äquivalent

Eine Verschaltung wie in Abb. 25. nennt man Serien- oder Hintereinanderschaltung. Bei die-

ser Schaltung fließt die Ladung, die man auf die erste Platte gibt, von der zweiten Platte ab

und lädt die nächste Kapazität auf u.s.f. Die Ladungen der einzelnen Kondensatoren sind also

gleich. Die Spannungen addieren sich, da sie proportional zur Arbeit an einer Probeladung

sind, die von einem Anschluß ("Bein") der Schaltung zum anderen überführt wird.

Uges = U1 + U2 + ...Q = Q1 = Q2 = ...

Ui =QCi

31

Page 32: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Setzt man die letzte Gleichung in die erste ein und klammert Q aus, man erhält durch den Ver-

gleich mit Uges = Q/Cges

(13)1Cges

= Σ 1Ci

Bei Serienschaltung addieren sich die reziproken Werte der Kapazitäten.

6. Materie in elektrischen Feldern

a) Der Dipol

α) Was ist ein Dipol?

Ein Dipol ist ein Körper, der im ganzen neutral ist, bei dem aber die Ladungsschwerpunkte

von positiver und negativer Ladung gegeneinander verschoben sind. Wir stellen uns zwei ent-

gegengesetzt gleich große Ladungen Q im Abstand l vor (Abb. 26). Das Dipolmoment ist

dann

p = Ql

vektoriell: (14)p = Ql

Abb. 26: Definition des Dipolmomentes

p zeigt von der negativen Ladung zur positiven. Bei einem statischen Dipol, den wir hier be-

trachten, ist l konstant. In Dipolantennen oder schwingenden Atomen ändert sich l zeitlich.

β) Kraft auf einen Dipol im elektrischen Feld

In einem homogenen elektrischen Feld E wirkt wegen der Neutralität des Dipols auf ihn keine

Gesamtkraft aber ein Drehmoment M. Nach Abb. 27 ergibt sich für dieses

M = QE12

sin ϑ + QE12

sin ϑ = QEl sin ϑ

32

Page 33: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 27: Im elektrischen Feld erfährt der Di-

pol ein Drehmoment

M steht senkrecht zu p und E. Daher kann man das Drehmoment durch ein Vektorprodukt

ausdrücken.

(15)M = p × E

Im inhomogenen Feld wirken auf die Ladungen im allgemeinen verschieden große Kräfte. Es

bleibt neben dem Drehmoment eine resultierende Gesamtkraft. Ein Dipol wird sich also - bei

genügender Bedämpfung - entlang der Feldlinien ausrichten und dann in den Bereich höherer

Feldstärke hineingezogen werden (siehe Abb. 28). Wenn ohne Feld kein Dipolmoment vor-

handen ist, kann das Feld zu einer Ladungstrennung führen und damit einen Dipol induzieren.

Dies ist der Grund, warum neutraler Staub oder Papierteilchen von geladenen Körpern ange-

zogen werden.

Abb. 28: Unabhängig von der Richtung wird ein

Dipol in den Bereich größerer Feldstärke gezogen

γ) Feld eines Dipols

Das Potential der negativen Ladung am Punkt A ist nach Abb. 29

Abb. 29: Das elektrische Feld eines Dipols berech-

net man am einfachsten aus dem Potential zweier be-

nachbarter Punktladungen

33

Page 34: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

ϕ− = ϕ(r + ∆r) = ϕ(r) +∂ϕ∂r

∆r

Setzt man für ϕ das Potential der negativen Punktladung ein, , erhält manϕ(r) =−Q

4πε0r

ϕ− = ϕ(r) +Q

4πε r2∆r

Für die andere Ladung gilt, da hier ∆r und Q das andere Vorzeichen haben:

ϕ+ = −ϕ(r) +Q

4πε r2∆r

Daher ergibt sich für das Gesamtpotential

ϕ ges = ϕ− + ϕ+ =2Q

4πε r2∆r

Betrachret man Abb. 29, so erkennt man, daß für große Abstände gilt .∆rr << 1 ∆r = 1

2l cos ϑ

Damit erhält man

ϕ =Ql cos ϑ4πε r2

= p cos ϑ4πε r2

Das Potential nimmt also im Grenzübergang r → ∞ stärker ab als das einer Punktladung. Die

Feldstärke ergibt sich durch Gradientenbildung. Wir bleiben in Zylinderkoordinaten r, ϕ, λ,wobei r die radiale, die transversale und λ die azimutale Richtung ist (siehe Abb 30). Manϑerhält

Abb. 30: Polarkoordinaten für das Dipolfeld

Er =−∂ϕ∂r

= 2p cos ϑ4πε r3

34

Page 35: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Eϑ = −∂ϕ∂s

= −∂ϕr∂ϑ = −p sin ϑ

4πε r3

Eλ = 0

Die letzte Gleichung folgt aus Symmetriegründen ( .∂∂λ = 0)

Es gibt Ladungsverteilungen, die die Gesamtladung Q = 0 und das Gesamtdipolmoment p = 0

haben und trotzdem ein elektrisches Feld erzeugen. Man sagt, es sind höhere Multipole. So hat

z.B. die Ladungsverteilung in Abb. 31 ein Quadrupolfeld. Allgemein ausgedrückt entwickelt

man das Potential einer beliebigen Ladungsverteilung im dreidimensionalen Raum in eine

Taylorreihe nach Potenzen von . Die Koeffizienten sind Multipole höherer Ordnung.drr

Abb. 31: Ladungsverteilung eines Quadrupols

b) Polarisierbarkeit

Abb. 32: Modell eines zweiatomigen Moleküls

Atome wie He, Ne, Ar und symmetrische zweiatomoge Moleküle wie N2, O2 besitzen kein na-

türliches Dipolmoment. In diesen Teilchen werden die Ladungsschwerpunkte unter dem Ein-

fluß eines elektrischen Feldes gegeneinander verschoben. Das induzierte Dipolmoment ist

proportional zur Feldstärke.

(16)p = αε0E

α nennt man die Polarisierbarkeit. Sie hat die Dimension

[α] = Asm3

As= m3

35

Page 36: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Die Polarisierbarkeit hängt z.B. in einem zweiatomigen Molekül von der Stärke der Bindung

ab. Ein typisches Dipolmoment im atomaren Bereich ist p = e0a = 1,6·19-19 As· 10-10 m ≈

10-29mAs. Eine typische Polarisierbarkeit α ≈ a3 = 10-30 m3. Im klassischen Bild hat man eine

Hantel aus zwei entgegengesetzten Ladungen, die durch eine Feder zusammengehalten wer-

den. Im Gleichgewicht mit dem äußeren Feld ist die elastische Kraft F = -kx gleich der durch

das elektrische Feld Fe = eE, also eE = kx. Das Dipolmoment wird und damitp = ex = e2

kE

die Polarisierbarkeit α = e2/k. In Wechselfeldern hat man das Phänomen der erzwungenen

Schwingung. Wir können, wie im Kapitel Schwingungen im Teil Mechanik gezeigt, die Fe-

derkonstante k durch die Eigenfrequenz des Federpendels ausdrücken

ω02 = k

me

Für die Polarisierbarkeit erhält man hiermit

.α = e2

ε0meω02

Quantenmechanisch erhält man

α = e2

ε0me Σ fi

ω2

ωi sind die Frequenzen, mit denen ein Atom strahlt, fi die Oszillatorenstärken mit .Σ fi = 1

c) Metalle im elektrischen Feld

In Metallen können wir uns die Ladungsträger als frei beweglich vorstellen. Sie bewegen sich

so lange, bis im ganzen Körper kein Feld vorhanden ist. (Unter dem Einfluß eines Feldes wür-

den sie sich ja noch weiter bewegen!) Da sie sich außerdem untereinander abstoßen, befinden

sich alle Ladungen in einer dünnen Schicht an der Oberfläche. Man kann also das Innere weg-

nehmen, ohne etwas zu verändern. Im Innern eines beliebigen metallischen Körpers, der sehr

dünnwandig sein darf, ist also kein Feld. Geschlossene metallische Hohlkörper schirmen des-

halb elektrostatische Felder ab. Man nennt sie Faraday Käfige.

36

Page 37: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Bringt man in einen Kondensator eine ungeladene Metallplatte, so teilt sich die Ladung in

zwei gleiche Hälften, die der Ladung auf den äußeren Platten entsprechen. Das Feld ändert

sich (bei

Abb. 33: Bringt man in einen Plattenkondensator einen

Metallklotz, so werden in ihm die Ladungen getrennt

vernachlässigbarem Streufeld) nicht. Bei unendlich dünner Metallplatte ergibt sich für die Ka-

pazität keine Änderung. Man kann das gesamte Gebilde als zwei Kondensatoren in Serie auf-

fassen, denn d = d1 +d2 führt mit C = ε0 A/d zu der Bedingung

.1C

= 1C1

+ 1C2

Bei endlicher Dicke wird die Kapazität durch Verringerung der Plattenabstände größer.

d) Isolatoren

α) Die Dielektrizitätskonstante ε

Abb. 34: Ein Isolator im elektrischen Feld

In Isolatoren werden Atome polarisiert, oder die polaren Atome ausgerichtet. Im Innern des

Isolators kompensieren sich beide Ladungsarten, während an den Stirnflächen eine Flächenla-

dung übrigbleibt. Da diese Ladung an die Moleküle gebunden bleibt, nennt man sie zur Unter-

scheidung von der freien Ladung, die bei der Aufladung des Kondensators mit dem Strom auf

die Platten gebracht worden ist, gebundene Ladung. Sie schwächt das Feld der freien Ladung,

ohne es ganz aufzuheben. Weil das Feld den Isolator durchdringt, nennt man ihn Dielektri-

kum. Eine punktförmige Ladung im Dielektrikum hat also eine kleinere Kraftwirkung als die

gleiche Ladung im Vakuum, da sich in ihrer Umgebung bevorzugt Ladung des anderen Vor-

zeichens sammelt (s. Abb. 35). Die Reduktion der Kraftwirkung für Ladungen, die von einem

Dielektrikum umgeben sind, wird durch einen Faktor εr im Nenner des Coulomb Gesetzes

berücksichtigt.

37

Page 38: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 35: Im Dielektrikum wird eine Ladung teilweise

abgeschirmt

F12 =Q1Q2

4πε ε r2

Das Gaußsche Gesetz hat dann die Form

∫ E • dA =Q

εrε0

In allen Gesetzen muß ε0 durch εrε0 ersetzt werden. So ist z.B. die Kapazität eines Plattenkon-

densators mit Dielektrikum . εr nennt man die relative Dielektrizitätskonstante oderC = εrε0Ad

die Permittivitätszahl des Dielektrikums, ε = εrε0 die Dielektrizitätskonstante. Für das Vakuum

ist εr = 1. Man nennt daher ε0 die Dielektrizitätskonstante des Vakuums. Für Gase ist εr dicht

über 1, für die meisten Isolatoren zwischen 2 und 3. Bei Wechselfeldern hängt εr von der Fre-

quenz ab, da die Dipole eine gewisse Zeit für die Einstellung benötigen, so ist das statische εr

für Wasser εr = 81, bei optischen Frequenzen εr = 1,8.

β) Der Zusammenhang von εr und α

Abb. 36: Die Polarisation ist die gebunde-

ne Ladung pro Fläche

Hat man n Dipole pro m3, so ist P = np das gesamte Dipolmoment pro Volumen. P nennt man

die Polarisation mit der Dimension [P] = As/m2. Da PV = PlA = (PA)l das gesamte Dipolmo-

ment ist, andererseits das Dipolmoment durch die Oberflächenladung Q* und ihren gegenseiti-

gen Abstand l dargestellt werden kann (s. Abb. 36), gilt Q* = PA. P ist also die gebundene La-

dung pro Fläche des Dielektrikums. Da p = αε0E und P = np, gilt P = nαε0E. Man schreibt

(17)P = χε0E

Die dimensionslose Zahl

38

Page 39: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

(18)χ = nα

heißt Suszeptibilität. Polarisierbarkeit ist die Suszeptibilität pro Atom. In nicht isotropen Sub-

stanzen, z.B. Kristallen sind im allgemeinen P und E nicht parallel. χ muß dann als Matrix

dargestellt werden.

Px = ε0(χxxEx + χxyEy+ χxzEz )

Py = ε0(χyxEx + χyyEy + χyzEz)

Pz = ε0(χzxE x+ χzyEy + χzzEz )

Im folgenden wird davon ausgegangen, daß χ skalar ist. ε ergibt sich aus χ mit Hilfe folgender

Betrachtung: Nach dem Gaußschen Gesetz erzeugt eine freie Ladung Q auf den Kondensator-

platten ohne Dielektrikum das Feld

(a)E0 =Q

ε0A

die gebundene das Feld (b)E ∗ =Q ∗

ε0A

das Gesamtfeld ist (c)E =Q

εrε0A

E ist die Differenz von E0 und E* E = E0 - E

ε0E = ε0E0 - ε0E*

aus (b) folgt ε0E* = P = χε0E

aus (a) und (c) ε0E = Q/A = εrε0E

setzt man die beiden unteren Ausdrücke in den obersten ein, erhält man ε0E = εrε0E - χε0E und

damit die angestrebte Beziehung

39

Page 40: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

(19)εr = 1 + χ

Sie gibt den Zusammenhang zwischen der experimentell zugänglichen Größe εr und der aus

Rechnungen mit einem Atommodell zugänglichen Größe α = χ/n. χ spielt eine zentrale Rolle

z.B. in der Kristalloptik.

γ) Bemerkungen zur mikroskopischen Beschreibung der Suszeptibilität

Bei Atomen ohne natürliches Dipolmoment wird die Suszeptibilität über die Polarisierbarkeit

beschrieben.

χ = nα

Andere Moleküle wie Wasser und Ammoniak und solche mit Ionenbindung wie Salze und

Säuren (HCl, NaCl) haben ein permanentes Dipolmoment. Daneben zeigen alle diese Teilchen

auch ein induziertes Dipolmoment. Man nennt sie polar. Das Dipolmoment gibt Hinweise zur

Struktur der Moleküle. Z.B. hat CO2 kein Dipolmoment. Man schließt daraus, daß hier im Ge-

gensatz zur Situation bei Wasser die Atome auf einer Geraden angeordnet sind (Abb. 37). Bei

der Ausrichtung im Feld geht man von einem Modell starrer Hanteln aus, bei denen sich ein

Gleichgewicht einstellt von ausrichtendem Effekt durch das äußere elektrische Feld und

Durcheinanderwirbeln durch die thermische Bewegung. χ nimmt daher mit der Temperatur

ab. Man findet χ = 1/T . Da im allgemeinen auch ein gewisses Dipolmoment induziert wird,

gilt

Abb. 37: Das Dipolmoment eines Moleküls

hängt mit seinem Aufbau zusammen

χ = A + BT

7. Elemente der Vektoranalysis

a) Einleitung

Die elektrischen Erscheinungen werden durch Felder beschrieben, etwa E, D, H, B, die sich

im allgemeinen Fall im Raum ändern. Die Grundgesetze erfordern Differentiation nach drei

40

Page 41: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Ortskoordinaten. Es zeigt sich, daß man alle erforderlichen Differentiationsoperationen durch

den Vektoroperator ∇, den sogenannten Nabla Operator beschreiben kann, der in kartesischen

Koordinaten die Form hat

∇ = ∂∂x

ex + ∂∂y

ey + ∂∂z

ez

Die zu differenzierenden Funktionen werden von links mit ∇ multipliziert, und zwar durch

Multiplikation mit einem Skalar, Bildung von Skalarprodukt oder Vektorprodukt.

∇ϕ =

∂ϕ∂x∂ϕ∂y∂ϕ∂z

∇• v = ∂vx

∂x+

∂vy

∂y+ ∂vz

∂z∇ × v =

ex∂∂x vx

ey∂∂y vy

ez∂∂z vz

b) Die Divergenz eines Vektorfeldes

ist ein Maß für die Quellstärke in dem Volumen, über dessen Oberfläche integriert∫ v • dA

wird. Um ein Maß für eine im Raum verteilte Quellstärke zu haben, definiert man

(20)div v =∆V→0lim ∫ v • dA

∆V

Um div v in kartesischen Koordinaten hinzuschreiben, betrachtet man ein Volumenelement

∆x∆y∆z, das so klein ist, daß v auf den Oberflächen konstant ist. Man berechnet den Ge-

samtfluß, der durch die Würfeloberfläche nach außen tritt, wobei man für jede Fläche nur die

senkrecht auf ihr stehende Komponente von v berücksichtigen muß. Beiträge, die nach innen

zeigen, erhalten ein negatives Vorzeichen. Der Fluß in x - Richtung ist (s. Abb. 38)

Abb. 38: Die Divergenz eines Vektorfeldes

gibt den Gesamtfluß aus einem Volumen-

element pro Volumen an

∆Φ(x) =vx(x + ∆x)∆y∆z−vx(x)∆y∆z

wird in einer Taylorreihe entwickeltvx(x + ∆x)

41

Page 42: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

vx(x + ∆x) =vx(x) + ∂vx

∂x ∆x

∆Φ(x) = vx(x) + ∂vx

∂x∆x − vx(x) ∆y∆z = ∂vx

∂x∆x∆y∆z

Für die anderen beiden Flächenpaare ergibt sich entsprechend

∆Φ(y) =∂vy

∂y∆x∆y∆z

∆Φ(z) = ∂vz

∂z∆x∆y∆z

Der Gesamtfluß ist die Summe der drei Anteile

∆Φ = ∂vx

∂x+

∂vy

∂y+ ∂vz

∂z ∆x∆y∆z

und damit nach der Definition der Divergenz (Gleichung (21))

(21)div v = ∂vx

∂x+

∂vy

∂y+ ∂vz

∂z= ∇ • v

c) Der Integralsatz von Gauß

Abb. 39: Der Gaußsche Satz ist Gleichung

(20) für ein endliches Volumen

Um den Fluß eines Geschwindigkeitsfeldes v(r), der aus einem endlichen Volumen tritt, zu

berechnen, teilt man dieses in N Volumenelemente ein. Für jedes Teilvolumen gilt

. Summiert man über alle Teilvolumen, so heben sich im Innern an der∫ v • dA=div v⋅∆Vi

Grenzfläche zweier Volumenelemente die Beiträge zum Fluß weg, da der Anteil, der aus der

einen Zelle austritt, gleich dem ist, der in die benachbarte eintritt. Es bleibt also nur ein Bei-

trag von der Oberfläche des Gesamtvolumens übrig. Auf der rechten Seite wird durch die

Summation und die Grenzwertbildung , insgesamt∫div vdV

42

Page 43: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 40: Im Innern heben sich die Flüsse

zwischen benachbarten Zellen heraus

(22)∫ v • dA = ∫div vdV

Dies ist der Gaußsche Integralsatz. Er gestattet es, ein Volumenintegral in ein Oberflächen-

integral umzuformen. Das Oberflächenintegral erstreckt sich über die gesamte Oberfläche des

Volumens, über das auf der rechten Seite integriert wird.

d) Anwendung: das Gaußsche Gesetz in Differentialform

Wir können jetzt, wie im Abschnitt 3 in diesem Kapitel versprochen die differentielle Form

des Gaußschen Gesetzes (Gleichung (4)) aus der Integralform etwas eleganter ableiten. Für

den Fluß, der aus einer Ladung Q austritt, gilt die Integralform des Gaußschen Gesetzes

∫ E • dA =Qε0

Führt man Q auf die Ladungsdichte zurück, so gilt , also .dQdV

= ρ Q = ∫ ρdV

∫ E • dA = 1ε ∫ ρdV

Andererseits gilt nach dem Gaußschen Integralsatz

∫ E • dA = ∫div EdV

Durch Vergleich der rechten Seiten folgt die differentielle Form des Gaußschen Gesetzes

divE = 1ε0

ρ

Eine einfache Anwendung besteht darin, daß man mit ihm aus einer bekannten eindimensiona-

len Ladungsverteilung die Verteilung des elektrischen Feldes ermitteln kann, wie in dem Bei-

spiel von Abb. 41, in dem von der Ladungsverteilung, die beim Kontakt zweier

43

Page 44: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

unterschiedlicher Stoffe in der Nähe der Grenzfläche auftritt, ausgegangen wird. Bei einem in

x - Richtung eindimensionalen Problem gilt

und damit div E = ∂∂y

= ∂∂z

= 0dEx

dx

Abb. 41: Aus einer Ladungsverteilung erhält man

durch Integration die Feldverteilung

Das Gaußsche Gesetz hat also die Form . Das bedeutet, daß sich die Feldstärke-dEx

dx= 1

ε0ρ(x)

verteilung durch Integration der Ladungsdichteverteilung ergibt.

e) Die Rotation eines Vektorfeldes

So wie die Divergenz die Quellstärke lokal beschreibt, ist die Rotation ein lokales Maß für die

Zirkulation eines Vektorfeldes. Die Zirkulation hängt von der Orientierung der Kurve∫ v • dr

ab, über die integriert wird. Deshalb ist die Zirkulation eine Vektorgröße

(22)(rot v)n =∆A→0lim ∫ v • dr

∆A

Abb. 42: Die Normalkomponente der Rotation

Durch die rechte Seite wird also die Komponente von rot v definiert, die senkrecht auf dem

Flächenelement steht (s. Abb. 42). Das Vorzeichen ist durch die Schraubenregel bestimmt.

Die z Komponente der Rotation von v ergibt sich also durch Integration um ein Flächenele-

ment ∆x∆y (Abb. 43).

Abb. 43: Die Koordinaten der Rotation erhält

man durch Integration um ein Flächenelement

44

Page 45: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

(rot v)z = 1∆x∆y vx(y)∆x − vx(y + ∆y)∆x + vy(x + ∆x)∆y − vy(x)∆y

Durch Taylor Entwicklung kann man ersetzen

vx(y + ∆y) = vx(y) + ∂vx

∂y∆y

vy(x + ∆x) = vy(x) +∂vy

∂x∆x

(rot v)z = 1∆x∆y

vx(y)∆x − vx(y)∆x − ∂vx

∂y∆x∆y + vy(x)∆y +

∂vy

∂x∆x∆y − vy(x)∆y

=∂vy

∂x− ∂vx

∂y

Für die anderen Komponenten erhält man durch zyklische Vertauschung der Variabelen x,y,z

(rot v)x = ∂vz

∂y−

∂vy

∂z

(rot v)y = ∂vx

∂z− ∂vz

∂x

Formal kann man diese drei Formeln als Entwicklung einer Determinante auffassen

rot v =ex

∂∂x vx

ey∂∂y vy

ez∂∂z vz

=

∂∂yvz − ∂

∂zvy

∂∂zvx − ∂

∂xvz

∂∂xvy − ∂

∂yvx

Unter Verwendung des Nabla Operators wird daraus die handliche Formel

(23)rot v = ∇ × v

f) Der Integralsatz von Stokes

Abb. 44: Der Integralsatz von Stokes ist die Anwen-

dung von Gleichung (22) auf eine endliche Fläche

45

Page 46: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Um die Zirkulation um eine Fläche endlicher Größe zu berechnen - die übrigens nicht eben zu

sein braucht - teilt man diese in Flächenelemente auf und schreibt für jedes Flächenelement

gemäß der Definition von rot

∫ v • dr = (rot v)n∆A = (rot v) • ∆A

und summiert über die ganze Fläche. Dabei bleiben auf der rechten Seite nur die Beiträge von

der Umrandung übrig (s. Abb. 44).

(24)∫ v • dr = ∫rot v•dA

Dies ist der Integralsatz von Stokes, der es gestattet, ein Flächenintegral in ein Kurvenintegral

zu überführen. Das Kurvenintegral wird auf der Kurve berechnet, die die Fläche, über der

rechts integriert wird, umrandet.

g) Anwendung: die Zirkulationsfreiheit eines Vektorfeldes

Um zu überprüfen, ob ein gegebenes Vektorfeld v zirkulationsfrei ist, was man braucht, um zu

entscheiden, ob es konservativ ist und ob man daher ein Potential definieren kann, müßte man

nach unseren bisherigen Kenntnissen alle möglichen Ringintegrale betrachten. Nach dem Satz

von Stokes reduziert sich die Aufgabe auf die viel einfachere, zu überprüfen, ob rot v = 0 im

ganzen Raum gilt. Als Beispiel betrachten wir im folgenden eine Zentralkraft

F(r) = Kf(r)r

mit r = x2 + y2 + z2

Wir wollen wissen, ob eine Zentralkraft immer konservativ ist. Wir bilden rot F

rot F = K

ex∂∂x f(r)x

ey∂∂y f(r)y

ez∂∂z f(r)z

(rot F)x = K

∂∂y

f(r)z − ∂∂z

f(r)y = K

zf /(r)drdy

− yf /(r)drdz

46

Page 47: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

wobei . Zur Berechnung von wird substituiert ξ = x2 + y2 + z2 wobeif /(r) = dfdr

drdy

bzw. drdz

dann .ξ = r

drdy

= drdξ

dξdy

= 12

1

ξ2y =

yr

drdz

= drdξ

dξdz

= 12

1

ξ2z = z

r

Es folgt (rot F)x = Kf /(r)zyr −

yzr

= 0

entsprechend (rot F)y = K

∂∂z

f(r)x − ∂∂x

f(r)z = Kf /(r)

zxr − xz

r = 0

(rot F)z = ... = 0

Die Rotation verschwindet also überall, und das Kraftfeld ist daher konservativ. Diese Eigen-

schaft ist unabhängig von der speziellen Abhängigkeit vom Abstand zum Kraftzentrum und

gilt daher für alle Zentralkräfte.

47

Page 48: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

KAPITEL D

Stationäre Ströme

1. Strom

a) Stromrichtung

In der Elektrostatik wurde vorausgesetzt, daß sich alle elektrischen Erscheinungen zeitlich

nicht ändern und daß alle Ladungen ruhen. In diesem Kapitel soll die zeitliche Konstanz der

elektrischen Erscheinungen immer noch gelten, aber Ladungen dürfen sich bewegen.

Wenn Ladungen sich bewegen, spricht man von einem Strom. Verbindet man z.B. die Platten

eines Kondensators mit einem leitendem Medium, so bewegen sich, falls es sich um ein Me-

tall handelt, die negativ geladenen Elektronen vom kleineren zum größeren Potential, während

die positiven Atomrümpfe fest an das Metallgitter gebunden sind. In Elektrolyten und Gasent-

ladungen könnnen Teilchen mit beiden Vorzeichen beweglich sein, so daß sich in dem Strom

positive Teilchen vom positiveren Potential zum negativeren bewegen und negative vom ne-

gativerem Potential zum positiveren. Beide Teilchensorten sorgen dafür, daß positive Ladung

am positiven Pol verschwindet und am negativen erscheint. Auch eine Reihe von anderen

Wirkungen wie z.B. die magnetischen Kräfte sind gleich, wenn positive Ladung von + nach -

oder negative von - nach + fließt. Es gibt überhaupt nur wenige Effekte, an denen man unter-

scheiden kann, ob Strom von positiven oder negativen Ladungsträgern transportiert wird. Man

betrachtet daher zur Definition der Stromrichtung eine der beiden Teilchensorten z.B nennt

man die positive Stromrichtung diejenige, in der sich positive Ladungsträger bewegen wür-

den. Man beachte, daß zur Bestimmung der Stromrichtung die Potentialdifferenz maßgeblich

ist. Schließt man z.B. an eine Autobatterie einen Verbraucher an, so fließt der Strom im äuße-

ren Kreis vom Pluspol zum Minuspol. Lädt man die Batterie auf, so fließt er umgekehrt vom

Minuspol zum Pluspol (Abb. 45).

Abb. 45: Der Strom kann schon mal in den Plus-

pol hineinfließen

48

Harald Schüler
Page 49: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Die Einheit der Stromstärke ist Ampere. 1 A ist der Strom, der zwischen zwei geraden Dräh-

ten, die einen gegenseitigen Abstand von 1m besitzen, die Kraft 2·10-7 N/m erzeugt. Eine an-

dere mögliche Festlegung erfolgt über die Stoffmenge, die bei Elektrolyse abgeschieden wird.

b) Geschwindigkeit der Ladungsträger

Abb. 46: Die Geschwindigkeit der Ladungsträger in ei-

nem Strom kann man aus der Stromstärke und dem Lei-

terquerschnitt ausrechnen.

Wir betrachten einen Metallleiter von konstantem Querschnitt, in dem n freie Elektronen pro

Volumeneinheit zur Verfügung stehen, die sich im Mittel mit einer Geschwindigkeit v bewe-

gen. Der Strom im Leiter ist dann die Ladung, die pro Sekunde durch den Querschnitt A tritt.

Es treten N = nV = nAv∆t Teilchen in der Zeit ∆t durch A (s. Abb. 46). Diese transportieren

I = e0N∆t

= e0nAv∆t∆t

= e0nAv

Ladung pro Sekunde durch A. Man schreibt

j = IA

= ne0v

oder vektoriell

(1)j = ne0v

j ist die Stromdichte. Sie ist eine Vektorgröße. I ergibt sich aus der senkrecht zu A stehenden

Stromdichtekomponente multipliziert mit A

I = jnA

allgemein I = ∫ j • dA

I ist also ein Skalar. Bei gleich bleibender Geometrie hängt I von der Ladungsträgerkonzentra-

tion und ihrer Geschwindigkeit ab.

49

Page 50: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Beispiel:

Geschwindigkeit von Elektronen in einem Kupferdraht mit 1mm2 = 10-6m2 Querschnitt, der ei-

nen Strom von 1A führt.

Jedes Kupferatom liefert ein freies Elektron zum Ladungstransport. Cu hat ein Atomgewicht

von ACu = 60, d.h. 60g Cu enthalten 6·1023 Teilchen. 60g Cu haben ein Volumen von etwa

6cm3. 1m3 enthält also 1029 Teilchen.

v = Ie0nA

= 11, 6 ⋅ 10−19 ⋅ 1029 ⋅ 10−6

= 10−4 ms

Die Geschwindigkeit von Ladungsträgern in üblichen Stromkreisen ist also nicht berauschend.

Es erscheint daher zunächst erstaunlich, daß bestimmte Vorgänge wie das Einschalten eines

Stroms sich offensichtlich wesentlich schneller ausbreiten. Dies liegt daran, daß es Wellenvor-

gänge sind, die ähnlich wie bei Wasserwellen im allgemeinen schneller als der Materietrans-

port ablaufen. Die Ausbreitungsgeschwindigkeit von Einschaltpulsen in Leitungen liegt in der

Größenordnung der Lichtgeschwindigkeit. Dies wird im Teil III dieses Grundkurses gezeigt.

2. Das Ohmsche Gesetz

a) Physikalische Grundlage

In vielen Fällen erleiden die Ladungsträger so viele Stöße, daß sie sich im Mittel wie ein Kör-

per in einer zähen Flüssigkeit bewegen. Der Geschwindigkeit der Einzelteilchen, die in alle

Richtungen geht, ist eine konstante Geschwindigkeit v des Schwerpunktes des Teilchen-

schwarms überlagert. Man nennt eine solche Geschwindigkeit eine Driftgeschwindigkeit. Es

gilt dann etwa wie beim Stokeschen Gesetz bei der Bewegung einer Kugel in einer zähen

Flüssigkeit, daß die Driftgeschwindigkeit proportional zur antreibenden Kraft ist

v ~ F ~ E

Man schreibt (2)v = µE

µ nennt man die Beweglichkeit der Ladungsträger. Manchmal ist es nützlich, die Beweglich-

keit µ durch die Stoßfrequenz auszudrücken. Dazu nehmen wir an, daß die Ladungströger

50

Page 51: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

durch einen Stoß in alle möglichen Richtungen gestreut werden, so daß sie im Mittel nach ei-

nem Stoß mit der Geschwindigkeit 0 starten. Zwischen den Stößen werden sie im E - Feld

Abb. 47: Beim Stoß werden die Elektronen nach allen

Seiten gestreut. Wir nehmen an, im Mittel bewegen sie

sich nach dem Stoß mit einer Anfangsgeschwindigkeit 0.

beschleunigt. . Ihre Beschleunigung ist . Sie erreichen eine Maximalge-eE = me•v a = eE

me

schwindigkeit und die mittlere Geschwindigkeit . Da diev = a∆t = eEme

∆t v = 12

e∆tme

E νc = 1∆t

Stoßfrequenz ist, wird . Die Beweglichkeit läßt sich also durch die Stoßfrequenzv = 12

emeνc

E

ausdrücken

µ = 12

emeνc

Aus Vergleich mit Gleichung (1) erkennt man, daß in diesem Fall auch j ~ E wird

j = ne0µE

Man schreibt (3)j = σE

mit . σ nennt man die Leitfähigkeit. Gleichung (3) ist die raumaufgelöste Form desσ = ne0µOhmschen Gesetzes. Es gehört nicht unmittelbar zu den Maxwellschen Gleichungen, sondern

zu den mit ihnen verbundenen Materiegesetzen. Um zur gewohnten Form des Ohmschen Ge-

setzes zu gelangen, das den Zusammenhang von U und I für Leiter angibt, stellen wir uns ei-

nen Quader der Länge l mit der Querschnittsfläche A vor. Gleichung (3) wird dann durch Mul-

tiplizieren mit l und dividieren durch σ zu

1σjl = El = U

Abb. 48: Gleichung (3) auf ein Volumenelement ange-

wandt ergibt das Ohmsche Gesetz in skalarer Form

51

Page 52: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

und, da j = I/A gilt U = 1σ

1A

I

Das Vorzeichen wird im Zweifelsfall wie in Kapitel B.4 durch eine gesonderte Meßvorschrift

festgelegt, die durch einen Meßpfeil gekennzeichnet wird. Man schreibt

(4)U = RI

R ist der Widerstand . Er ist in dem hier betrachteten Fall nur von den Eigen-R = 1σ

lA

= ρ lA

schaften des stromführenden Materials abhängig und hat die Dimension

(Ohm)[R] = [U][I]

= VA

= Ω

Gleichung (4) ist das Ohmsche Gesetz. Es gilt in dieser Form für Metalle und Halbleiter kon-

stanter Temperatur. In Situationen, in denen es nicht mehr gilt, wird es häufig noch zur Defi-

nition des Widerstandes verwendet. Dann kann R noch von U oder I abhängen.

Der Widerstand eines homogenen Körpers wird durch seine Länge l, seine Querschnittsfläche

A und durch eine Stoffkonstante ρ (bzw. durch die Leitfähigkeit ) bestimmt. ρ nenntσ = 1ρ

man den spezifischen Widerstand. Er hat die Dimension

[ρ] = Ωm [σ] = 1

Ωm

Man sollte sich den Wert für Kupfer merken: ρ = 1,6·10-8 Ωm. Im allgemeinen hängt ρ von

der Temperatur ab (s. Abb. 49).

Abb. 49: Die Abhängigkeit des spezifischen Wi-

derstandes verschiedener Stoffe von der

Temperatur.

Das Ohmsche Gesetz hat eine Analogie zum Hagen - Poiseuille Gesetz für Rohrströmung von

Flüssigkeiten.

∆p = 8ηπ 4

dVdt

52

Page 53: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Die Druckdifferenz entspricht der Potentialdifferenz U, die pro Zeit durchströmende Flüssig-

keitsmenge entspricht dem elektrischen Strom . ist der Strömungswiderstand.dVdt

dQdt

Rs = 8ηπ 4

Daß der elektrische Widerstand R ~ 1/r2 und der Strömungswiderstand R ~ 1/r4 rührt daher,

daß der Leiter für Elektronen kein Rohr darstellt. Die Wechselwirkung der Elektronen mit

dem Material ist auf den gesamten Querschnitt verteilt und die Reibungskraft deshalb propor-

tional zur Fläche.

b) Das elektrische Feld bei Anwesenheit von stationären Strömen

Da der Strom durch eine Potentialdifferenz eines Leiters getrieben wird, gilt nicht mehr wie in

der Elektrostatik, daß Metalloberflächen Äquipotentialflächen sind. andererseits gilt noch im-

mer rot E = 0, also .∫ E • dr = 0

c) Abhängigkeit der Leitfähigkeit von verschiedenen Faktoren

Das Ohmsche Gesetz gilt nur in Stoffen, bei denen sich die Elektronenflüssigkeit wie unter

dem Einfluß einer Reibungskraft bewegt wie in verschiedenen festen Stoffen und Elektroly-

ten. Außerdem müssen bestimmte äußere Parameter konstant gehalten werden wie Tempera-

tur, Druck, Magnetfeld u.U die Beleuchtung.

α) Temperaturabhängigkeit

ρ hängt von der Temperatur ab. Bei Metallen erhöht sich ρ mit der Temperatur, da die La-

dungsträger bei höherer Temperatur durch die stärkere thermische Bewegung eine größere Be-

hinderung erfahren. Bei Halbleitern erniedrigt sich ρ mit steigender Temperatur, da hier ein

anderer Effekt sich sehr viel stärker auswirkt als die Behinderung durch die thermische Bewe-

gung: Bei Halbleitern wird mit steigender Temperatur die Anzahl der Ladungsträger erhöht.

Bei speziellen Legierungen wie Konstantan ändert sich ρ nur wenig mit T. In der Nähe einer

vorgegebenen Temperatur kann man ρ(T) mit einer Taylorentwicklung linearisieren. Oft gilt

sogar ρ(T ) = ρ0(1 + αT), wobei T die Temperatur in Kelvin, α der Temperaturkoeffizient ist.

α ist für Metalle positiv, für Halbleiter und Plasmen negativ. Es gibt Stoffe, bei denen ρ bei

Abkühlung unterhalb einer kritischen Temperatur sprunghaft auf unmeßbar kleine Werte ab-

nimmt, die sogenannten Supraleiter. Die Beschreibung der Leitfähigkeit in Festkörpern gelingt

nur einigermaßen im Rahmen der Quantenmechanik, d.h. man muß die Wellennatur der La-

dungsträger berücksichtigen. Insbesondere ist die Supraleitung ein quantenmechanischer Ef-

fekt. Ähnliche Effekte gibt es bei der Viskosität.

Die Temperaturabhängigkeit des elektrischen Widerstandes wird in Widerstandsthermometern

ausgenutzt. Meist verwendet man Platindrähte. Bolometer sind speziell für die

53

Page 54: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Strahlungsmessung eingerichtete Widerstandsthermometer. Durch Schwärzung eines Platin-

drahtes wird die einfallende Strahlungsleistung in Erwärmung überführt.

β) Innerer Photoeffekt

In Halbleitern wird die Ladungsträgerzahl außer durch thermische Anregung durch Lichtein-

strahlung erhöht. Selen z. B. steigert die Leitfähigkeit bei Beleuchtung um mehrere Größen-

ordnungen. Dieser Effekt wird in Kopiergeräten und mit ihnen verwandten Druckern ausge-

nutzt. CdS wird in Belichtungsmessern häufig als Photwiderstand benutzt.

γ) Magnetoresistenz

Ein Magnetfeld führt bei einigen Metallen zu einer Verminderung der Beweglichkeit der La-

dungsträger. Besonders groß ist dieser Effekt in Wismut (Bi). Er kann zur Messung von Ma-

gnetfeldern benutzt werden.

δ) Mechanische Spannungen

Mechanische Spannungen im Kristallgitter können die Leitfähigkeit beeinflussen. Dies wird in

Dehnungsmeßstreifen verwendet, um Verformungen zu messen.

ε) Zusammenhang mit der Wärmeleitfähigkeit

Der Wärmestrom W durch einen Stab, an dem eine Temperaturdifferenz liegt, ist gegeben

durch

W = κAl∆T

(Man beachte, daß eine vollständige Analogie zum Ohmschen Gesetz besteht). κ ist die Wär-

meleitfähigkeit. Die Erfahrung zeigt, daß bei vielen Metallen das Verhältnis von Wärmeleitfä-

higkeit und elektrischer Leitfähigkeit eine Konstante ist

κσ ≈ 3

kB2

e2

kB ist die Boltzmannkonstante und e0 die Elementarladung. Man nennt dies Gesetz das Wiede-

mann - Franzsche Gesetz. Es deutet darauf hin, daß nicht nur bei der Leitung des elektrischen

Stromes sondern auch bei der Wärmeleitung Elektronen maßgeblich beteiligt sind.

54

Page 55: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

3. Bauelemente, bei denen das Ohmsche Gesetz nicht gilt

Bei vielen Bauelementen, die man in elektronischen Schaltungen einsetzt, gilt das Ohmsche

Gesetz nicht. In manchen Fällen kann man dann den Zusammenhang von U und I noch mit ei-

ner Funktion, der sogenannten Kennlinie oder Charakteristik angeben. In anderen Fällen geht

die Zeitabhängigkeit der Größen ein. So gilt, wie wir wissen, für eine Kapazität

I = C•U

und, wie wir noch lernen, für eine Induktivität

U = L•I

Im allgemeinen Fall gibt man eine Kennlinie an, die das Verhalten bei stationärem Strom be-

schreibt, und versucht das dynamische Verhalten durch Hinzufügen von L und C zu erfassen.

Abb. 50: Die Kennlinie einer Diode

Das ist nicht immer adäquat möglich, wie bei der Speicherzeit von Halbleiterelementen.

Abb. 51: Beispiel eines Schaltkreises mit einem

nichtlinearen Element

Als Beispiel für die Behandlung eines Schaltkreises mit einem Element, das eine nichtlineare

Kennlinie besitzt, wird die Schaltung in Abb. 51 behandelt. Die Diode möge für U > 0

(Durchlaßbereich) durch die Kennlinie beschrieben werden, für U < 0 (Sperrbe-I = I0eeU/kT

reich) durch I = 0. Die Änderungen von Strom und Spannung sollen langsam genug verlaufen,

so daß auch das dynamische Verhalten völlig durch die Kennlinie erfaßt wird. Für die Berech-

nung von Schaltungen teilt man den elektrischen Vorgang meist in einen stationären Anteil

auf, der durch ein bestimmtes Paar U1/I1 gekennzeichnet ist, den sogenannten Arbeitspunkt,

und eine kleine Schwankung um den Arbeitspunkt. Man könnte etwa zunächst nach der Größe

55

Page 56: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

von R fragen, die erforderlich ist, damit ein bestimmter Strom I = I1 fließt. Nach Abb. 51 ist

dann

U1 = U - I1R

Einsetzen in die Kennlinie führt zu oderI1 = I0ee(U−I1R)/kT

I1

I0= eeU/kT ⋅ e−I1R/kT

Diese Gleichung muß - notfalls numerisch - nach I1 aufgelöst werden. U ist die angelegte

Gleichspannung. Durch Einsetzen in die Kennlinie erhält man U1. Der Arbeitspunkt ist durch

U1 und I1 gegeben. U1/I1 ist der Gleichstromwiderstand am Arbeitspunkt. Das Verfahren ist

rechnerisch etwas unangenehm. Daher nähert man häufig, wenn es auf Details nicht so an-

kommt, die Kennlinie im Großsignalbereich durch abgeknickte Gerade wie in Abb. 52 b) oder

c) an.

Abb. 52: a) Kennlinie einer Zenerdiode. b) und c) Ver-

schiedene Approximationen einer Diodenkennlinie

Für die Frage, welche Spannungsschwankung ∆U durch eine vorgegebene Stromschwankung

∆I erzeugt wird, linearisiert man die Kennlinie um den Arbeitspunkt.

∆I∆U

=

dIdU

U

∆U = ∆I 1

dIdU

U

Je größer die Steigung der Kennlinie, desto kleiner fallen die Spannungsschwankungen aus,

wenn man von gleichen Stromschwankungen ausgeht. Man kann die Schaltung in Abb. 51 al-

so benutzen, um die Spannung an den Anschlüssen der Diode konstant zu halten, wenn durch

56

Page 57: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Änderungen im angeschlossenen Kreis der Strom schwankt. Die Glättungswirkung ist um so

besser, je steiler die Kennlinie ist. Man benutzt deshalb in solchen Schaltungen Zenerdioden,

die einen steilen Anstieg der Kennlinie im Sperrbereich der Diodenkennlinie haben (Abb. 52).

4. Elektrolyse

a) Was ist Elektrolyse?

Abb. 53: Anordnung für Experimente mit

Elektrolyse

Die typische Anordnung für Elektrolyse ist in Abb. 53 dargestellt. In einem Gefäß befindet

sich eine leitfähige Flüssigkeit, in die zwei Elektroden eintauchen, an die eine Spannungsquel-

le angeschlossen wird, ähnlich wie beim Aufladen einer Autobatterie. Verwendet man reines

Wasser, ist der Widerstand groß. Durch Zugeben einer kleinen Menge einer Säure, einer Base

oder eines Salzes nimmt die Leitfähigkeit stark zu. Außer diesen aus Lösungen bestehenden

Elektrolyten gibt es solche aus geschmolzenen Salzen. Salze bestehen schon im Kristall aus

geladenen Atomen oder Atomgruppen mit entgegengesetzter Ladung. Bringt man solche Kri-

stalle in das Lösungsmittel, erleiden sie mit einer gewissen Wahrscheinlichkeit Stöße mit Mo-

lekülen und können dadurch in die geladenen Bestandteile, die Ionen, zerlegt werden. Im Lö-

sungsmittel kann der zerlegte Zustand energetisch günstiger sein als der gebundene, da die

Kraft nach dem Coulombschen Gesetz proportional zu 1/εr ist und εr große Werte annehmen

kann (Wasser: εr = 81). Es stellt sich daher ein Gleichgewichtszustand ein, in dem ein großer

Teil der Moleküle gespalten ("dissoziiert") sein kann. Beispiele sind HCl, Salzsäure aus H+

und Cl -, KOH, Kalilauge oder Kaliumhydroxid aus K+ und OH - oder CuSO4 aus Cu++ und

SO4--. Die Wertigkeit Z gibt an, wieviele Elementarladungen ein Ion trägt. Cu und SO4 sind al-

so in CuSO4 zweiwertig, die anderen angeführten Ionen sind einwertig. Jedes Ion ist in der

Lösung von einer Wolke von Dipolen des Wassers umgeben und frei beweglich. Legt man ei-

ne Spannung an die Elektroden, so wandern die negativen "Anionen" zur Anode, die positiven

Kationen zur Kathode, und zwar aufgrund der Reibungskräfte mit konstanter Geschwindig-

keit. Es gilt also das Ohmsche Gesetz. Gelangen die Ionen zu den Elektroden, so geben sie die

Überschußladung ab und ändern dadurch ihre chemischen Eigenschaften. H+ Ionen werden zu

57

Page 58: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

H Atomen, die sich zu H2 Molekülen verbinden und als Gas aufsteigen. Cu++ wird zu Cu und

scheidet sich auf der Kathode ab. Dieser Vorgang wird zur Metallisierung mit Kupfer, Nickel,

Chrom und dergleichen benutzt, (galvanisieren) oder zur quantitativen Analyse. Alkalimetalle

bleiben als Ionen wie Na+ oder K+ in der Lösung. Es scheiden sich statt ihrer H+ Ionen ab. An

der Kathode bildet sich nach der Reaktionsgleichung

4H+ + 4 Elektronen → 2H2

Wasserstoffgas. An der Anode nach der Gleichung

4OH - → 2H2O + O2 + 4 Elektronen

Sauerstoffgas. Die Konzentration von NaOH ändert sich nicht. NaOH wirkt wie ein Kataly-

sator.

b) Die Faradayschen Gesetze

Die Faradayschen Gesetze beschreiben die Menge der bei der Elektrolyse abgeschiedenen

Stoffe. Da ein Mol das Atomgewicht in g ist und NA = 6·1023 Teilchen enthält, außerdem der

Ladungstransport nur über Teilchentransport geschieht, benötigt man zum Abscheiden von 1

Mol eines Stoffes der Wertigkeit Z an einer Elektrode die Ladung ZNAe0. Oder

Fur 1MolZ

= 1val eines Stoffes benotigt man die Ladung F = NAe0

F = 9,6·104As ist die Faradaykonstante. Sie gibt an, wieviel As benötigt werden, um ein val

(Grammäquivalent) abzuscheiden. Die abgeschiedene Masse ist also proportional zu I·t.

c) Die Leitfähigkeit von Elektrolyten

Im Elektrolyten wird Strom durch positive und negative Ionen getragen. Die Einzelströme ad-

dieren sich zum Gesamtstrom. Nach Gleichung (1) und (2) gilt

j+ = Z+n+v+e0 = Z+n+e0µ+Ej− = Z−n−v−e0 = Z−n−e0µ−Ej = j+ + j− = e0(Z+µ+n+ + Z−µ−n−)E

Die Leitfähigkeit kann also beschrieben werden durch

58

Page 59: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

σ = e0(Z+µ+n+ + Z−µ−n−)

Diese Formel gestattet es im Prinzip, aus Beweglichkeiten und Ladungsträgerkonzentrationen,

σ auszurechnen. Beweglichkeiten werden in Tabelle II angegeben. Sie sind um etwa 4 Grö-

ßenordnungen kleiner als die der Elektronen im Metall. Sie hängen von der Temperatur T ab,

da die Viskosität des Lösungsmittels von T abhängt, und zwar nimmt die Viskosität von Flüs-

sigkeiten mit der Temperatur ab, was zuz Folge hat, daß die Beweglichkeit und damit die Leit-

fähigkeit mit steigender Temperatur zunimmt. Für ein Salz, das in gleich viele positive und

negative Teilchen dissoziiert, wird

σ = Ze0n(µ+ + µ−)

und damit unabhängig vom Stoff. Tabelle III zeigt die Äquivalentleitfähigkeit , wo-σZne0

σZn∗

bei n* die Konzentration der Lösung in mol/l, (die Molarität der Lösung) ist. Man erkennt, daß

diese Größe bei manchen Stoffen und besonders bei kleinen Konzentrationen recht gut kon-

stant ist, z.B. bei KCL, NaCl, bei anderen nicht, z.B. Essigsäure. Die Abweichung kann zwei

Gründe haben.

Der Stoff ist nicht vollständig dissoziiert.

Bei größeren Ionenkonzentrationen gibt es größere gegenseitige Behinderungen der

verschiedenen gegeneinanderlaufenden Ionen

Der Dissoziationsgrad ist definiert durch

α = Zahl der gespaltenen MolekuleGesamtzahl der Molekule

Er ergibt sich aus dem Massenwirkungsgesetz, dessen grundlegende Abhängigkeiten wir im

folgenden herleiten. Wir betrachten als Beispiel die Dissoziation von Kochsalz. Die Reaktion

läuft normalerweise in beiden Richtungen,

NaCl←→ Na+ + Cl−

wobei die Anzahl der Prozesse proportional zu den Teilchenkonzentrationen der beteiligten

Stoffe ist. Für die Zerfälle (oberer Pfeil) gilt

59

Page 60: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

dnZ

dt∼ nNaCl

Für die Zahl der Rekombinationen (unterer Pfeil)

dnR

dt∼ nNa ⋅ nCl

Im Gleichgewicht müssen die Zerfälle und Rekombinationen gleich häufig stattfinden:

dnR

dt= dnZ

dt

und daher . Hieraus folgt das MassenwirkungsgesetznNa ⋅ nCl ∼ nNaCl

nNa ⋅ nClnNaCl

= κ

κ hängt im wesentlichen nur von der Temperatur ab. Statt der hier im Beispiel verwendeten

Reaktionsteilnehmer Na, Cl und NaCl, können natürlich die Teilnehmer irgend einer anderen

Reaktion eingesetzt werden. Das Massenwirkungsgesetz ist deshalb ein Grundpfeiler zur Be-

schreibung chemischer Vorgänge. Bei Ionisierungsvorgängen nennt man dieses Gesetz die Sa-

haformel. Der Dissoziationsgrad läßt sich mit dem Massenwirkungsgesetz in eine etwas hand-

lichere Formel umschreiben. In unserem Beispiel, der Dissoziation von NaCl gilt

nNa = nCl = n

und die Konzentration c der Lösung (Anzahl der dissoziierten + Anzahl der undissoziierten

Moleküle) . Das Massenwirkungsgesetz bekommt die FormnNa + nNaCl = c

n2

c − n = κ

Führt man jetzt statt n den Dissoziationsgrad α ein, indem man bedenkt, daß , erhältα = nc

man

α 2c2

c − αc = κ

60

Page 61: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Es ergibt sich eine quadratische Gleichung für α: , die sich nach α auflö-α 2 + κc α − κ

c = 0

sen läßt:

α 1,2 = κ2c

−1 + 1 + 4c

κ

Das - Zeichen fällt weg, da nur positive α in Frage kommen. Dieses Gesetz heißt das Ostwald-

sche Verdünnungsgesetz. Durch Disskussion dieser Formel erkennt man, daß der Dissoziati-

onsgrad mit steigender Konzentration abnimmt. Die Abnahme der Leitfähigkeit hat also die

gleiche Ursache wie die Tatsache, daß die Reaktionsfähigkeit einer Säure nicht unbedingt mit

der Konzentration zunimmt.

d) Das elektrochemische Potential

Grenzen zwei Stoffe mit beweglichen Ladungsträgern aneinander, so werden die Ladungsträ-

ger über die Grenzflächen diffundieren. Es entsteht eine Ladungsdoppelschicht, ein elektri-

sches Feld in Richtung der Normalen der Trennfläche (x), und eine Potentialdifferenz zwi-

schen den beiden Stoffen (s. Abb. 53). Betrachten man z.B. einen pn - Halbleiterübergang von

einem Halbleiter mit positiven Ladungsträgern (p) zu einem mit negativen Ladungsträgern

(n), so erhält man durch Diffusion im p - Halbleiter einen Überschuß an negativen Ladungen

und im n - Halbleiter einen Überschuß an positiven Ladungen. Der Prozeß kommt zum Still-

stand, wenn das in der Schicht aufgebaute Gegenfeld so groß ist, daß weitere Diffusion ver-

hindert wird.

Anders betrachtet besteht ein Gleichgewicht zwischen dem Strom auf Grund eines Feldes

Abb. 54: Durch Diffusion von Ladungsträgern über eine

Grenzschicht entsteht eine Doppelschicht mit einer Feld-

stärke im Zwischenraum und eine Potentialstufe.

jE = ne0v = ne0µE

61

Page 62: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

und auf Grund der Diffusion in umgekehrter Richtung

jDiff = −e0Ddndx

Der Gesamtstrom muß verschwinden

−e0Ddndx

+ ne0µE = 0 −Dµ

dnn + E(x)dx = 0

Durch Integration läßt sich sofort eine Erhaltungsgröße von der Dimension eines Potentials

ableiten. Dabei wird gesetzt (s. Gleichung (7) in Kapitel B)∫ Edx = −ϕ

(a)ϕ 0 − ϕ1 − Dµ (ln n1 − ln n0) = 0

ϕ + Dµ ln n = const

nennt man auch das elektrochemische Potential. Setzt man ϕ1 − ϕ0 = U, kannϕ∗= ϕ + Dm ln n

man Gleichung (a) auch schreiben

(b)n1n0

= e−

e0e0D/µ

Das Gesetz hat also die Form der barometrischen Höhenformel, die früher aus einer Betrach-

tung des hydrostatischen Drucks in der Atmosphäre abgeleitet wurde:

(c)n1n0

= e−mgh

kT

Man könnte auch bei der Ableitung der barometrischen Höhenformel so vorgehen wie hier bei

der Betrachtung des chemischen Potentials, indem man vom Gleichgewicht der Teilchenströ-

me i ausgeht, dabei ist . In der Atmosphäre hat man einen abwärts gerichteten Stromi =jg

e0

durch die Schwerkraft

ig = nµmg

und einen aufwärts gerichteten Strom durch die Diffusion

62

Page 63: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

iDiff = −Ddndx

Im stationären Zustand müssen beide Ströme gleich sein. Das Problem kann also auf das in

der elektrischen Schicht zurückgeführt werden, indem man e0E durch mg ersetzt. Man erhält

dann

(d)n1n0

= e− mgh

e0D/µ

Dies muß identisch mit der barometrischen Höhenformel (Gleichung (c) ) sein. Ein Vergleich

der Gleichungen (c) und (d) zeigt, daß dafür gelten muß. Beweglichkeit und Diffusi-µ = e0DkT

onskoeffizient hängen über diese von Einstein vorgeschlagene Formel voneinander ab. Setzt

man diese Abhängigkeit in Gleichung (b) ein, so erhält man die Boltzmann Formel

(5)n1n0

= e−e0U/kT

und das elektrochemische Potential wird

ϕ∗= ϕ + kTe0

ln n

Hat man an der Grenzfläche für ein bestimmtes Ion einen Konzentrationssprung n1/n2, so er-

gibt sich der Spannungssprung

(6)U = −kTe0

lnn1n2

Dies ist das Gesetz von Nernst. Den Beitrag der verschiedenen Ionen muß man unter Berück-

sichtigung des Ladungsvorzeichens addieren. Das elektrochemische Potential spielt überall ei-

ne Rolle, wo zwei Stoffe entweder direkt miteinander in Verbindung stehen wie bei Halblei-

terübergängen und Metallelektroden in Elektrolyten, oder durch eine Membran getrennt sind,

wie in vielen biologischen Systemen.

e) Die Debyesche Abschirmlänge

In Bereichen mit konstanter Konzentration besteht Ladungsneutralität. Das Feld und die

Raumladung beschränken sich auf einen engen Bereich zwischen den Ladungsschichten. Um

63

Page 64: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

die Ausdehnung dieser Schicht abzuschätzen, bedenken wir, daß das E - Feld, in dem sich der

Unterschied in n herausbildet, wiederum von der Ladungsverteilung abhängt. Zur Ableitung

dieser Abhängigkeit gehen wir vom Gaußschen Gesetz in der differentiellen Form aus.

divE = e0n∼ε

wobei die Abweichung von der Gleichgewichtdichte angibt. Im eindimensionalen Problemn∼

ist

, also U = −∫ Edx dUdx

= −E

Das Gaußsche Gesetz schreibt sich dann

(a)dEdx

= −d2U2

= e0n∼ε

ist die Gesamtzahl der Ladungsträger dort, wo das Potential U vorliegt. Diese ergibtn = n0 + n∼

sich aus der Boltzmann Formel wieder aus U.

nn0

= n0 + n∼n0

= 1 + n∼n0

= e−e0U/kT

Wegen der Quasineutralität ist und damit . Man kann die Exponentialfunk-n∼n0

<< 1e0UkT

<< 1

tion also entwickeln , und daher setzen. Man erhält .e−e0U/kT ≈ 1 − e0UkT

n∼n0

= −e0UkT

U = − kTn0e0

n∼

Setzt man dies in Gleichung (a) ein, erhält man eine Differentialgleichung für .n∼

d2n∼2

=e0

2n0

εkTn∼

mit der Lösung . Das positive Vorzeichen scheidet wegen des unrealistischen Ver-n∼ = ce−x/λD

haltens bei x → ∞ aus.

λD = εkTe0

2n0

ist die Debye Länge. Sie gibt die typische Ausdehnung von Bereichen an, in denen im Elek-

trolyt oder Plasma Raumladungen auftreten.

64

Page 65: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

f) Die Spannungsreihe

Taucht man ein Metall in eine Säure, z.B. Zink (Zn) in Schwefelsäure (H2SO4), so werden

Metallionen (hier Zn++ - Ionen) in die Säure übergehen. Es entsteht ein Gleichgewicht von der

im Abschnitt e beschriebenen Art und damit eine Spannungsdifferenz nach dem Gesetz von

Nernst (Gleichung (6)). Das Metall lädt sich negativ auf, wobei sein Potential um so negativer

wird, je mehr das Metall die Tendenz hat, in Lösung zu gehen. In praxi kann man nur Span-

nungsdifferenzen zwischen zwei solcher Übergänge messen, da man eine zweite Elektrode be-

nötigt, die in die Säure eintaucht, an der dann natürlich auch eine Spannung gegenüber dem

Elektrolyten entsteht, allerdings mit umgekehrten Vorzeichen. Außerdem muß man sorgfältig

auf Gasschichten an den Elektrodenoberflächen achten, da diese die Eigenschaft einer Ersatz-

elektrode annehmen, man spricht von elektrolytischer Polarisation. Man hat sich daher geei-

nigt, gegen eine von Wasserstoff umspülte Platinelektrode als Referenz zu messen. Man ord-

net die Elemente nach der Spannung gegenüber dieser Referenzelektrode und erhält so die

Spannungsreihe. Am einen Ende der Spannungsreihe stehen die unedlen, reaktionsfreudigen

Elemente, an der anderen die Edelmetalle.

g) Galvanische Elemente

Die unterschiedlichen Kontaktspannungen der verschiedenen Elemente relativ zu einem Elek-

trolyten kann man ausnutzen, um mit ihnen eine Spannungsquelle zu bauen. Solche Span-

nungsquellen nennt man galvanische Elemente. Im Prinzip hat man verschiedene grundsätzli-

che Möglichkeiten. Man kann zwei unterschiedliche Stoffe als Elektroden verwenden, die in

einen Elektrolyten tauchen, z.B. Kupfer und Zink, die in Schwefelsäure tauchen. Man kann

aber auch gleiche Elektroden und unterschiedliche Säuren verwenden, indem man diese durch

eine halbdurchlässige Membran trennt. Eine dritte Methode bestünde darin, daß sowohl Elek-

troden wie Elektrolyten gleich sind, die Elektroden aber unterschiedlich polarisiert werden, et-

wa durch Anlagerung von H2 und O2.

Beispiele:

α) Trockenbatterie (Leclanché Element)

Abb. 55: Aufbau einer Zink - Kohle

Trockenbatterie

65

Page 66: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Der Aufbau ist in Abb. 55 dargestellt. Elektroden sind Zink und Kohle. Elektrolyt ist Ammo-

niak in einer Paste aus Kohlenstoff und Braunstein. Der Braunstein verhindert die Polarisation

der Kohlenstoffelektrode durch Abscheidung von Wasserstoff. Durch verschiedene nichtre-

versibele Vorgänge ist sie nicht aufladbar. Sie liefert eine Spannung von etwa 1,5V.

In Alkali - Mangan Zellen ist KOH als Elektrolyt. Sie erfordern eine bessere Kapselung, ha-

ben aber eine etwa doppelt so hohe Energiedichte als Zink - Kohle Elemente bei gleicher

Spannung. Besonders hohe Energiedichte weisen Li - -Zellen mit SOCl2 (Thionylchlorid) als

Elektrolyt auf. Sie werden meist als Knopfzellen ausgebildet und weisen eine Spannung von

3V auf.

β) Bleiakkus

sind im Gegensatz zu den oben besprochenen Elementen aufladbar. Sie haben im geladenen

Zustand eine Spannung von etwas über 2V. An der positiven Elektrode laufen folgende Vor-

gänge ab (oberer Pfeil beim Laden, unterer beim Entladen).

,PbSO4 + 6H2O→← PbO2 + SO4

− − + 4H3O+ + 2e−

an der negativen Elektrode

PbSO4 + 2e− →← Pb + SO4− −

Das Verhältnis der maximal entnehmbaren Energie zur Ladeenergie beträgt 70 - 75%. Das

Gewicht pro Leistung ist ungefähr 60kg/kWh.

Eisen - Nickel Akkus enthalten als Elektrolyt KOH. Statt Eisen wird oft auch Cd verwendet.

Die Spannung beträgt 1,2 V. Eisen - Nickel Akkus sind robuster als Bleiakkus.

γ) Höchste Energiedichten haben Na - S Batterien, bei denen die Reaktion

2Na + S + 2e− →← Na2S

ausgenutzt wird. Sie arbeiten allerdings nur bei erhöhter Temperatur (300 - 350°).

δ) Brennstoffzellen verwenden reversible Oxydation an Nickelelektroden, z.B. in der

Knallgaszelle

H2 + 2OH− → 2H2O + 2e−

66

Page 67: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

12

O2 + H2O → 2OH − 2e−

5. Thermoelektrische Effekte

Abb. 56: Normalerweise kompensieren sich die

Kontaktspannungen

Verlötet man zwei Metalle an beiden Enden, so entsteht an den Lötstellen eine Kontaktspan-

nung. Da die Spannungen an den Kontaktstellen entgegengesetzt gleich sind, fließt insgesamt

kein Strom. (Schön daß der Energiesatz auch hier gilt!) Erhöht man aber an einer Stelle die

Temperatur, so ändert sich hier nach der Nernst Gleichung die Kontaktspannung. Es fließt ein

Strom, der in konkreten Fällen beträchtlich sein kann. Man nennt diesen Effekt den Seebeck

Effekt (Seebeck 1922). Er wird im Thermoelement zur Temperaturmessung ausgenutzt. Ein

Thermoelement hat geringere Linearität als ein Widerstandsthermometer, kann aber kleiner

und damit schneller gemacht werden. Im Prinzip läßt sich der Seebeck Effekt zur Direktum-

wandlung von Wärme in elektrische Energie verwenden. Der umgekehrte Effekt ist der Peltier

Effekt. Läßt man Strom durch ein Thermoelement fließen, so kühlt sich eine der Verbindungs-

stellen ab, die andere erhitzt sich. Dieser Effekt wird zum Kühlen verwendet.

Der Thomson Effekt besteht darin, daß zusätzlich elektrische Energie in Wärme umgewandelt

wird, wenn dem Strom ein Thermostrom überlagert wird. (Merke: Dieser Effekt heißt Thom-

son Effekt, weil Lord Kelvin noch Thomson hieß).

67

Page 68: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

KAPITEL E

Schaltungstheorie

Dieses Kapitel befaßt sich mit den Prinzipien elektronischer Schaltungen. Man unterscheidet

zunächst analoge und digitale Schaltungen. Dabei stellt man sich vor, daß durch die Spannun-

gen (oder Ströme) am Ein- und Ausgang oder an den einzelnen Bauelementen Zahlen darge-

stellt werden. Bei Analogschaltungen werden diese Zahlen durch einen Spannungs- (Strom-)

wert realisiert, bei Digitalschaltungen interessieren nur zwei Spannungswerte: die Spannung

ist da oder nicht da. Die Abfolge solcher Zustände werden mit den Einsen und Nullen einer

Binärzahl identifiziert. Im ersten Teil des Kapitels befassen wir uns mit Analogschaltungen

und hier besonders mit linearen Netzwerken. Das sind Schaltungen aus Bauelementen, die ei-

nen linearen Zusammenhang zwischen Strom und Spannung aufweisen. Da man die meisten

Bauelemente auf Schaltungen aus Elementen mit zwei Anschlüssen - wir sagen manchmal et-

was leger "zwei Beinen" - zurückführen kann, werden zunächst nur Netzwerke aus zweibeini-

gen Elementen betrachtet.

1. Bauelemente

a) Ideale Bauelemente

Man unterscheidet zwischen passiven und aktiven Elementen. Nur aktive Elemente liefern

elektrische Energie. Als passive Elemente betrachten wir Widerstand, Kapazität, Induktivität

und Schalter, als aktive Spannungsquelle, Stromquelle, wobei diese unabhängig von Span-

nungs- und Stromwerten an andern Stellen der Schaltung sein können, oder durch solche ge-

steuert werden. Die Schaltsymbole und die zugehörigen Zusammenhänge von Strom und

Spannung sind in den Abb. 57 - 59 dargestellt. Gesteuerte Quellen braucht man z.B. zur Be-

schreibung von Transistoren (s. Abb. 60).

Abb. 57: Passive Elemente, ihr

Symbol und der U/I Zusammenhang

an ihnen

68

Harald Schüler
Page 69: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 58: Aktive Elemente: unabhän-

gige Spannungs- und Stromquelle.

Abb. 59: Abhängige Quellen

Abb. 60: Ersatzschaltbild eines Tran-

sistors als Beispiel für eine gesteuerte

Quelle.

b) Linearität

Es möge an einer Schaltung ein Eingangssignal x(t) geben, z.B. den Strom an einem Wider-

stand I(t). Wir interessieren uns für das Ausgangssignal, z.B. für die Spannung an dem glei-

chen Widerstand U(t). Bei umfangreichen Schaltungen können Eingang und Ausgang an un-

terschiedlichen Anschlüssen liegen. Sie können gleiche oder wie im Fall des Widerstandes un-

terschiedliche Dimension besitzen. Das Bauelement (oder die Schaltung) ist linear, wenn aus

Eingängen x1(t) und x2 (t) und den dazugehörigen Ausgängen y1(t) und y2(t) folgt, daß das

Eingangssignal

x = ax1(t) + bx2(t)

ein Ausgangssignal

y = ay1(t) + by2(t)

zur Folge hat, wobei a und b beliebige Konstanten sind. Man sagt manchmal auch, wenn sich

Elemente so verhalten, es gilt der Überlagerungssatz. Bei einem Widerstand erzeugt ein Strom

I1 eine Spannung U1 = RI1 und I2 eine Spannung U2 = RI2. Die Linearkombination I = aI1 + bI2

erzeugt eine Spannung U = (aI1 + bI2)R = aU1 + bU2. Ein Widerstand ist also ein lineares

69

Page 70: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Bauelement. Ebenso sind alle oben aufgeführten Bauelemente linear. Bei einer Diode würde

der Überlagerungssatz nicht gelten.

c) Reale Elemente

Alle betrachteten Elemente stellen eine Idealisierung dar, so liefern z.B. die idealen Quellen

den angegebenen Strom oder die Spannung unabhängig von der Belastung. Man realisiert die

Elemente durch Widerstandsdrähte, Spulen, Plattenkondensatoren, galvanische Elemente und

ähnliche physikalische Objekte. Aus den Grundgesetzen der Elektrodynamik kann man erse-

hen, daß prinzipiell keins der Elemente streng realisiert werden kann. Z.B. enthält jeder Wi-

derstand ein E - Feld zwischen den Anschlüssen und damit eine Kapazität. Jedes reale Ele-

ment hat Wärmeverluste und damit Eigenschaften eines Widerstandes, u.s.w. Die Erfolge der

Elektrotechnik liegen aber darin begründet, daß es reale Elemente gibt, die eine sehr gute Nä-

herung an die idealen Elemente darstellen. In manchen Fällen muß man, um reale Elemente

gut zu simulieren, mehrere ideale zusammenschalten. Eine Spule wird man durch Hintereinan-

derschalten einer Induktivität und eines "Verlust"widerstandes darstellen (Abb. 61), einen Au-

toakku durch eine ideale Spannungsquelle und einen in Serie geschalteten "Innen"widerstand

(Abb. 62).

Abb. 61: Ersatzschaltbild einer Spule mit Verlusten

Abb. 62: Ersatzschaltbild eines Autoakkus als Se-

rienschaltung von idealer Spannungsquelle und

Innenwiderstand

Ideale Elemente können manchmal zu Widersprüchen oder zu unphysikalischem Verhalten

führen. So kann eine ideale Quelle u.U. unendlich viel Leistung liefern. Zwei Spannungsquel-

len, die unterschiedliche Spannung abgeben und parallel geschaltet sind (Abb. 63), ergeben ei-

nen Widerspruch. Solche Schaltungen müssen ausgeschlossen werden.

Abb. 63: Ein Schaltbild, das zu einem Widerspruch führt

70

Page 71: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Der Widerspruch kann meistens aufgehoben werden, indem man bestimmte Idealisierungen

aufgibt. So würde in der Schaltung von Abb. 63 kein Widerspruch auftreten, wenn man die

Innenwiderstände der Spannungsquellen berücksichtigt.

d) Festlegung der Vorzeichen

In einer zu berechnenden Schaltung weiß man im allgemeinen nicht von vorneherein, wo das

positivere und das negativere Potential ist, oder in welcher Richtung ein Strom fließt. Erhält

man z.B. als Ergebnis einer Rechnung einen positiven Zahlenwert für einen Strom, muß fest-

gelegt sein, was das für die Stromrichtung bedeutet. Entsprechend muß man eine Richtung für

die Potentialdifferenz festlegen. Diese Festlegung erfolgt in der Elektrotechnik mit sogenann-

ten Zählpfeilen. Es gibt Zählpfeile für Spannung (in diesem Skript offene Pfeile, s. Abb. 64)

und für Strom (geschlossene Pfeile). Sie zeigen in einer Schaltzkizze von einem Anschluß zu

einem zweiten. Man stellt sich am einfachsten vor, der Zählpfeil gibt eine Vorschrift vor, wo

die Pole eines Meßinstrumentes, das einen mit einem Vorzeichen behafteten Zahlenwert lie-

fert, anzuschließen sind. Bei einer Spannung gibt die Pfeilspitze an, wo der negative Pol des

Meßinstrumentes anzuschließen ist (Abb. 64).

Abb. 64: Im linken Teilbild erhält man U = 12V, im

rechten U´ = -12V

Der Pfeil zeigt also, falls der Zahlenwert der Spannung positiv ist, vom positiven zum negati-

ven Pol (bei einem negativen Zahlenwert umgekehrt vom negativen zum positiven Pol). Der

Zählpfeil für Strom zeigt bei einem positiven Zahlenwert für den Strom in Stromrichtung, d.h.

in die Richtung, in die sich positive Ladungsträger bewegen würden.

Abb. 65: Nur bei Strom- und Spannungspfeil in gleicher Rich-

tung wird das Ohmsche Gesetz mit positivem Vorzeichen

geschrieben.

Abb. 65 zeigt, welche Richtung die Strom- und die Spannungspfeile in einem einfachen

Stromkreis haben müssen, wenn alle Zahlenwerte positiv sein sollen. Man erkennt, daß sie in

einer Quelle dann umgekehrte Richtung, in einem passiven Element gleiche Richtung haben.

Das Ohmsche Gesetz hat dann das positive Vorzeichen U = IR, da es nur so erfüllt sein kann,

wenn U,I,R positiv sind. Das Gleiche gilt für die entsprechenden Gesetze bei Kapzitäten oder

71

Page 72: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Induktivitäten. Sie lauten und , wenn Spannungs- und Strompfeile gleicheI = C•U U = L

•I

Richtung haben. Man macht sich das an der Schaltung in Abb 66. klar. Anfangs sei U = 0.

Nach Schließen des Schalters ist , I und C positiv. Es kann also nur gelten und nicht•U I = C

•U

. Entsprechendes gilt für die Induktivität. Gleiche Richtung der Pfeile deutet an, daßI = −C•U

die U/I Gesetze mit positivem Vorzeichen, ungleiche Richtung, daß sie mit negativem Vorzei-

chen geschrieben werden. Die in Physikbüchern übliche Schreibweise des Induktionsgesetzes

mit negativem Vorzeichen heißt, daß man sich implizit entgegengesetzte Richtung der Zähl-

pfeile denkt, daß man die Induktivität gewissermaßen als aktives Bauteil ansieht.

2. Die Kirchhoffschen Gesetze

a) Knoten und Maschen

Abb. 67: Diese Schaltung hat 4 Knoten, 6 Schleifen

und 3 Maschen.

Ein Netzwerk besteht aus Elementen, die an ihren Anschlüssen miteinander verbunden sind.

In der Schaltskizze (s. z.B. Abb. 67) besitzen alle Verbindungslinien zwischen zwei Bauteilen

das gleiche Potential. Solche Verbindungen mit den dazugehörigen Zuleitungen bilden einen

Knoten. Geschlossene Wege nennt man eine Schleife. Schleifen, die im umlaufenen Bereich

keine Elemente oder Verbindungen enthalten, heißen Maschen. Die Brückenschaltung von

Abb. 67 hat drei Maschen und vier Knoten, wie in Abb. 68 verdeutlicht wird. Zur Berechnung

eines Netzwerks, z.B. zur Ermittlung des Stromes durch R 5 , wenn U und die Widerstände ge-

geben sind, benötigt man die Gesetze, die U und I an den Elementen verknüpfen und die

Kirchhoffschen Gesetze: die Knotenregel und die Maschenregel.

Abb. 68: Die topologisch gleiche Schaltung wie in

Abb. 67 zeigt deutlich die Knoten und Maschen

b) Die Knotenregel

In einen Knoten fließt genau so viel Strom rein wie raus. Wenn man die Strompfeile alle vom

Knoten weg zeigen läßt, gilt

72

Page 73: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

(1)KnotenΣ Ii = 0

Abb. 69: Bei dieser Richtung der Strompfeile heißt

die Knotenregel, daß der Gesamtstrom, der aus ei-

nem Knoten fließt, Null ist.

Es kommt kein Strom aus einem Knoten. Wegen der Größe der Kräfte, die für eine La-

dungstrennung erforderlich sind, sammelt sich die Ladung im allgemeinen nicht an. Es gilt al-

so für alle zweibeinigen Elemente, daß der Strom, der in einen Anschluß hineinfließt, zu jeder

Zeit so groß ist, wie der, der aus dem anderen Anschluß herausfließt. Die einzigen Schaltele-

mente, auf denen sich Ladung sammelt, sind Kapazitäten. Da bei diesen aber die Ladung auf

beiden Platten immer entgegengesetzt gleich sind, bleiben auch Kapazitäten im ganzen gese-

hen neutral.

c) Maschenregel

Bei einem vollständigen Umlauf um eine Schleife ist die Summe aller Spannungen Null.

(2)SchleifeΣ Ui = 0

Dies Gesetz folgt bei stationären Strömen aus der Tatsache, daß das E - Feld ein Potentialfeld

ist. Bei zeitlichen Änderungen des Stroms entsteht eine Zirkulation ungleich Null, d.h. eine

Ringspannung. Dieser Beitrag wird durch Induktivitäten erfaßt.

Abb. 70: Zeigen die Spannungspfeile in gleiche Umlaufs-

richtung, heiß die Maschenregel, daß man bei einem voll-

ständigen Umlauf zum Anfangspotential zurückkehrt.

d) Einfache Schaltungen mit Quellen und Widerständen

α) Widerstand als Verbraucher

In der Schaltung von Abb. 71 seien U und R gegeben und IR gefragt.

Die Maschengleichung lautet UR = U

73

Page 74: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Die Knotengleichung IR = I

Der Zusammenhang von U und I am Widerstand: IR = UR

R= U

R

Abb.71: Das physikalische Ergebnis ist natürlich

unabhängig von den Richtungen der Pfeile

Bei U = 12V und R = 6Ω erhält man IR = 2A. Die Wahl der Pfeilrichtungen ist dabei beliebig.

Hätte man die Pfeilrichtungen von Abb. 71 unten gewählt, hätte das Ohmsche Gesetz mit ne-

gativem Vorzeichen benutzt werden müssen. Das Ergebnis wäre IR/ = -2A. Die Stromrichtung

wäre entgegen der Richtung des Strompfeils und damit gleich wie in Abb. 71 oben.

β) Strom- und Spannungsquelle

In Abb. 72 stören sich Strom - und Spannungsquelle nicht, da jede ihren Wert unabhängig von

der Belastung liefert. Daher ist die Spannung an der Stromquelle U, der Strom, der durch die

Spannungsquelle fließt I.

Abb. 72: Strom- und Spannungsquelle überlagern

sich störungsfrei.

γ) Reale Strom - und Spannungsquellen

Abb. 73: Wenn der Innenwiderstand genügend

groß ist, handelt es sich um eine Stromquelle.

Für Ri >> RV wird in der Schaltung von Abb. 73 der Strom unabhängig vom WiderstandI = UR

des Verbrauchers RV. Die Spannungsquelle mit großem Innenwiderstand stellt also eine

Stromquelle dar. Bei einer idealen Stromquelle ist der Innenwiderstand unendlich. Schaltet

man sie aus ("tote Stromquelle"), so ist dies identisch mit einem verbindungslosen Zustand

zwischen den Anschlüssen.

74

Page 75: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 74: Eine Stromquelle, in der der Strom auf Null ge-

regelt wird, nennt man eine tote Stromquelle. Sie wirkt in

dem Netzwerk wie eine Unterbrechung der beiden

Anschlüsse.

Ist hingegen Ri << RV, so ist der Spannungsabfall am Innenwiderstand zu vernachlässigen und

die Spannung am Verbraucher ist unabhängig von dessen Widerstand. Die ideale Spannungs-

quelle hat daher einen Innenwiderstand Ri = 0.

Abb. 75: Eine tote Spannungsquelle entspricht einem

Eine tote Spannungsquelle ist identisch mit einem Kurzschluß (Abb. 75). Der Innenwiderstand

Ri und die Quellspannung U können bestimmt werden, indem man Strom und Spannung für

zwei verschiedene Verbraucher mißt. Z.B. für R = ∞ mißt man die Leerlaufspannung, die

gleich der Quellspannung ist U = UL. Für R = 0 mißt man den Kurzschlußstrom IK. Der Innen-

widerstand ergibt sich dann (s. Abb. 76) aus

Ri = UIK

= UL

IK

Abb. 76: Der Kurzschlußstrom ist der Strom, der fließt,

wenn die Anschlüsse der Quelle kurzgeschlossen werden

3. Einige Konsequenzen aus der Linearität

a) Der Überlagerungssatz

Die Linearität besagt, daß bei einem Ausgangssignal, das auf mehreren Eingangssignalen be-

ruht, die einzelnen Eingänge gesondert untersucht und und die dazugehörigen Ausgänge zum

Gesamtsignal addiert werden können. Dies gilt auch, wenn die Eingangssignale an verschiede-

nen Stellen des Netzwerkes eingespeist werden. Hat man z.B. ein Netzwerk mit mehreren

Quellen, so kann man alle Quellen bis auf jeweils eine ausschalten und den Effekt einer ein-

zelnen Quelle für alle Quellen nacheinander ausrechnen. Das Gesamtergebnis ist dann die

75

Page 76: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Summe der Einzelergebnisse. Wenn die Quellen mit A,B,C bezeichnet werden, die Aktivie-

rung durch * und die Deaktivierung durch +, schreibt sich dieser Satz

A ∗ , B ∗ , C ∗ ≡ A ∗ , B+, C+ + A+, B ∗ , C+ + A+, B+, C ∗

In der Elektrotechnik nennt man speziell diese Folgerung der Linearität den Überlagerungs-

satz.

Beispiel

Abb. 77: Nach dem Überlagerungssatz kann man die linke Schaltung in die beiden rechten

zerlegen und die Effekte der einzelnen Schaltungen zum Gesamteffekt addieren.

In der Schaltung von Abb. 77 soll die Spannung am Widerstand R2 berechnet werden. Zu-

nächst wird die Stromquelle desaktiviert und durch ein offenes Ende ersetzt. Die Spannungs-

quelle erzeugt an R2 die Spannung U1.

U1 = R2

R + RU

Dann wird die Spannungsquelle desaktiviert und durch einen Kurzschluß ersetzt

U2 = −IR1R2

R1 + R2

Die gesuchte Spannung ist dann die Summe der Teilergebnisse

Ux = U1 + U2 = R2U − R1R2IR1 + R2

b) Zerlegung von Signalen

Die Linearität erlaubt die Zerlegung komplizierter Signale in eine Summe anderer, deren Re-

aktion einfacher berechnet werden kann. So kann man z.B. alle periodischen Signale durch

76

Page 77: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

eine Summe von Sinustermen mit der Grundfrequenz und den Vielfachen der Grundfrequenz

zerlegen.

f(t) = a0 +Σ ansin nωt +Σ bncos nωt

(3)a0 = 1T

T

∫ f(t)dt an = 2T

T

∫ f(t)sin nωtdt bn = 2T

T

∫ f(t)cos nωtdt

Dies ist der Grund dafür, daß Wechselstromkreise auch für nichtsinusförmige Signale eine

zentrale Rolle spielen. Nichtperiodische Signale kann man mit einer Fourier Transformation

oder einer Laplace Transformation in harmonische Bestandteile zerlegen.

f(t) = 12π −∞

+∞

∫ f(ω)eiωtdω

(4)

f(ω) =−∞

+∞

∫ f(t)e−iωtdt

Abb. 78: Die Linearität eines

Netzwerkes erlaubt auch die

Zerlegung eines Pulses in Stu-

fenfunktionen oder Nadelpulse.

c) Sätze von Thevenin und Norton

Abb. 80: Die Sätze von Thevenin und Norton erlauben

es, vereinfachende Ersatzschaltbilder zu finden.

Die Linearität erlaubt es, komplizierte Netzwerke durch einfachere zu ersetzen, die das gleiche

leisten, d,h. bei Anschluß des gleichen Verbrauchers den gleichen Ausgang liefern. Hat man

ein Netzwerk, A aus Widerständen, das beliebig viele unabhängige Quellen enthalten darf, so

wird sich bei Belastung mit einem variablen Widerstand wegen der Linearität für U(I) an die-

sem eine Gerade ergeben (s. Abb. 80). Diese ist durch zwei Punkte festgelegt, z.B. durch die

Leerlaufspannung U = UL bei I = 0 und den Kurzschlußstrom I = IK bei U = 0. Das gleiche

leistet schon eine Spannungsquelle mit einem in Serie geschalteten Widerstand Ri.

77

Page 78: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 80: Wegen der Linearität des Netzwerkes ist die

Ausgangskennlinie eine Gerade. Dies läßt sich mit ei-

ner einzigen Spannungsquelle und einem geeigneten

passiven Netzwerk in Serie erreichen.

Der Satz von Thevenin sagt aus:

Jedes beliebige Netzwerk aus linearen passiven Elementen, also auch Induktivitäten und Ka-

pazitäten und unabhängigen Quellen kann durch eine Spannungsquelle U(t) und das tote

Netzwerk in Serie, d.h. eins, in dem alle Quellen desaktiviert sind, ersetzt werden.

Abb. 81: Das Thevenin Äquivalent Netzwerk

Zum Beweis betrachtet man das gegebene Netzwerk A und ein beliebiges passives Netzwerk

B als Verbraucher (s. Abb. 82). In Serie zu A wird eine Spannungsquelle angeschlossen, die

so eingerichtet ist, daß kein Strom in B hineinfließt. Da B ein passives Netzwerk ist, liegt an

B, wenn kein Strom fließt, auch keine Spannung. U(t) ist dann nach Definition die Leerlauf-

spannung des Netzuwerks A. Nach dem Überlagerungssatz ist I1 + I2 = 0. Nimmt man UL mit

-1 mal, so muß nach dem Überlagerungsgesetz auch I 2 mit -1 malgenommen werden, d.h. in

der rechtesten Schaltung von Abb. 82 führt ein umgepoltes UL zu einem I2 gleicher Größe, das

aber umgepolt ist. Wenn UL in seiner Richtung umgedreht wird, liefert das Netzwerk den

Strom -I2 = I in B, was zu beweisen war.

Abb. 82: Zum Beweis des

Satzes von Thevenin

Entsprechend kann man jedes solches Netzwerk in eins umwandeln , das aus einer Stromquel-

le besteht, die den Strom liefert, der dem Kurzschlußstrom des ursprünglichen Netzwerkes

78

Page 79: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

entspricht und dem desaktivierten Netzwerk parallelgeschaltet zur Stromquelle. Dies ist die

Aussage des Satzes von Norton. Es kann also auch jedes Thevenin Äquivalentnetzwerk in ein

Norton Äquivalentnetzwerk umgewandelt werden.

Abb. 83: Das Norton Äquivalent Netzwerk

4. Berechnungsverfahren von linearen Netzwerken

Berechnungen von linearen Netzwerken können bei komplexeren Schaltungen rasch unüber-

sichtlich werden, weil man Gleichungssysteme mit sehr vielen Unbekannten erhält. Es gibt

zwei Verfahren, die zu einem möglichst kleinen Satz von Gleichungen führen: Die Methode

der Knotenpunktspotentiale und die der Maschenströme. Zunächst vereinfacht man alle Zwei-

ge, die aus Parallel - oder Serienschaltung von Elementen bestehen. Man faßt die Aufgabe so

auf, als ob Quellen und Widerstände bekannt sind, Spannungen und Ströme berechnet werden

müssen. Alle übrigen Fragen, wie die nach Teilspannungen und Teilströmen, an Bauelemen-

ten, die zur Vereinfachung zusammengefaßt wurden oder Widerstandswerten von komplexen

Teilschaltungen, können aus den letztlich bekannten U und I in einem angehängten Schritt be-

rechnet werden. In der Brückenschaltung von Abb. 84 würde man z.B. um Ux zu berechnen

zuerst die Widerstände in der Brücke wie im rechten Teil der Skizze zusammenfassen und die-

se Schaltung berechnen. Die unbekannte Spannung ist dann leicht aus dem bekannten Strom

in der Brücke und den Potentialen der benachbarten Knotenpunkte zu ermitteln.

Abb. 84: Im ersten Schritt ersetzt man jedes Ele-

ment zwischen zwei Knoten durch ein einzelnes

Element.

a) Die Methode der Knotenpunktspotentiale

Bei der Methode der Knotenpunktspotentiale gibt man einem Knoten willkürlich das Potential

0. Die unbekannten Potentiale der übrigen Knoten sind dann zu berechnen. Durch dieses

79

Page 80: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Vorgehen sind die Maschengleichungen automatisch erfüllt, da man bei Umlauf um eine Ma-

sche wieder an den Anfangspunkt, also das Ausgangspotential zurückkommt. Wenn die Po-

tentiale der Knoten bekannt sind, ergeben sich die Ströme durch die U/I Gesetze der Elemente.

Als Ausgangsgleichungen schreibt man nur die Knotenregeln für die Knoten mit unbekanntem

Potential hin, wobei man die Ströme sofort durch die Potentialdifferenzen und die U/I Gesetze

ausdrückt. Die Ströme erscheinen in den Gleichungen nicht explizit.

Beispiel: Brückenschaltung (Abb. 85)

Abb. 85: Berechnung der Brückenschaltung mit

der Methode der Knotenpunktpotentiale

Der Knotenpunkt C hat das bekannte Potential U. Unbekannt sind die Potentiale von A und B.

Die Knotenregel für den Punkt A lautet dann

UA

R+ UA − U

R+ UA − UB

R= 0

Hier wurden die drei Ströme, die in den Knoten fließen sofort durch das Ohmsche Gesetz aus-

gedrückt. Im Nenner steht jeweils der Widerstand des betrachteten Zweiges, im Zähler die Po-

tentialdifferenz zwischen A und dem jeweiligen benachbarten Knoten. Um Fehler im Vorzei-

chen zu vermeiden, wurde bei der Bildung der Potentialdifferenz immer zuerst das Potential A

geschrieben. Natürlich hätte man diese auch immer zuletzt schreiben können. Wichtig ist nur,

daß die Terme, die aus den einzelnen Strömen gebildet werden untereinander gleich behandelt

werden.

Auch die Knotengleichung des Knotens B läßt sich sofort hinschreiben:

UB

R+ UB − U

R− UA − UB

R= 0

Man faßt die Terme mit gleichem Potential zusammen und erhält zwei lineare Gleichungen

mit den zwei Unbekannten UA und U B .

80

Page 81: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

UA

1R1

+ 1R2

+ 1R5

− UB

1R5

= UR2

−UA1

R5+ UB

1R3

+ 1R4

+ 1R5

= U

R4

Bei Netzwerken aus Widerständen ergibt sich in jedem Fall ein lineares Gleichungssystem.

Bei Netzwerken mit L und C ein Intrego - Differentialgleichungssystem, das immer in ein rei-

nes Differentialgleichungssystem überführt werden kann.

b) Methode der Maschenströme

Bei der Methode der Maschenströme setzt man für jede Masche einen unbekannten Strom Ii

an, der innerhalb einer Masche im Kreis fließt. Man schreibt die Maschengleichungen hin, in-

dem man die Spannungen sofort durch diese Ströme ausdrückt, so daß Spannungen in den

Gleichungen nicht vorkommen. Durch dieses Im - Kreis - Fließen der Ströme sind die Kno-

tengleichungen automatisch erfüllt, da der Strom, der irgendwo hineinfließt, mit Sicherheit

vollständig herauskommt. Die Maschenströme sind Rechengrößen. Der tatsächliche Strom ,

der durch ein Element fließt, ergibt sich aus der Summe aller Beiträge aus den verschiedenen

Maschen, zu denen das Element gehört.

Abb. 86: Berechnung der gleichen Brückenschaltung

wie in Abb. 86 mit der Methode der Maschenströme.

Als Beispiel wird die gleiche Brückenschaltung wie im vorhergehenden Beispiel behandelt.

Sie enthält drei Maschen, denen die unbekannten Ströme I1, I2 und I3 zugeordnet werden

(Abb. 86). Die Spannung an einem Widerstand ergibt sich aus dem Produkt dieses Widerstan-

des mit der Summe der Ströme, die durch ihn fließen, wobei Ströme aus benachbarten Ma-

schen zu einer negativen Spannung führen, wenn sie der Pfeilrichtung in der betrachteten Ma-

sche entgegenfließen. Die Maschengleichungen haben dann die Form:

Masche 1: I1R1 + I1R3 + I1R5 − I3R1 − I2R5 = 0

Masche 2: I2R2 + I2R4 + I2R5 − I3R2 − I1R5 = 0

81

Page 82: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Masche 3: I3R1 + I3R2 − I2R2 − I1R1 − U = 0

Man erhält also drei lineare Gleichungen mit den drei Maschenströmen als Unbekannten

I1(R1 + R3 + R5) − I2R5 − I3R1 = 0

−I1R5 + I2(R2 + R4 + R5) − I3R2 = 0

−I1R1 − I2R2 + I3(R1 + R2) = U

5. LRC - Netzwerke

a) Gewinnung der Differentialgleichung

Die Grundgleichungen für die Berechnung von Netzen, die auch die Elemente L, R und C ent-

halten sind die gleichen wie von Widerstandsnetzwerken: die Kirchhoffschen Gesetze und die

Gesetze, die U und I an den Bauelementen verknüpfen. Der Unterschied besteht darin, daß die

Verknüpfungsformeln an L und C eine differentielle Verknüpfung von U und I vorsehen. Für

die Methode der Knotenpunktspotentiale muß man die Ströme durch die Spannungen ausdrük-

ken. Bei einer Kapazität ergibt sich eine Differentiation

IC = C•

UC

Bei einer Induktivität eine Integration

IL = 1L −∞

t

∫ UL(t /)dt / = 1L −∞

0

∫ UL(t /)dt / + 1L

t

∫ UL(t /)dt / = I0 + 1L

t

∫ UL(t /)dt

Entsprechend benötigt man bei der Methode der Maschenströme die Spannungen ausgedrückt

durch die Ströme.

UL = L•IL

UC = U0 + 1C

t

∫ IC(t /)dt /

Für den Fall von Wechselströmen werden die allgemeinen U/I Beziehungen zu U = ZI ver-

einfacht, wobei Z komplexe Impedanzen sind. Das Berechnungsverfahren ist dann völlig

82

Page 83: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

analog zu dem von Widerstands Netzwerken. Sobald Schaltvorgänge eine Rolle spielen oder

beliebige Pulsformen erlaubt sind, muß man von den allgemeinen U/I Beziehungen ausgehen.

Als Gleichungen erhält man lineare Differentialgleichungen mit konstanten Koeffizienten.

b) Anfangsbedingungen

Neue Probleme ergeben sich durch die Notwendigkeit, Anfangswerte zu betrachten. In den

allgemeinen U/I Beziehungen erscheinen sie als Anfangsspannung U0 an einer Kapazität und

Anfangsstrom I0 durch eine Induktivität. Folgende Überlegungen helfen, bei Schaltvorgängen,

die ja unstetige Änderunge von Strom oder Spannung nach sich ziehen, die korrekten An-

fangswerte unmittelbar nach dem Schaltvorgang zu ermitteln.

α) Da das Integral einer Sprungfunktion stetig ist, sind die Spannung an einer Kapazität und

der Strom durch eine Induktivität stetig auch wenn die Funktionen unter dem Integral unstetig

sind, solange diese nur endlich bleiben. Ableitungen von Stufenfunktionen, die für Schaltvor-

gänge typisch sind, werden unendlich.

Beispiel 1

Abb. 87: Der Kondensator behält während

des Schaltvorgangs seinen Ladungszustand.

In der Schaltung von Abb. 87 ist der Schalter bis zur Zeit t = 0 offen und alle Veränderungen

sollen abgeklungen sein . Zur Zeit t = 0 wird der Schalter geschlossen. Man benötigt

ddt

= 0

zur Berechnung des Spannungsverlaufs an R1 die Spannung an C nach Schließen des Schalters

UC(0+). Die Spannung vor Schließen des Schalters U(0-) läßt sich aus der Bedingung ddt

= 0

ermitteln. Dann handelt es sich nämlich um einen reinen Gleichstromkreis. Da , ist we-•UC = 0

gen auch IC = 0 und wegen IC = IR auch UR1 = 0 und UR2 = 0. An C liegt also dieIC = C•UC

Spannung der Spannungsquelle. UC(0-) = U0. Der Kondensator ist aufgeladen. Durch Schlie-

ßen des Schalters S wird die Spannung über seinen Anschlüssen 0: US = 0. Da die Spannung

am Kondensator stetig bleibt, ist auch UC(0+) = U0. Die Spannung an R1 wird nach der

Abb. 88: Der Spannungsverlauf an R1 in der

Schaltung der Abb. 87

83

Page 84: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Maschenregel U R = -UC. UR springt also unstetig von UR(0-) = 0 auf UR(0+) = -U0. Danach

entlädt sich die Kapazität über R1 (Abb. 88). Die Schaltung in Abb. 87 wird zur Ezeugung

von Hochspannungspulsen durch eine Kondensatorentladung angewand. Sie hat gegenüber ei-

ner Anordnung, bei der der Kondensator parallel zur Spannungsquelle, der Schalter zwischen

Kondensator und Verbraucher angeordnet ist, den Vorteil, daß Schalter und Verbraucher geer-

det werden können.

Beispiel 2:

Abb. 89: Kurzschluß einer stromdurchflossenen

Spule ergibt einen Gleichstrom.

In der Schaltung von Abb. 89 wird eine Induktivität L über einen Widerstand durch eine

Gleichspannungsquelle gespeist. Wegen fließt durch L ein ansteigender Strom. ZurU = L•I

Zeit t = 0 werde der Schalter geschlossen. In diesem Moment sei I(0) = I0. Da jetzt UL = 0,

und der Strom beim Schaltvorgang konstant bleibt, folgt, daß der Strom für alle Zeiten kon-

stant bleibt IL(t )= I0, selbst, wenn die Verbindung zur Quelle unterbrochen wird.

Abb. 90: Eine geladene Kapazität kann

durch eine ungeladene mit nachgeschalteter

Spannungsquelle ersetzt werden

β) Eine anfangs, d.h. zur Zeit t = 0 geladene Kapazität verhält sich wie eine ungeladene Kapa-

zität und eine Gleichspannungsquelle in Serie, die eine Spannung liefert, mit der die ursprüng-

liche Kapazität geladen war (Abb. 90). Ebenso verhält sich eine Induktivität mit einem An-

fangsstrom I 0 wie eine stromlose Induktivität mit einer parallelgeschalteten Stromquelle, die

einen Strom I0 liefert (Abb. 91). Man verifiziert diese Aussagen, indem man zeigt, daß die ur-

sprünglichen Schaltungen (geladene Kapazität oder Induktivität) den gleichen Zusammen-

hang von U und I haben wie die Ersatzschaltbilder (ungeladenes C und L mit zusätzlicher

Quelle). Dies ermöglicht Schaltungen, in denen anfangs geladene L und C vorkommen, auf

Schaltungen mit nur ungeladenen Elementen zurückzuführen.

84

Page 85: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 91: Eine anfangs stromführende Induk-

tivität kann durch eine ohne Strom mit paral-

lelgeschalteter Stromquelle ersetzt werden.

Beispiel: Entladung einer Kapazität

Zunächst wird das Problem naiv behandelt. Die Methode der Knotenpunktspotentiale auf den

oberen Knoten angewandt ergibt

Abb. 92: Entladung einer Kapazität

UR

+ C•

U = 0

Mit der Normalform•

U + 1RC

U = 0

Lösungsansatz mit der Ableitung U = Aest•U= sAest

In die Diff. Gl. eingesetzt: sAest + 1RC

Aest = 0

daraus ergibt sich s: s = − 1RC

und die allgemeine Lösung U = Ae−t/RC

A muß noch aus der Anfangsbedingung bestimmt werden. Laut Aufgabe soll U(0) = U0 gel-

ten. Damit erhält man als Lösung

U = U0e−t/RC

Abb. 93: Der Spannungsverlauf beim Entladen

eines Kondensators

85

Page 86: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Der Zeitverlauf ist in Abb. 93 dargestellt. Die Größe τ = RC hat die Dimension einer Zeit. τ

ist die Zeit, in der die Spannung an der Kapazität auf 1/e der Anfangsspannung gesunken ist.

Abb. 94: Das gleiche Problem mit einem

Ersatzschaltbild für den geladenen

Kondensator

Man kann das gleiche Problem auch mit einem ungeladenen Kondensator und einer Gleich-

spannungsquelle in Serie rechnen (Abb. 94). Da nur eine Masche, aber zwei Knoten vorlie-

gen, ist hier die Methode der Maschenströme günstiger. Diese liefert sofort

RI + 1C

t

∫ Idt / − U0 = 0

Man kann entweder durch Differentiation der gesamten Gleichung diese in eine Differential-

gleichung verwandeln (Es ergibt sich die gleiche Differentialgleichung wie in der zuerst ange-

wandten Methode), oder durch eine Transformation.

UC = 1C

t

∫ Idt /

Im hier behandelten Beispiel führen beide Wege zum Ziel. In manchen Fällen ist es günstiger,

die Transformation auszuführen, da dann die Anfangsbedingungen erhalten bleiben, und es oft

aufwendig ist, sich die Anfangsbedingungen zu verschaffen. Zur Übung rechnen wir deshalb

hier mit dem zweiten Weg. Durch die Transformation erhält die Integralgleichung die Form

RC•UC + UC = U0

Wenn UC bekannt ist, kann durch Rücktransformation sofort I berechnet werden und mit

UR = IR auch UR. Man löst zunächst die inhomogene Gleichung

.•UC + 1

RCUC = 0

86

Page 87: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Dies ist die Gleichung für den Kreis ohne Quelle, d.h. als Lösung der homogenen Gleichung

erhält man die freie Schwingung Uf.. Die allgemeine Lösung der vollständigen Gleichung ist,

wie aus der Theorie der Differentialgleichungen folgt, die Summe der Lösung dieser homoge-

nen Gleichung plus einer speziellen der vollständigen Gleichung. Die Lösung der homogenen

Gleichung ergibt sich wie im vorigen Beispiel zu

Uf = Ae−t/RC

Eine spezielle Lösung der inhomogenen Gleichung muß man raten. Physikalisch gesehen stellt

die spezielle Lösung der inhomogenen Gleichung den eingeschwungenen Zustand dar. Im ein-

geschwungenen Zustand kann man annnehmen, daß Spannungen und Ströme das Zeitverhal-

ten der Quelle widerspiegeln. Dieses ist aber gerade durch die Inhomogenität (das Glied auf

der rechten Seite) gegeben. Daher liegt es nahe, als Ansatz die Funktion auf der rechten Seite

der inhomogenen Gleichung oder eine Linearkombination von ihr und ihren Ableitungen zu

verwenden. Tatsächlich löst hier der Ansatz US = U0 die inhomogenen Gleichung. Die Ge-

samtlösung ist also die Summe . Einsetzen der AnfangsbedingungU = Uf + Us = U0 + Ae−t/RC

U(0) = 0 ergibt für die Konstante A = -U0. Die Spannung an C im Ersatzschaltbild hat also

den Verlauf

U = U0(1 − e−t/RC)

die Spannung an R UR = U0 - U = wie mit der ersten Methode. (UC hat wegen des inU0e−t/RC

Abb. 94 gewählten Umlaufsinn des Strompfeils in der Masche ein negatives Vorzeichen ge-

gen U0)

Beispiel: RC Kreis mit zeitabhängiger Spannungsquelle

Abb. 95: Hier hat die Spannung der Quelle

eine beliebige Zeitabhängigkeit

In der Schaltung von Abb. 95 liegt eine zeitabhängige Spannungsquelle vor. Der Schalter wird

zur Zeit t = 0 geschlossen. Man wird daher zunächst einen Einschwingvorgang haben und

nach genügend langer Wartezeit einen eingeschwungenen Zustand. Nach der Methode der

Knotenpunktspotentiale erhält man

87

Page 88: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Ux − U(t)R

+ C•Ux = 0

Die Differentialgleichung hat also die Form

•Ux + 1

RCUx = 1

RCU(t)

Man sieht, daß die Spannungsquelle wieder in der Inhomogenität gefunden werden kann. Die

Lösung der homogenen Gleichung

•Ux + 1

RCUx = 0

spiegelt das Verhalten bei desaktivierter Quelle wider, also die freie Schwingung

Uf = Ae−t/RC

Abb. 96: Die Lösung der homogenen Glei-

chung ist identisch mit der freien

Schwingung.

Sie ermöglicht die Anpassung zwischen Anfangsbedingung und eingeschwungenen Zustand

mit Hilfe der zunächst unbestimmten Konstanten A. Wir betrachten zunächst den wichtigen

Fall einer Quelle mit sinusförmigen Spannungsverlauf

U = U0eiωt

Versucht man den Ansatz mit , so ergibt Einsetzen in dieUs = Beiωt•Us = iωBeiωt

inhomogene Gleichung

iωBeiωt + 1RC

Beiωt = U0

RCeiωt

Daraus erhält man B:

88

Page 89: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

B = U0

1 + iωRC

also insgesamt eine spezielle Lösung

Us = U0

1 + iωRCeiωt

Die komplexe Amplitude B enthält die reelle Amplitude, nämlich |B| und die Phasenverschie-

bung arg(B). Die allgemeine Lösung wird

U = U0

1 + iωRCeiωt + Ae−t/RC

Die Konstante A wird über die Anfangsbedingungen bestimmt. Wir nehmen an der Kondensa-

tor sei anfangs ungeladen U(0+) = U(0-) = 0. Einsetzen in die allgemeine Lösung ergibt

0 = U0

1 + iωRC+ A A = − U0

1 + iωRC

Damit erhält man schließlich die Gesamtlösung

Ux = U0

1 + iωRC(eiωt − e−t/RC)

Der Verlauf des Realteils ist in Abb. 97 dargestellt. Die freie Schwingung stellt den transien-

ten Vorgang nach dem Einschalten dar. Er klingt in der Zeit RC ab.

Abb. 97: Der Spannungsverlauf der Schaltung von

Abb. 95 mit Einschwingverhalten.

c) Der allgemeine Fall

In einem beliebigen LRC Netzwerk mit mehreren Blindelementen und Quellen erhält man eine

Differentialgleichung der Form

89

Page 90: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

andn

dtn y + an−1dn−1

n−1y + ... + a0y = bm

dm

dtm x + ... + b0x

oder allgemeiner geschrieben

Σ any(n) = Σ bmx(m)

y(t) ist der gesuchte Ausgang, die Koeffizienten ai enthalten die Daten der Bauelemente und

sind daher konstant. x enthält die Eingangssignale. Die homogene Gleichung läßtΣ any(n) = 0

sich mit einem Ansatz yf = Aest lösen. Nach Einsetzen des Ansatzes in die homogene Glei-

chung ergibt sich für s ein Polynom, die sogenannte charakteristische Gleichung der Form

ansn + an−1sn−1 + ... + a0 = 0

mit den Lösungen si. Sind alle si verschieden, erhält man die allgemeine Lösung der homoge-

nen Gleichung durch Linearkombination

yf = Σ Aiesit

Bei einer r - fachen Lösung si gibt es unabhängige Lösungen der Form

Ai1esit + Ai2tesit + ... + Airtr−1esit

Eine spezielle Lösung der inhomogenen Gleichung kann wie oben durch Linearkombination

der rechten Seite und ihrer Ableitungen gefunden werden, und zwar, wenn nur endlich viele

Ableitungen von dem Ausdruck auf der rechten Seite existieren. Eine andere Methode ist die

"Variation der Konstanten". Statt der Konstanten Ai in der freien Schwingung setzt man unbe-

kannte Funktionen vi(t) an und geht mit dem Ansatz in die Differentialgleichung. Dadurch er-

hält man eine Bestimmungsgleichung für die Funktionen vi(t).

Beispiel:

Die inhomogene Differentialgleichung habe die Form

•y + ay = F(t)

wobei F(t) eine beliebige Funktion sei. Die Lösung der homogenen Gleichung lautet dann

90

Page 91: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

yf = Ae−at

Für die spezielle Lösung macht man den Ansatz

ys =v(t)e−at

Einsetzen in die Ausgangsgleichung führt zu

•v e−at − ave−at + ave−at = F(t)

Daraus erhält man und . Die spezielle Lösung kann also mit einem In-•v =F(t)e+at v =

t

∫ F(t)eatdt

tegral dargestellt werden.

ys = ∫ F(t)eatdt ⋅ e−at

Beispiel: Der Schwingkreis

Abb. 98: Der Parallelschwingkreis

In der Schaltung von Abb. 98 sei der Kondensator anfangs aufgeladen. Danach wird der Kreis

geschlossen und sich selbst überlassen. Die Methode der Knotenpunktspotentiale führt zu der

Intrego - Differentialgleichung

C•U +1

L ∫ Udt = 0

Durch einmaliges Differenzieren wird daraus die Differentialgleichung zweiter Ordnung

••U + 1

LCU = 0

Geht man mit dem Ansatz in die Diff. Gl., wobei erhält manU = Aest••U = s2Aest

s2Aest + 1LC

Aest = 0

91

Page 92: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

und hieraus s = ± − 1LC

= ±i 1LC

= ±iω

Wegen der zwei Blindelemente ergeben sich zwei Lösungen der charakteristischen Gleichung

und damit zwei unabhängige Lösungen der Differentialgleichung. Die allgemeine Lösung ist

die Linearkombination dieser beiden Lösungen.

U = Aeiωt + Be−iωt

Die freien Konstanten A und B lassen sich aus den Anfangszuständen der beiden Blindelemen-

te bestimmen. Wir nehmen für C an

U(0) = U0

Es folgt U0 = A + B

Für L soll gelten

I(0) = 0

Es folgt , und da folgt 0 = A - B, also A = B. Wir haben zwei•U = 0

•U = Aiωeiωt − Biωe−iωt

Gleichungen für A und B und erhalten aus ihnen

A = 12

U0, B = 12

U0

Die endgültige Lösung lautet hiermit

U = U0

2(eiωt + e−iωt) = U0cos ωt

Der Kreis führt also eine harmonische Schwingung aus. Die Amplitude ist gleich der An-

fangsspannung des Kondensators, die Frequenz ist gegeben durch

92

Page 93: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

(5)ω = 1LC

6. Schaltungen mit Transistoren

a) Der pn Übergang

Abb. 99: Der pn - Übergang in Durchlaßrichtung

Ein Grundelement vieler Halbleiterbauteile ist der pn Übergang, d.h. die Grenzfläche zwi-

schen einem Halbleiter mit positiven zu einem mit negativen Ladungsträgern. Legt man eine

Spannung an, die am p Halbleiter positiv ist, so bewegen sich die Ladungsträger praktisch frei

auf die Grenzfläche zu, wo positive und negative rekombinieren. An den Anschlüssen werden

neue nachgeliefert. Die Grenzfläche ist für Strom durchlässig (Abb. 99). Bei umgekehrter Po-

lung bewegen sich die Ladungsträger von der Grenzfläche fort. Dort können keine Ladungs-

träger nachgeliefert werden. Es baut sich ein Gegenfeld auf und es kann kein Strom fließen.

Die Grenzfläche sperrt (Abb. 100).

Abb. 100: Der pn - Übergang in Sperrichtung

b) Funktionsweise des Transistors

Abb. 101: Der bipolare Transistor

Beim bipolaren Transistor hat man zwei entgegengerichtete pn Übergänge. Als Beispiel wird

ein npn Halbleiter betrachtet (Abb. 101). Legt man eine Spannung an die Gesamtstrecke (zwi-

schen Emitter (E) und Kollektor (C) siehe Abb. 101 und 102), so wird immer einer der Über-

gänge in Sperrrichtung betrieben.

93

Page 94: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 102: Schaltsymbol für einen bipolaren

Transistor

Das Gesamtelement sperrt also. Durch Injizieren von Ladungen in den Mittelteil, die Basis,

die sehr dünn gehalten wird, wird die Ladungsträgerverarmung in der sperrenden Grenz-

schicht aufgehoben. Der Transistor wird leitend. Durch einen schwachen Basisstrom (zwi-

schen B und C) kann ein verhältnismäßig starker Querstrom (zwischen E und C) gesteuert

werden. Ein Transistor hat also die Funktion eines Verstärkers. Kleine Schwankungen im Ba-

sisstrom führen zu großen Schwankungen im Querstrom. Die zusätzliche Leistung muß der

Energieversorgung, die den Quersrom speist, entnommen werden.

Abb. 103: Aufbau eines Feldeffekttransistors

Bei Feldeffekttransistoren (FET Abb. 103) wird der Querstrom durch ein elektrisches Feld ge-

steuert. Man benötigt daher besonders wenig Steuerstrom. Die Funktion ist ähnlich wie bei be-

stimmten Elektronenröhren, z. B. der Pentode. In Abb.104 ist eine einfachere Verstärkerröhre,

eine Triode dargestellt. Hier wird ein Strom von Elektronen, die durch Glühemission ins Va-

kuum emittiert werden, durch die Spannung an einem Gitter gesteuert.

Abb. 104: Triode

c) Kennlinienfelder des bipolaren Transistors

Mißt man zwischen Basis und jeweils einem der übrigen Anschlüsse, so verhalten sich diese

Strecken wie Dioden. (Defekte Transistoren sind häufig daran zu erkennen, daß eine der Di-

odenstrecken keine Gleichrichterwirkung zeigt).

94

Page 95: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 105: In mancher Hinsicht verhält sich der

Transistor wie gegeneinandergeschaltete Dioden

Die Kennline UBE/IBE entspricht also der einer Diode (Abb 106).

Abb. 106: Die Basis - Emitter Kennlinie

Der Transistor wirkt wie ein Stromverstärker mit etwa konstanter 10 - 100 facher Stromver-

stärkung. Die UBE/ICE Kennlinie hat also ebenfalls die Form einer Diodenkennlinie, nur mit

veränderter Skala an der Ordinate (Abb. 107).

Abb. 107: Die Kollektorstrom - Basisspan-

nungs Kennlinie

ICE zeigt in Abhängigkeit von UCE eine Sättigung, wobei in einem gewissen Bereich ICE im Pla-

teau linear mit UBE ansteigt (Abb. 108). Das Plateau ist nicht völlig horizontal sondern weist

eine kleine Steigung auf. Diese Steigung des Plateaus ist proportional zu ICE.

∂ICE

∂U= KICE

Abb. 108: Das Ausgangs Kennlinienfeld

Die Konstante hat die Dimension einer reziproken Spannung. 1/K nennt man Early Spannung.

Sie liegt bei allen Transistoren etwa zwischen 80 und 200V.

95

Page 96: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

d) Ein Transistorverstärker

Abb. 109: Die Arbeitsgerade

Abb. 110: Dimensionierung des Eingangswiderstandes

Abb. 111: Die Emitterschaltung

Als Beispiel wird die Emitterschaltung (Abb. 111) betrachtet. Wie bei der Diode teilt man das

Problem in ein Gleichspannungs- und ein Wechselspannungsproblem auf. Im Gleichspan-

nungsproblem geht es um die Festlegung des Arbeitspunktes. Kollektor und Basis werden aus

einer Gleichspannungsquelle (Ub) mit in Serie geschalteten Widerständen gespeist. Wenn die

Charakteristik U(I), die Batteriespannung Ub und der Widerstand R bekannt sind, ergibt sich

der Arbeitspunkt aus

U(I) + RI = Ub

Man kann diese Gleichung graphisch lösen, indem man den Schnittpunkt der Charakteristik

mit der "Widerstandsgeraden"

Uw(I) = Ub − IR

bestimmt (Abb. 109, Abb. 110). Den Vorwiderstand der Basis RB wird man so dimensionie-

ren, daß Ub und RB der Basis den gewünschten Strom anbieten. Durch RC legt man den Ar-

beitspunkt in den linearen Bereich der des ICE/UBE Kennlinienfeldes. Nach einer Faustformel

96

Page 97: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

sollte UCE kleiner sein als die Hälfte der Versorgungsspannung, um thermische Instabilitäten

zu vermeiden. Die übrigen Komponenten haben folgende Aufgaben: Kondensatoren lassen

wegen keine Gleichströme durch, aber Wechselströme. Sie dienen dazu, GleichströmeI = C•U

von der Batterie zum Verbraucher R V und zu andern Teilen außerhalb der Schaltung zu unter-

drücken. Der Emitterwiderstand im Zusammenhang mit dem Spannungsteiler an der Basis un-

terdrückt thermische Schwankungen der Stromverstärkung.

e) Der Operationsverstärker

Ein idealer Verstärker benötigt überhaupt keinen Strom am Eingang, d.h. sein Eingangswider-

stand RE ist unendlich. Er liefert seine Ausgangsspannung unabhängig von der Belastung, d.h.

im Thevenin - oder Norton - Äquivalentkreis ist rA = 0 (s. Abb.112), und die Verstärkung ist

unendlich.

Abb. 112: Der Ausgang eines Verstärkers ist eine

Spannungsquelle und ihr Innenwiderstand. Beim

idealen Verstärker ist dieser gleich Null.

rE = ∞ rA = 0 AD = Ua

UD= ∞

Abb. 113: Zum Begriff der Differenzverstärkung

AD ist die Differenzverstärkung (s. Abb.113). Die Ausgangsspannung soll endlich bleiben.

Daraus folgt wegen der unendlichen Verstärkung UD = UP - UN = 0. Man kann daher den Ope-

rationsverstärker als ein Gerät auffassen, das dafür sorgt, daß die Eingangsspannung Null ist,

ohne daß zwischen den Eingangsanschlüssen ein Strom fließt. Die für die Anwendung nützli-

chen Eigenschaften erreicht man durch Beschaltung.

Beispiel: Nichtinvertierender Verstärker

Die Schaltung zeigt Abb. 114. Da UD = 0, folgt

Abb. 114: Der nichtinvertierende Verstärker

97

Page 98: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Ua

Ue= RN + R1

R1= 1 + RN

R1

Die Verstärkung ist nur durch das Widerstandsverhältnis und nicht durch die Eigenschaften

des Verstärkers, der z.B. viel stärker von äußeren Einflüssen wie der Temperatur abhängen

kann, bestimmt.

Abb. 115: Der Spannungsfolger

Abb. 115 zeigt den Sonderfall eines Spannungsfolgers. Hier ist Ue = Ua, rE = ∞, ra = 0. Ob-

gleich die Spannung nicht erhöht wird, handelt es sich um einen Verstärker, da die Leistung

erhöht werden kann. Diese Schaltung wird zur Impedanzanpassung verwendet, wenn ein Ge-

rät im Ausgang auf einem großen Arbeitswiderstand arbeiten muß und das nachgeschaltete

Gerät im Eingang einen kleinen Arbeitswiderstand hat.

Die behandelten Verstärker sind Analogschaltungen, d.h. der Zeitverlauf von Signalen wird

direkt verarbeitet. Außer Verstärkern gehören auch Schaltungen für Rechenoperationen wie

das Addieren, Multiplizieren und Integrieren von Signalen zu Analogschaltungen. Ihr Vorteil

besteht darin, daß sie sehr schnell und einfach sein können.

7. Digitalschaltungen

Digitalschaltungen sind aufwendiger und im allgemeinen nicht so schnell wie Analogschal-

tungen. Sollen analoge Signale verarbeitet werden, müssen diese zuerst durch einen Analog -

Digitalwandler (AD - Wandler) in Impulse umgewandelt werden. Man verwendet Impulse

von gleicher Form und Höhe und stellt relevante Größen als Dualzahl dar. Die Dualzahl kann

man den gewünschten Operationen unterziehen. Braucht man einen analogen Ausgang, muß

dieser durch einen nachgeschalteten DA - Wandler erzeugt werden. Der Vorteil von Digital-

schaltungen liegt darin, daß man die Verarbeitung von Dualzahlen flexibler gestalten kann als

die Verarbeitung von Analogsignalen, daß Signale regeneriert werden können und daß Fehler-

kontrollen und Korrekturen eingebaut werden können.

98

Page 99: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

a) Schaltungselemente

In digitalen Schaltungen interessiert man sich nur für zwei Betriebszustände, etwa einen Zu-

stand hoher Spannung (H, high), dem man die duale "1" oder den logischen Wert "wahr" zu-

ordnet und einen Zustand kleiner Spannung, (L, low) mit dem Wert "0" oder "falsch". (Bei

umgekehrter Zuordnung spricht man von negativer Logik.) Digitale Netzwerke sind daher ge-

eignet, Dualzahlen und logische Verknüpfungen zu verarbeiten. Bauelemente, die dies tun

nennt man Gatter. Das Grundelement einer digitalen Schaltung ist ein Schalter mit den Zu-

ständen "auf" und "zu".

Abb. 116: Der Negierer, links oben, Realisie-

rung mit einem Relais, rechts oben die Ver-

knüpfungstafel, in der Mitte das Eulerdia-

gramm und unten Schaltsymbole.

Abb. 117: Das "UND" Gatter Abb. 118: Das "ODER" Gatter

Abb. 116 - 118 zeigen Realisierungsmöglichkeiten mit elektrisch gesteuerten Schaltern, soge-

nannten Relais, die schließen, wenn eine Spannung an einen Elektromagnet gelegt wird, und

sonst öffnen. Die Funktionen und Schaltsymbole sind ebenfalls angedeutet.

Abb. 119: Ein Transistor Inverter

99

Page 100: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

In Halbleiterschaltungen verwendet man Transistoren als Schalter. Die Schaltung in Abb. 119

ist ein Negierer (Inverter). Wenn die Eingangsspannung unter 0,4V liegt, sperrt der Transistor

sicher. Ua ist also auf einem hohen Niveau. Wenn Ue größer als ein gewisser Wert ist, schaltet

der Transistor durch, die Ausgangsspannung sinkt unter 0,3V. Um auch bei Störungen sicher

zu sein, daß die Zustände korrekt unterschieden werden, legt man die Pegel in einen Sicher-

heitsabstand zu den für den Schaltvorgang erforderlichen Pegeln, z.B. den "high" Pegel nicht

bei 0,8 V sondern bei 1,5 V. Die Differenz ist der Störabstand. Man stellt diesen Sachverhalt

in einer Übertragungskennlinie dar (Abb. 120).

Abb. 120: Eine Übertragungskennlinie

Im Übergangsbereich ist der Pegel nicht definiert. Um Fehlfunktionen zu vermeiden, dadurch

daß sich Bauteile etwa beim Umschalten in einem undefinierten Zustand befinden, sorgt man

dafür, daß das Umspringen der Schaltelemente nur zu bestimmten Zeiten erfolgt, die durch ei-

nen gemeinsamen Takt ("clock") vorgegeben sind (Abb. 121).

Abb. 121: Mit einemm Takt erreicht man, daß Gatter

nur zu definierten Zeiten angesprochen werden

Es gibt verschiedene Techniken, Gatter mit Halbleitern zu realisieren, die sich in der Strom-

aufnahme, der Schaltgeschwindigkeit, im Störabstand und der Übertragungskennlinie unter-

scheiden. Weit verbreitet sind TTL (Transistor - Transistor - Logik), ECL (emittergekoppelte

Logik), CMOS Technik (Bauteile mit komplementären Metall Oxydschichten als Grundele-

menten), wobei ECL Gatter besonders schnell sind, CMOS Gatter besonders wenig Strom

verbrauchen.

b) Kombinatorische Schaltungen

Durch Verschalten von Gattern erhält man Netzwerke, die im allgemeinen Fall eine ganze

Reihe von z.B. n Eingangsanschlüssen und m Ausgangsanschlüssen besitzen. Liefern diese bei

100

Page 101: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

einem bestimmten Eingangswort, d.h. einer bestimmten Kombination von Nullen und Einsen

an den Eingangsanschlüssen ein bestimmtes Ausgangswort, spricht man von kombinateri-

schen Schaltungen. Typische Vertreter sind Kodierer, Rechenwerke, Funktionsnetzwerke.

Wird nur ein Ausgangsbit geliefert, hat man die Funktion eines Schlüssels, d.h. bei einem be-

stimmten Eingangswort oder Eingangsvektor (x1, x2, ...,xn) wird am Ausgang eine "1" gelie-

fert, bei allen übrigen eine "0". Diese Funktion erfüllt ein "und" Gatter mit n Eingängen, an

dessen Eingang i man xi legt, wenn das Schlüsselwort hier eine 1 hat, ansonsten . Diexi

Funktion

x1 x2 x3 y

0 1 1 1

sonst 0

Abb. 122: Wie die Funktion in der Tabelle

realisiert werden kann

wird realisiert durch das Gatter in Abb. 122. Soll sich auch für eine andere Kombination "1"

ergeben, kann diese mit einem anderen "und" Gatter dargestellt werden. Die Ausgänge beider

Gatter werden dann durch "oder" verknüpft. Mit diesem Verfahren kann man im Prinzip eine

beliebige kombinatorische Schaltung aufbauen, indem man die Ausgänge der "und" Gatter mit

mehreren "oder" Gattern verknüpft, die dann insgesamt das Ausgangswort an ihren Ausgän-

gen zeigen. Dies ist in Abb. 123 verdeutlicht. Sie zeigt ein programmierbares logisches Feld

(PLA).

Abb. 123: Ein programmierbares logisches

Feld. Zur Programmierung werden die hori-

zontalen und vertikalen Drähte in der rechten

Hälfte an den Kreuzungspunkten geeignet

verbunden.

In einem PLA kann man als Anwender gekreuzte Leitungen nach Wunsch verbinden und so

nach dem obigen Schema Eingangsworten bestimmte Ausgangsworte zuordnen. Ein PLA ist

101

Page 102: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

eine einfache Form eines Festspeichers. Die Eingangsworte haben die Funktion einer Adresse,

die Ausgangsworte die des zu dieser Adresse gehörigen Speicherinhalts.

c) Sequentielle Netzwerke

Enthält die Schaltung Rückkoppelzweige, so ist sein Verhalten im allgemeinen von der Vor-

geschichte abhängig. Man nennt solche Schaltungen sequentielle Netzwerke. Typische Vertre-

ter sind Zähler, Schreib - Lese Speicher (RAM = random access memory) und Computer. Das

einfachste Element ist ein Flip - Flop. In Abb. 124 ist eine Realisierung mit "NOR" Gattern

(verneinte "oder" Gatter) gezeigt. Nur, wenn beide Eingänge des NOR Gatters auf "0" stehen,

ergibt sich am Ausgang "1". Durch Anlegen einer Spannung an S ("set") kann man ein Daten-

bit setzen, durch Anlegen an R ("reset") löschen. Ohne Signal auf dem Eingang bleibt das ge-

setzte Bit stehen. Dies ist die Grundfunktion einer Speicherzelle. R = 1 und S = 1 führen am

Ausgang zu Q = 0, . Bei anschließendem R = 0, S = 0 wird der Zustand undefiniert.Q = 0

R = 1, S = 1 muß daher ausgeschlossen werden. Ein Flip Flop kann aus zwei hintereinander-

geschalteten Transistoren (Abb. 125) mit Rückkopplung aufgebaut werden.

Abb. 124: Ein RS Flip Flop mit zugehöri-

ger Wahrheitstafel

Abb. 125: Ein Flip - Flop als

Transistorschaltung

Durch Hinzufügen eines Kondensators erhält man einen Monoflop (= monostabilen Multivi-

brator), der bei kurzzeitigem Anstoß in den anderen Zustand übergeht und nach vorgegebener

Zeit wieder in den Ausgangszustand zurückkehrt, oder einen astabilen Flip - Flop, der einen

Rechteckwellenzug erzeugt. Der Schmitt - Trigger ist ein Flip - Flop mit zwei stabilen Zustän-

den und einem Eingang. Überschreitet Ue einen Schwellwert US, springt Ua auf Umax, bei Un-

terschreiten einer Schwelle auf Umin.

102

Page 103: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

d) Fehlerkorrekturen

Außer der größeren Flexibilität bei der Verarbeitung zeigen Digitalschaltungen vor allem die

Möglichkeit bestimmte Fehler zu korrigieren.

Signalformen können durch Monoflops wieder aufgefrischt werden (Abb. 126).

Abb. 126: Ein verkümmerter Puls steuert

einen Monoflop an. Im Ausgang er-

scheint ein aufgefrischter Puls

Unsauberes Schließen eines Kontaktes kann durch ein RS Flip - Flop ausgeglichen werden

(Abb. 127).

Abb. 127: Durch Tastendruck erzeugte Impulse

erhalten durch Flip - Flops eine definierte Form

Bei der Speicherung und Übertragung von Informationen können Fehler durch Hinzunahme

von Prüfinformation erkannt und teilweise korrigiert werden (Abb. 128).

Abb. 128: Fehlerprüfung

bei Übertragung von Daten

Das Prinzip solcher Maßnahme erkennt man am folgenden Verfahren: Man verdoppele jedes

Bit eines zu übertragenden Wortes und übertrage das verdoppelte Wort. Wenn die Fehlerhäu-

figkeit genügend klein ist, ist die Wahrscheinlichkeit für das gleichzeitige Auftreten von zwei

Fehlern verschwindend klein. Ist z.B. bei 106 Übertragungen ein Fehler zu erwarten, ergibt

sich für die Wahrscheinlichkeit von zwei gleichzeitigen Fehlern Pges = P1P2 = 10-12. Daher kann

man bei einem ungleichen Paar eines Bits in einem im übertragenen Wort davon ausgehen,

daß hier ein Fehler vorliegt. Eine Korrektur ist nicht möglich. Bei Verdreifachung jedes Bits

kann man außerdem das Originalbit ermitteln, wenn man voraussetzt, daß sich jeweils nur ein

Bit eines Tripels verändert.

In der Praxis kommt man mit weit weniger Prüfinformation aus. Z.B. reicht für die Fehlerer-

kennung ein zusätzliches Prüfbit. Man fügt einer Zahl eine "1" zu, wenn diese ungerade ist,

103

Page 104: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

d.h. eine ungerade Zahl von Einsen enthält, sonst fügt man eine "0" hinzu. Diese Funktion er-

füllt ein Paritätsgenerator. Die übertragene Zahl einschließlich Prüfbit ist dann immer gerade.

Erscheint nach der Übertragung eine ungerade Zahl, enthält sie mit Sicherheit einen Fehler.

Eine erneute Übertragung kann angefordert werden.

Beim Hamming Code stellt man mit k Paritätsgeneratoren jeweils die Parität eines Teils des

Gesamtwortes (des zu übertragenden Wortes einschließlich Prüfwort) fest, indem man die An-

schlüsse der Paritätsgeneratoren so auf die Übertragungkanäle verteilt, daß an jedem Kanal ei-

ne andere Kombination von Paritätsgeneratoren hängt. Als Beispiel betrachten wir den Fall,

daß eine achtstellige Dualzahl übertragen werden soll. Man verteilt die Paritätsgeneratoren

wie die Einsen der Dualzaul, die die Nummer des Übertragungskanals angibt (Abb. 129). Den

vier Paritätsgeneratoren lassen sich 16 Kanäle zuordnen, d.h. das zu übertragende Wort und

die vier Prüfkanäle lassen sich durch vier Prüfbits überwachen. Bei einem Fehler sprechen

mehrere der Paritätsprüfer an, aus deren Kombination man die Nummer des fehlerhaften Ka-

nals sofort ablesen kann.

Abb. 129: Verteilung der Paritätsgeneratoren über

die Übertragungskanäle beim Hamming Code. Dar-

gestellt sind links die vier Leitungen für den

Fehlercode.

104

Page 105: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

KAPITEL F

Das Magnetfeld

1. Statische Magnetfelder

a) Geschichtliches

Die Anziehungskraft von Magnetnadeln war schon im Altertum bekannt (Thales von Milet,

Aristoteles), und wurde anfang des 16. Jahrhunderts von William Gilbert ausführlich beschrie-

ben. Gilbert erklärte die Wirkung der Kompaßnadel als die Kraft zwischen dem Permanentma-

gneten Erde und der Magnetnadel. Der Magnetismus wird analog zur Elektrostatik gesehen,

d.h. man stellt sich entgegengesetzte magnetische Ladungen, Nordpol und Südpol, vor, die

sich wie negative und positive Ladungen anziehen, b.z.w. wie gleichartige Ladungen abstoßen.

Die Richtung des magnetischen Feldes ist die Kraftrichtung auf einen Nordpol. Noch anfang

des 19. Jahrhunderts wurde auch die Stärke des magnetischen Feldes über ein Analogon zum

Coulomb Gesetz definiert. Der Hauptunterschied zur Elektrostatik besteht darin, daß man ei-

nen magnetischen Pol nicht einzeln auf einem Körper haben kann. Wie man heute weiß, kann

man einen Magneten bis zur Größe eines Atoms zerteilen, wobei jedes Stückchen einen Nord-

und einen Südpol enthält. Man führt die magnetische Wirkung auf eine zusätzliche Kraft bei

bewegten Ladungen, d.h. Strömen zurück. Der Zusammenhang von magnetischen Kräften und

Strömen wurde von Christian Oerstedt 1820 entdeckt. Vorher galten Elektrizität, Magnetismus

und Galvanismus als drei nicht zusammenhängende Wissensgebiete. Oerstedt war Anhänger

des Dynamismus, der in Deutschland Naturphilosophie genannt wurde und Friedrich Schlegel

als bedeutendsten Philosophen hatte.

Die Naturphilosophen wandten sich gegen die Aufsplitterung der Wissenschaft in Spezialge-

biete, in denen sich im Grunde jeder mit unwichtigen Fragen beschäftigt. Sie wollten die gro-

ßen Zusammenhänge erfühlen. Die Naturphilosophen regten eine ganze Studentengeneration

zur Begeisterung an. Im folgenden wird aus Armin Hermans "Weltreich der Physik" zitiert.

Zuerst ein Bericht des schwedischen Chemikers Berzelius:

"Was während unseres Aufenthaltes in Tübingen unsere größte Aufmerksamkeit erregte,waren die Studenten, ihr Aussehen, ihre Bekleidung...Das Haar lang, in wirrem,struppigem Durcheinander um die Schultern hängend, buschig und wollig um die Ohrenherum, die davon verdeckt werden. Der Grund für dieses gesucht barbarische undverlotterte Aussehen liegt in dem philosophischen Geist, der bei uns unter dem NamenPhosphorismus bekannt ist und in Deutschland Naturphilosophie heißt. Seine Grundlageist Unkenntnis an allem Realen, Liebe zur Poesie und schönen Künsten und

105

Harald Schüler
Page 106: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

vertrauensvolle unüberlegte Hingabe an die Anschauungen derjenigen Personen, diedurch Unverständlichkeit den Ruf von Tiefe erlangt haben."

Friedrich Schlegel zählt zu den bedeutendsten Philosophen der deutschen Romantik. Er pries

die Entdeckungen von Oerstedt und Faraday als Erfolge seiner Philosophie, während die Na-

turwissenschaftler diese zumeist als wertlos erachteten. Die Abneigung der Natirwissenschaft-

ler für die Naturphilosophie kann man verstehen, wenn man sich folgenden Beweis von Schil-

ling (1799) dafür anhört, das mindestens drei Körper vorhanden sein müssen, um einen galva-

nischen Effekt zu erzeugen:

"Duplizität wird der organische Tätigkeitsquell sein. Aber im Organismus ist dieDuplizität aufgehoben. Er steht mit sich selbst im Gleichgewicht. Es ist ihm Ruhe, aberes soll ihm Tätigkeit sein...Diese kann nur durch beständige Wiederherstellung derDuplizität hervorgebracht werden. Aber diese ständige Wiederherstellung kann selbstnur durch ein Drittes geschehen, und darum wird jene Ursache im Organismus unterBeteiligung der Triplizität als tätig erscheinen. Dadurch also wäre die notwendigeTriplizität des Galvanismus abgeleitet."

Die Tatsache, daß gerade die Vertreter des Dynamismus, Oerstedt und Faraday die wichtigen

Entdeckungen zum Elektromagnetismus gemacht haben, ist wohl kaum ein Beweis für die

Richtigkeit der Naturphilosophie, sondern sie zeigt nur, daß es, um zu Entdeckungen zu kom-

men, oft nicht so wichtig ist, von der richtigen Theorie auszugehen, als überhaupt mit irgendei-

ner Hypothese auch an unkonventionellen Stellen nachzusehen. Die Gegenströmung zum Dy-

namismus ist der Positivismus, in dem man nur von beobachtbaren Größen redet. Die strenge

Anwendung dieser Philosophie war wiederum eine starke Behinderung bei der Entwicklung

allgemeiner Konzepte wie des Energiesatzes und der Atomhypothese.

b) Was ist Magnetfeld?

α) Qualitatives Feldlinienbild

Abb. 130: Magnetische Feldlinien in der Um-

gebung eines geraden stromführenden Drahtes

Die Ergebnisse der Versuche von Oerstedt lassen sich so zusammenfassen: Ein gerader strom-

führender Leiter erzeugt in seiner Umgebung ein Magnetfeld, das aus konzentrischen Kreisen

106

Page 107: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

um den Leiter in einer Ebene senkrecht zur Leiterrichtung besteht. Die Richtung der Feldlinien

ist durch eine Korkenzieherregel bestimmt (Abb. 130).

Abb. 131: Magnetfeld einer Ringspule

Aus der Kenntnis des Feldes eines Leiterstückchens kann man qualitativ das Feld ganzer Lei-

teranordnungen ermitteln. Abb. 131 zeigt Das Feld eines Ringstromes, Abb. 132 mehrerer

axial angeordneter Ringströme, also einer Spule.

Abb. 132: Magnetfeld einer Zylinderspule

Das Feldlinienbild einer Spule ähnelt - zumindest im Außenraum - dem eines Permanentma-

gneten. In der Tat kann man sich einen Permanentmagneten als einen Festkörper vorstellen, in

dem alle Elementmagneten parallel ausgerichtet sind. Im Innern heben sich dann alle Ströme

auf (s. Abb. 133).

Abb. 133: Ausgerichtete Ringströme in einem

Festkörper machen das gleiche Feld wie ein

Oberflächenstrom.

Es bleibt nur an der Oberfläche ein effektiver Strom übrig, der die Geometrie eines Spulenstro-

mes besitzt und daher auch das Feld einer Spule erzeugt. Die Kraft zwischen zwei Festmagne-

ten kann damit auf die Kraft zwischen Strömen zurückgeführt werden: Ströme gleicher Rich-

tung ziehen sich an, entgegengesetzter Richtung stoßen sich ab (Abb. 134). Ähnlich wie in der

Elektrostatik oder der Gravitation teilt man die Kraftwirkung in zwei Prozesse auf. Man sagt,

der eine Strom erzeugt ein magnetisches Feld und der andere erfährt eine Kraft in diesem Feld.

107

Page 108: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 134: Die Kraftwirkung zwischen ma-

gnetischen Polen wird auf die Kraft zwischen

Strömen zurückgeführt.

β) Definition des magnetischen Feldes

Wir können also das Magnetfeld über seine Kraftwirkung auf einen elektrischen Strom, oder,

was auf das gleiche herauskommt, auf eine bewegte elektrische Ladung definieren. Hierfür gilt

die Lorentzformel.

F = Qv × B

Die Richtung des Magnetfeldes ist hiernach durch die Geschwindigkeitsrichtung, in der ein ge-

ladenes Teilchen (Probeteilchen) fliegen muß, ohne eine Kraft zu erfahren, gegeben. Die Stär-

ke von B ist durch

B = FQv ⊥

gegeben, wobei F der Betrag der Kraft auf das geladene Teilchen bei Abwesenheit elektrischer

Felder gegeben ist und das Probeteilchen die Geschwindigkeit v⊥ senkrecht zum Magnetfeld

hat. Damit ergibt sich die Dimension von B

[B] = [F][Q][v]

= NAsm

s= Nm

Am2= VAs

Am2= Vs

m2= T (Tesla)

Analog zum Fluß des elektrischen Feldes definiert man den Fluß des magnetischen Feldes

durch eine Fläche A (s. Abb. 135).

Abb. 135: Der Fluß durch eine vorgegebene Fläche

hängt von deren Ausrichtung zum Magnetfeld ab.

(1)Φ = ∫ B • dA

108

Page 109: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

mit der Dimension Im Gegensatz zum elektrischen Feld hat das[Φ] = [B][A] = Vs.

magnetische keine Quellen. Wir hatten gesehen, daß die elektrischen Feldlinien auf Ladungen

endigen, daß es aber magnetische Ladungen nicht gibt. Das heißt, daß in eine in sich geschlos-

sene Fläche genau so viel Fluß hineintritt wie wieder hinaustritt, oder formal

(2)∫ B • dA = 0

Andererseits hat das B Feld eine von Null verschiedene Zirkulation um einen stromführenden

Leiter herum. Dies erkennt man, wenn man den Integrationsweg entlang einer geschlossenen

Feldlinie legt. Integriert man in Feldrichtung, gibt es nur positive Beiträge zum Integral.

c) Transformation elektrischer Felder

α) Transformation eines homogenen E - Feldes

Im Rahmen der Relativitätstheorie kann man die Kräfte zwischen geladenen Teilchen vollstän-

dig mit der elektrostatischen Kraft beschreiben. Wenn man also konsequent die Lorentztrans-

formation anwendet, kommt man alleine mit der elektrostatischen Kraft aus und braucht nicht

von gesonderten magnetischen Feldern zu sprechen. Wir behandeln deshalb im folgenden die

Transformation von elektrischen Feldern. Wir berechnen, wie in der speziellen Relativitäts-

theorie üblich, ein und denselben physikalischen Vorgang von zwei Koordinatensystemen S

und S´ aus, die sich mit konstanter Geschwindigkeit in x - Richtung aneinander vorbeibewe-

gen. Bei t = t´ = 0 sollen beide Ursprünge an einem Punkt liegen.

Abb. 136 und 137: Das Feld zwischen

zwei Flächenladungen wird aus einem

ruhenden Koordinatensystem S und ei-

nem bewegten S´ beobachtet.

Die Gesamtladung in einem Volumen ist gegenüber solchen Transformationen invariant. Wir

messen den Betrag einer bewegten Ladung, indem wir den Gesamtfluß des elektrischen Feldes

bestimmen, der aus einem Volumen tritt, das die Ladung enthält. Nach dem Gesetz von Gauß

ist dann

Q = ε0∫ E • dA

109

Page 110: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

In S sollen zwei Flächenladungen so eng beieinander liegen, daß die Randeffekte vernachläs-

sigbar sind (Abb. 136). In S sei das Feld . Von S´ aus ist die Breite b verkürztEz =QεA

b / = b 1 − β2

wobei β = v/c. Daher ist die Ladungsdichte von S´ aus gemessen

Q / =Q

A /=

Q

A/ 1 − β2

und die Feldstärke erhöht sich

mit Ez/ = Ez

1 − β2= γEz γ = 1

1 − β2> 1

Ist die Bewegungsrichtung die der Flächennormalen, ändert sich die Fläche und damit E nicht.

Bei einem beliebigen Feld gilt also

(2)Ex/ = Ex, Ey

/ = γEy, Ez/ = γEz

Da die Wirkung des Feldes unabhängig von seiner Ursache ist, braucht man die Ladungsver-

teilung, die das Feld erzeugt hat, im einzelnen nicht zu betrachten.

β) Feld einer Punktladung, die sich mit konstanter Geschwindigkeit bewegt

Q möge im Ursprung von S ruhen, bewegt sich also in S´mit konstanter Geschwindigkeit v

nach rechts (Abb. 138). In S erzeugt Q in der x/z Ebene das Feld

Abb. 138: Das Feld der Puntladung Q, die in

S ruht, wird von S´ aus beobachtet.

E =Q

4πε0

rr3

Ex =Q

4πε0

x

(x2 + z2)3/2Ez =

Q4πε0

z

(x2 + z2)3/2

110

Page 111: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Die Lorentztransformation lautet mit τ = ct

x = γ(x / − βτ/) τ = γ(τ / − βx/) x = γ(x / − βct /) t = γ t / −

βc x /

y´ = y, z´ = z

Mit dieser Transformation für t = t´ = 0 ergibt sich aus Gleichung (3) unter Berücksichtigung

von Gleichung (2)

Ex/ = 1

4πε0γQ x/

(γx/)2 + z /2 3/2

Ez/ = 1

4πε0γQ z /

(γx/)2 + z /2 3/2

Diese Formeln werden noch etwas übersichtlicher geschrieben, indem der Betrag von E gebil-

det wird und statt der Ortsvariablen der Winkel eingeführt wird.ϑ

E = Ex/2 + Ez

/2 =Qγ

4πε0

x/2 + z /2

(γx/)2 + (z /2)

3/2=

Qγ4πε0r /2

1

(γx/)2+z/2

r /2

3/2

Die eckige Klammer im Nenner läßt sich durch die Winkelfunktionen ausdrücken

[ ] = γ2cos2ϑ / + sin2ϑ / = γ2 + (1 − γ2)sin ϑ / = 11 − β2

−β2

1 − β2sin2ϑ

Damit erhält man für den Betrag der Feldstärke in Abhängigkeit von ϑ

E / = 14πε0

Q

r /2

1 − β2

1 − β2sin2ϑ /

3/2

Das Feld ist radial gerichtet, hat aber senkrecht zur Bewegungsrichtung eine größere Feldstär-

ke als in Bewegungsrichtung. Es ist nicht kugelsymmetrisch und für einen geschlossenen Weg

(s. Abb. 139) gilt nicht .∫ E • ds = 0

111

Page 112: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 139: Die Feldlinien einer bewegten Punktla-

dung. Bei der Integration entlang dem angezeigten

Weg ergibt sich ein Wert ungleich Null.

γ) Feld einer Punktladung, die die Geschwindigkeit ändert

Es wird ein Teilchen betrachtet, das bis t = 0 in S ruht und sich für t > 0 mit konstanter Ge-

schwindigkeit bewegt. Nach der Relativitätstheorie darf außerhalb der Kugel mit dem Radius

r = ct0 die Information, daß sich das Teilchen bewegt, bis zur Zeit t = t0 nicht bekannt sein.

Wir nehmen an, daß sich diese Information genau mit c ausbreitet. dann herrscht außerhalb

von r das Feld einer ruhenden Ladung, innerhalb das einer mit konstanter Geschwindigkeit be-

wegten Ladung. Dazwischen haben die Feldlinien einen Knick, der mit Lichtgeschwindigkeit

als elektromagnetische Welle nach außen läuft (Abb. 140).

Abb. 140: Das Feldlinienbild einer Ladung, die zur Zeit

0 in eine gleichförmige Bewegung versetzt wurde.

δ) Kraft auf eine bewegte Ladung durch einen geraden, stromführenden Leiter

Im Rahmen der klassischen magnetischen Wechselwirkung erfährt eine Ladung, die sich paral-

lel zu einem stromführenden Leiter bewegt, dadurch eine Kraft, daß der Strom um sich herum

ein Magnetfeld erzeugt, zu dem die Teilchengeschwindigkeit senkrecht verläuft, so daß es eine

Lorentzkraft erfährt. Im folgenden wird gezeigt, daß man diese Kraft alleine aus dem elektri-

schen Feld ausrechnen kann, wenn man die Lorentztransformation konsequent anwendet. Der

Grund für die Kraft liegt darin, daß von einem bewegten Teilchen aus betrachtet ein im Labor

neutraler stromführender Leiter geladen erscheint, da sich positive und negative La-

dungsdichten wegen der unterschiedlichen Relativgeschwindigkeiten unterschiedlich kontra-

hieren. Da die Ladungsdichten der einzelnen Ladungsträgersorten sehr groß sind, gegenüber

üblichen Ladungsdichten, die durch eine äußerst geringfügige Abweichung der Quasineutrali-

tät entstehen, macht sich die Lorentzkontraktion schon bei kleinen Geschwindigkeiten

bemerkbar.

112

Page 113: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 141: Wie man zur Berechnung der Kraft zwi-

schen bewegten Ladungen ohne Magnetfeld auskommt

Im Laborsystem bewege sich positive Ladung, die linear angeordnet ist, nach rechts, negative

auf der gleichen Linie nach links. Beide mögen die Geschwindigkeit v0 haben. Die Ladungs-

dichte sei im Labor für beide Ladungsträger gleich, und zwar ρ. Die Gesamtladung einer Teil-

chensorte auf einem Leiter der Länge l mit der Querschnittsfläche A ist dann

Q = ρAl = λA

ist die Liniendichte einer Ladungsträgersorte. Sie soll für beide Ladungsträger gleichλ =Ql

sein. Im Ruhesystem der Teilchen auf dem Leiter ist wegen der Lorenzkontraktion, die sie bei

Bewegung im Laborsystem erfahren, die Ladungsdichte kleiner.

λ 0 = λo± = λ 1 − v02/c2 = λ 1 − β2 = λ

γ0

Die Kraft auf ein im Laborsystem ruhendes Teilchen ist Null, da die Ladungsdichten beider

Ladungsträgersorten gleich sind. Bewegt sich ein positives Teilchen im Abstand r mit der Ge-

schwindigkeit v parallel zum Draht, so sind die Geschwindigkeiten der beiden Ladungsträger

im Bezugssystem des Teilchens auf grund der relativistischen Geschwindigkeitsaddition

v+/ = v0 − v

2 − v0v/c2v−

/ = v0 + v

1 + v0v/c2

Hieraus wird mit den Abkürzungen β±/ = v±

/

c , β = vc , β0 = v0

c

(a)β+/ =

β0 − β1 − β0β

β−/ =

β0 + β1 + β0β

Im System des bewegten Teilchens sind die Ladungsträgerdichten , mitλ+/ = λ0γ+

/ , λ−/ = λ0γ−

/

(b)γ±/ = 1

1 − β±/2

113

Page 114: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Ausgedrückt durch die Ladungsdichte im Labor . Die gesamte La-λ+/ = λ

γ0γ+

/ , λ−/ = λ

γ0γ−

/

dungsdichte vom Teilchen aus gesehen ist

λ+/ − λ−

/ = λγ0

γ+

/ − γ−/

Für den Ausdruck in der Klammer rechts werden die Formeln (a) und (b) eingesetzt

γ+/ − γ−

/ = 1

1 −

β0−β1−β0β

2− 1

1 −

β0+β1+β0β

2

=1 − ββ0

1 − 2ββ0 + β2β02 − β0

2 + 2ββ0 − β2−

1 + ββ0

1 + 2ββ0 + β2β02 − β0

2 − 2ββ0 − β2

=−2β0β

1 − β02 − β2 + β0

2β2=

−2β0β

1 − β0

2 (1 − β2)

= −2β0βγ0γ

Die Ladungsdichte wird damit . Diese erzeugt nach demλ / = λ+/ − λ−

/ = −2λβ0βγ = −2λγvv0

2

Gesetz von Gauß ein Feld (s. Abb. 142)

Abb. 142: Geometrie zur Anwendug des

Gaußschen Gesetzes

E / = −λγvv0

πε rc2

Auf das Teilchen wirkt eine zum Draht hin gerichtete Kraft

mit I = 2λv0=2ρv0AF / = Qλγvv0

πε rc2=

QγvI

2πε c2r

Die Kraft muß noch ins Laborsystem transformiert werden. Dafür gilt Fy/ = γF

Fy =QIv

2πε0c2r

Rechnet man die Kraft über das Amperesche Gesetz und die Lorentzkraft aus, so∫ B • ds = µ0I

erhält man ( s. Abb. 143) , B2πr = µ0I B =µ0I2πr

114

Page 115: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 143: Geometrie zur Anwendung des

Ampereschen Gesetzes

Fy =Qµ0Iv

2πr

Man erkennt, daß beide Formeln bis auf eine Konstante zum gleichen Ergebnis führen. Durch

Gleichsetzen kann man die Konstante µ0 im Ampereschen Gesetz bestimmen.

µ0 = 1ε 2

µ0 = 4π10−7 VsAm

(4)µ0ε0 = 1c2

Bei einer Bewegung des Teilchens in radialer Richtung sieht man vom Teilchen aus die La-

dungsträger schräg auf sich zukommen (Abb. 144).

Abb. 144: So bewegen sich die Teilchen im Draht von ei-

nem Probeteilchen aus gesehen, daß sich radial auf den

Draht zu bewegt

Zwei symmetrisch gelegene positive Teilchen erzeugen wegen der Verteilung des elektrischen

Feldes nach der Relativitätstheorie (Abb. 139) ein resultierendes Feld mit einer x - Komponen-

te (s. Abb. 145).

Abb. 145: Es bleibt insgesamt eine axiale

Kraft übrig

115

Page 116: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Die negativen Teilchen erzeugen ein Feld mit der gleichen x - Komponente aber entgegenge-

setzter r - Komponente, so daß eine axiale Kraft übrigbleibt, wie man von einer magnetischen

Kraft erwarten würde.

d) Bewegung geladener Teilchen im Magnetfeld

Abb. 146: Das Teilchen soll sich in einer Ebe-

ne senkrecht zum Magnetfeld bewegen.

α) Ein geladenes Teilchen im Magnetfeld

Ein Teilchen möge mit einer Geschwindigkeit v senkrecht zu einem homogenen Magnetfeld B

losgelassen werden. Es erfährt eine Lorentzkraft , die senkrecht auf v steht. WegenQv×B

steht die Geschwindigkeitsänderung auch senkrecht auf v, d.h. die Lorentzkraft be-F = mdvdt

wirkt keine Änderung von |v| sondern nur eine Änderung der Richtung von v. Man hat daher

insgesamt eine Bewegung mit konstantem Geschwindigkeitsbetrag und konstanter Beschleuni-

gung senkrecht zu v. Dies ist eine gleichförmige Kreisbewegung. Die Kreisfrequenz ergibt

sich aus dem Gleichsetzen von Lorentzkraft und Zentripetalkraft. Aus und v = ωrmrω2 = evB

erhält man mrω2 = erωB.

(5)ω = eBm

ω ist die Zyklotron- oder Gyrationsfrequenz. Sie ist unabhängig vom Radius. Dieser ergibt

sich ohne relativistische Korrektur aus

r = vω = vm

eB

Anwendungen:

In einem Zyklotron läßt man geladene Teilchen durch ein Magnetfeld auf Kreisbahnen laufen

(Abb. 147). In dem Spalt zwischen zwei D - förmigen Elektroden, an denen eine Hochfre-

quenzspannung liegt, werden sie zweimal bei einem Umlauf durch ein longitudinales elektri-

sches Feld beschleunigt, wenn die Umlauffrequenz der Teilchen und die Frequenz der Be-

schleunigungsspannung aufeinander abgestimmt sind. Die Teilchenquelle liegt in der Mitte

116

Page 117: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 147: Aufbau eines Zyklotrons

des Systems. Bei Zunahme der Geschwindigkeit nimmt r zu, während die Frequenz, solange

keine relativistischen Effekte berücksichtigt werden müssen, konstant bleibt. Das Zyklotron ist

also ein Teilchenbeschleuniger, der sehr viel kompakter gebaut werden kann als als ein ent-

sprechender Linearbeschleuniger, in dem ein Teilchen auf einer geraden Bahn in einem elektri-

schen Feld beschleunigt wird. Um relativistische Effekte zu berücksichtigen, muß die Fre-

quenz oder das Magnetfeld variiert werden. Im Synchrotron verändert man beides, so daß r

konstant bleibt. Dies spart Magnetkosten.

Abb. 148: Das Feld einer magneti-

schen Flasche

Geladene Teilchen werden durch ihre Kreisbewegung gehindert, ein Magnetfeld senkrecht zur

Feldrichtung zu verlassen. Dies wird zum Teilcheneinschluß in Plasmaexperimenten benutzt.

Abb. 148 zeigt eine einfache Anordnung aus zwei auf einer Achse angeordneten Spulen, eine

sogenannte magnetische Flasche. Wie in der Plasmaphysik gezeigt wird, erfolgt in dieser An-

ordnung auch ein begrenzter Einschluß der geladenen Teilchen in axialer Richtung. Das

"Loch" in Magnetfeldrichtung kann in einer toroidalen Anordnung wie in Abb. 149 vermieden

werden. Hier verlaufen die Magnetfeldlinien auf ringförmigen Oberflächen, die in sich ge-

schlossen sind.

Abb. 149: Eine perfekte magnetische Falle für

einzelne Teilchen

β) Der Hall Effekt

Befindet sich ein Leiter in einem magnetischen Feld B, und fließt ein Strom senkrecht zu B, so

werden die Ladungsträger durch die Lorentzkraft seitlich abgelenkt. Die seitliche Ablenkung

117

Page 118: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

kommt in sehr kurzer Zeit zum Stillstand, da sich durch die Ladungstrennung ein Gegenfeld

aufbaut. Im Gleichgewicht ist die transversale Feldstärke gleich der Lorentzkraft pro Ladung.

Abb. 150: Der Hall Effekt kommt durch die Lorentzkraft

auf die Ladungsträger in einem Festkörper zustande

FH = evBEH =vB

Da die Stromdichte durch j = nev (s. Gleichung (1), Kap. D) gegeben ist, folgt . InEH = 1nejB

Vektorschreibweise

(6)EH = 1nej × B

Die Richtung der Hallspannung UH = EHb ist vom Vorzeichen der Ladungsträger abhängig, da

positive und negative Ladungsträger im Hauptstrom umgekehrte Bewegungsrichtung haben

und sich deshalb an der gleichen Seite sammeln. Durch Messen von EH kann also Vorzeichen

und die Dichte der Ladungsträger bestimmt werden. Wenn die Stoßfrequenz wesentlich höher

als die Zyklotronfrequenz der Ladungsträger ist, bewegen sich diese zwischen den Stößen

praktisch auf geraden Bahnen, also so, als sei kein Magnetfeld vorhanden. Es tritt dann kein

oder ein schwacher Halleffekt auf. Eine zum Halleffekt verwandte Anordnung ist der MHD

Generator. Hier wird eine leitfähige Flüssigkeit, z.B. eine Flamme senkrecht durch ein Ma-

gnetfeld bewegt. Dadurch, daß jetzt positive und negative Ladungsträger die gleiche Bewe-

gungsrichtung haben, sammeln sie sich auf grund ihres umgekehrten Ladungsvorzeichen an

entgegengesetzten Seiten. Es kann also senkrecht zur Bewegungsrichtung der Flüssigkeit ein

Strom entnommen werden. Eine solche Anordnung eignet sich also zur direkten Umwandlung

der Strömungsenergie in elektrische Energie.

γ) Formale Herleitung der Bewegung eines geladenen Teilchens im Magnetfeld

i. Bewegung im homogenen Feld

Bewegungsgleichung: m••a = Qv × B

Das Magnetfeld weise in z - Richtung.

118

Page 119: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 151: Das Magnetfeld soll in z - Richtung

zeigen, die Anfangsgeschwindigkeit des Teil-

chens in der xy - Ebene liegen.

B =

00B

Wir betrachten nur die Bewegung in der x/y - Ebene.

x(t) =

x(t)y(t)0

v(t) =

vx(t)vy(t)

0

Die rechte Seite hat dann die Form v × B =

ex vx 0ey vy 0ez 0 B

=

vyB−vxB

0

Die Bewegungsgleichung in Koordinaten heißt also

m•vx = QvyB

m•vy = −QvxB

Oder nach Einführung der Zyklotronfrequenz (Gleichung (5)).

•vx = ωcvy•vy = −ωcvx

Aus diesen Gleichungen wird z.B. vy eliminiert, indem die erste Gleichung nach der Zeit abge-

leitet und in die zweite Gleichung eingesetzt wird. Man erhält für vx eine Differentialglei-•vy

chung zweiter Ordnung

••v x + ωc

2vx = 0

die mit dem Ansatz gelöst wird. Dabei ist . Einsetzen in die Diff. Gl. er-vx = Aeλt ••v x = λ2Aeλt

gibt und und damit die Lösungλ 2 = −ωc2 λ = ±iωc

119

Page 120: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

vx = Aeiωct + Be−ωct

Die Konstanten A und B müssen aus den Anfangsbedingungen bestimmt werden, z.B.

vx(0) = v ergibt A + B = v. vy = 0 heißt, weil , vy = 1ωc

•vx

vy = 1ωc

(Aiωceiωct − Biωce−iωct)

Also A = B = v/2 und damit , . Die Bahngleichungvx = v2

(eiωct + e−iωct) =vcos ωct vy = −vsinωct

hat also die Form

x = −rcsin ωcty = −rccos ωct

Wir erinnern uns, daß . In ωc steckt also noch das Ladungsvorzeichen des Teilchens.ωc =QBm

Man erhält also eine gegenüber dem Magnetfeld positiv oder negativ umlaufene Kreisbahn.

Den Umlaufsinn ermittelt man am zuverlässigsten aus der Richtung der Zentripetalkraft, die ja

durch die Lorentzkraft gegeben ist (Abb. 152).

Abb. 152: Der Umlaufsinn der geladenen

Teilchen im Magnetfeld

ii. Bewegung im inhomogenen Magnetfeld

Abb. 153: In der unteren Kreishälfte soll der Radi-

us ein klein wenig größer sein als in der oberen. Im

unteren Bild sind die Verhältnisse übertrieben dar-

gestellt. Man erkennt, daß eine seitliche Drift

entsteht.

Die Diskussion wird nur qualitativ geführt. Zur Ermittlung der Bewegung wird die Bahn durch

eine Trennlinie, die senkrecht zu der Richtung steht, in der B sich ändert, unterteilt (Abb. 153

oben). In einer Hälfte der fast kreisförmigen Bahn herrscht ein im Mittel stärkeres, in der ande-

ren ein im Mittel schwächeres Magnetfeld. Im stärkeren Magnetfeld ist r kleiner als im

120

Page 121: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

schwächeren. Die Zusammensetzung beider Bahnteile ergibt insgesamt eine seitliche Drift, die

für beide Ladungsvorzeichen unterschiedliche Richtung hat (Abb. 153 unten).

iii. Bewegung im homogenen Magnetfeld mit überlagertem E Feld

Abb. 155: Bei einem positiven Teilchen ist die Ge-

schwindigkeit in der oberen Hälfte der Bahn im Mittel

größer. Es entsteht eine Drift nach links.

Abb. 156: Bei einem negativ geladenen Teilchen ist die

Geschwindigkeit in der unteren Hälfte des Kreises im

Mittel größer. Andererseits kehrt sich der Umlaufsinn der

Bahn um, so daß die Drift nach der gleichen Seite wie

beim positiv geladenen Teilchen erfolgt.

Das E - Feld stehe senkrecht zu B. Trennen wir die Bahn durch eine Linie, die parallel zu E

verläuft in zwei Hälften, so wird ein Teilchen in der einen Hälfte beschleunigt, in der anderen

verzögert. Allerdings muß man beachten, daß die mittlere Geschwindigkeit in den beiden Hälf-

ten gleich sind. Die Geschwindigkeit hat gegenüber der Beschleunigung eine Phasenverschie-

bung von π/2 wie bei der harmonischen Schwingung. Teilt man aber die Bahn durch eine

Trennlinie, die senkrecht zu E steht in zwei Hälften, so sind die mittleren Geschwindigkeiten

in beiden Hälften unterschiedlich (Abb. 155 und 156). Es ergibt sich eine Drift, die senkrecht

zu E und senkrecht zu B verläuft, und zwar diesmal für beide Ladungsvorzeichen in gleicher

Richtung ( - Drift).E × B

e) Berechnung des Magnetfeldes von Strömen

α) Das Amperesche Gesetz

Wir haben gelernt, daß jeder Strom um sich herum ein Magnetfeld erzeugt. Der Zusammen-

hang zwischen diesem Magnetfeld und dem dafür verantwortlichen Strom wird durch ein

Grundgesetz der Elektrodynamik gegeben, das Amperesche Gesetz oder Durchflutungsgesetz

(7)∫ B • ds = µ0I

Anschaulich besagt es, daß das mittlere Magnetfeld auf einer Magnetfeldlinie um einen Strom

mal die Länge der Feldlinie für alle Magnetfeldlinien, die ein Strom I erzeugt, gleich ist, und

121

Page 122: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

zwar µ0I. Das Gesetz beinhaltet allerdings mehr als diese anschauiliche Aussage. Die Integrati-

on braucht nicht entlang einer Feldlinie zu erfolgen, sondern kann auf einem beliebigen ge-

schlossenen Weg durchgeführt werden. Das Magnetfeld kann auch von beliebigen Strömen au-

ßerhalb des Integrationsweges stammen. Im Ampereschen Gesetz steht allerdings nur der vom

Integrationsweg "umfaßte" Strom, d.h. , wobei man in diesem Integral über eineI = ∫ j • dA

durch den Integrationsweg aufgespannte Fläche integrieren muß. Das Amperesche Gesetz ist

eine sehr elegante Formulierung des Zusammenhangs von einem Strom und dessen Feld, aller-

dings nicht besonders praktisch zur Berechnung von Feldern aus den sie erzeugenden Strömen.

Immerhin kann man in einigen wichtigen Fällen, wenn B konstant, oder zumindest stückweise

konstant ist, mit Gleichung (7) auch Felder berechnen, wie folgende Beispiele zeigen.

Beispiele:

i. Magnetfeld eines geraden Drahtes

Abb. 157: Integrationsweg zur Berechnung

des Magnetfeldes eines langen Drahtes

Um das Magnetfeld im Abstand a vom Draht zu berechnen, wird im Ampereschen Gesetz auf

einem Kreis mit dem Radius a um den Draht integriert (Abb. 157). Auf ihm ist wegen der

Symmetrie B konstant. Daher kann man die Integration ausführen

∫ B • ds = B2πa = µ0I

B =µ0

2πaI

ii. Magnetfeld einer Ringspule

Abb. 158: Integriert man bei der Ringspule

entlang des gestrichelten Weges, so umfaßt

man den Strom in der Spule N mal.

122

Page 123: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Auf einem Ring sollen gleichmäßig über den Ring verteilt N Wicklungen angebracht sein, in

denen der Strom I fließt (Abb. 158). Die Wicklungen sollen so dicht liegen, daß die Anord-

nung als symmetrisch um die Ringachse betrachtet werden kann . Bϕ ist also auf einemddϕ

= 0

Kreis mit Radius r um die Achse konstant. Damit wird, wenn auf einem solchen Kreis, der in-

nerhalb der Wicklung verläuft, integriert wird

∫ B • ds = B2πr = µ0I0

I0 ist der gesamte vom Kreis umfaßte Strom, also I0 = NI.

B =µ0

2πrNI

außerhalb der Spule ist der gesamte umfaßte Strom 0, daher verschwindet hier das Magnetfeld.

Strenggenommen ist B von r abhängig. Diese Abhängigkeit macht sich besonders bei fetten

Ringen bemerkbar. Bei einem schlanken Ring ist das Feld im innern konstant und

aR

<< 1

außer vom Strom nur von der Windungsdichte n = N/l abhängig. Diese Betrachtung zeigt, daß

auch für andere Anordnungen, solange nur die Symmetrie gilt, das gleiche Ergebnis heraus-

kommt. Die Größe von B ist z.B. unabhängig davon, ob die Wicklungen radial stehen, oder

schraubenförmig ausgeführt werden.

iii. Magnetfeld einer langen Spule

Die lange gerade Spule kann als ein Ausschnitt aus einem schlanken Ring angesehen werden.

Im Innern ist deshalb wie bei ihr . Eine Spule mit einem Ende, die sich entlang einerB = µ0Nl

I

Halbachse bis ins Unendliche erstreckt, hat an dem Ende , da die unendlich langeB = 12

µ0Nl

I

Spule aus zwei solchen Halbspulen zusammengesetzt werden kann. Die magnetische Feldstär-

ke nimmt also vom Innern bis zum Rand auf die Hälfte ab.

β) Andere Formulierungen des Ampereschen Gesetzes

i. Die differentielle Form

Durch Einführen der Stromdichte erhält man die differentielle Form des Ampereschen

Gesetzes

∫ B • ds = µ0∫ j • dA

Anwendung des Stokeschen Integralsatzes läßt erkennen, daß∫rot B•dA = ∫ B • ds

123

Page 124: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

∫rot B • dA = µ0∫ j • dA

(8)rot B = µ0j

Für den eindimensionalen Fall, in dem j nur von x abhängt, und in Richtung y verläuft erhält

man

dBz

dx= µ0jy(x)

Eine Stromschicht erzeugt einen Sprung im Magnetfeld.

ii. Das Biot - Savartsche Gesetz

Abb.159: Nach dem Biot - Savartschen Gesetz

steht der Beitrag dB des Leiterstückchens dl zum

Magnetfeld senkrecht auf r und dl

Gleichung (8) kann man mit Hilfe des Vektorpotentials A, das durch B = rot A definiert ist, in

eine Potentialgleichung umformen, deren Lösung das Biot - Savartsche Gesetz ist. Dieses gibt

den Beitrag dB an, der an einer Stelle des Raumes r durch ein linienförmiges Stromelement Idl

geliefert wird.

(9)dB =µ0

4πIdl × r

r3

Das resultierende Feld an einem Punkt ist dann die vektorielle Summe der Beiträge von allen

Teilstücken des Leiters (Abb. 159). Dieses Gesetz eignet sich besonders für numerische Be-

rechnungen des Magnetfeldes von Leiteranordnungen, wenn die Stromverteilung bekannt ist.

Das Biot - Savart Gesetz ist äquivalent zum Ampereschen Gesetz. Es kann daher auch als

Grundgesetz betrachtet werden. Im folgenden werden die Grundzüge das Ampereschen Geset-

zes aus dem Biot - Savartschen Gesetz abgeleitet, um zu zeigen, daß beide Gesetze zum glei-

chen Ergebnis führen.

124

Page 125: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

iii. Magnetfeld eines geraden Drahtes aus dem Biot - Savart Gesetz

Abb. 160: Bei x = 0 im Abstand a vom Draht soll

das Magnetfeld berechnet werden. Bei x liegt das

Leiterstück dx, dessen Beitrag das Biot - Savart-

sche Gesetz angibt.

Der Strom möge entlang der x - Achse fließen. Im Abstand a soll das Magnetfeld berechnet

werden. Nach der in Abb.160 dargestellten Geometrie schreibt sich das Biot - Savart Gesetz

dB =µ0I4π

dx cos ϕ2

Aus Abb. 160 folgt mit der Ableitung , ebenso xa = tan ϕ dx = a

cos2ϕdϕ a

r = cos ϕ

nach r aufgelöst . Damit ist auf den Winkel als unabhängige Variable transformiertr = acos ϕ

und das Integral läßt sich berechnen.

.B =µ0I4π ∫

adϕ cos ϕ cos2ϕcos2ϕa2

=µ0I4πa

−π

π2

∫ cos ϕdϕ =µ0I2πa

Dies ist das gleiche Ergebnis, das oben mit dem Ampereschen Gesetz gewonnen wurde. B liegt

senkrecht zur Zeichenebene. Wegen der azimutalen Ausrichtung von B und der 1/a - Abhän-

gigkeit ist für beliebige Kurvenformen , wenn kein Strom umfaßt wird. Denn eine∫ B • ds = 0

beliebige Kurvenform läßt sich aus azimutalen und radialen Stücken zusammensetzen. Die ra-

dialen Stücke ergeben keinen Beitrag, da B•ds = 0, die azimutalen sind unabhängig von a, da

Bds =µ0I4πa

adϕ

Abb. 161: Die radialen Teilstücke der Kurve

ergeben keinen Beitrag zu Bds, die azimutalen

sind unabhängig vom Abstand a vom Draht.

Bei einem vollen Umlauf um eine geschlossene Kurve, die I nicht enthält, hat man also immer

gleich viele positive und negative Anteile.

125

Page 126: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb.162: Der Beitrag des Integrals entlang A

ist gleich dem unbekannten entlang C plus

dem bekannten entlang des Kreises K.

Es folgt sofort, daß bei einem Umlauf auf einer beliebigen Kurve C, die den Draht umschließt,

stets ist. Zum Beweis wird der beliebige Weg C wie in Abb.162 ergänzt, so daß∫ Bds = µ0I

nacheinander ein Kreis (K) und die Kurve C durchlaufen werden. Die Verbindungsstücke der

beiden Kurven tragen nichts zum Integral bei, ebenso können die Beiträge der beiden Unter-

brechungen der Kurven C und K beliebig klein gemacht werden, indem man die Länge der

Unterbrechungen gegen Null gehen läßt. Die Gesamtkurve A enthält keinen Durchstoßungs-

punkt von I. Daher gilt

∫ B • ds =∫ B • ds + ∫ B • ds = 0.

und, da (K wird in Abb. 162 entgegen der Schraubenregel, C mit der Schrau-∫ B • ds = −µ0I

benregel durchlaufen), erhält man

∫ B • ds = µ0I

Das Amperesche Gesetz gilt, wie hier nicht bewiesen wird, nicht nur für gerade Ströme, son-

dern für beliebig gebogene Strombahnen. Es findet praktische Anwendung in der Rogowski

Schleife (Abb. 163), einer Spule in der nur die Magnetfeldkomponente in Richtung der Spu-

lenachse zum Meßsignal beiträgt.

Abb. 163: Die Rogowski Spule integriert analog entlang

eines geschlossenen Weges und ist daher geeignet zur

kontaktlosen Messung von sich ändernden Strömen.

Das Signal, das sie auf grund von Induktion (s. Abschnitt 2.) liefert, ist proportional zu ∫ B • ds

. Sie ist daher zur berührungsfreien Strommessung z.B. in Stromzangen geeignet.

126

Page 127: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

f) Kraft zwischen stromführenden Drähten

Die Kraft zwischen stromführenden Drähten berechnet man in zwei Schritten. Zuerst wird das

Magnetfeld des Stromes I1 am Ort des Stromes I2 über das Amperesche Gesetz berechnet.

∫ B1 • ds = µ0I1

Auf einen Ladungsträger, der sich im Strom I2 mit der Geschwindigkeit v2 bewegt, wirkt die

Kraft

.F = Qv2 × B1

In einer Volumeneinheit befinden sich n Ladungsträger. Die Gesamtkraft pro Volumen ist da-

her . Führt man die Stromdichte ein wird hierausf= nQv2 × B1

(10)f = j × B

Dies gilt sowohl für negative wie für positive Ladundsträger. In einem Metall wirkt die Kraft

zunächst auf die Elektronen. Es wird aber durch die Auslenkung eine Raumladung und damit

eine Feldstärke entstehen, durch die die Kraft auf die Atome übertragen wird. Bei zwei paralle-

len Drähte im Abstand a (s. Abb.164) ist das Magnetfeld von I1 an der Stelle des Stromes I2

. Die Gesamtkraft auf I2 wird damitB1 =µ0I1

2πa

Abb. 164: Die bewegten Ladungen in I2 erfah-

ren eine Lorentzkraft im Feld von I1.

F = f∆V = flA = j2lAB1 = I2lµ0I1

2πa

(11)F =µ0I1I2l

2πa

Diese Formel ist Grundlage zur Definition der Einheit Ampere.

127

Page 128: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

g) Elektromagnetische Kraft zwischen zwei Teilchen

Bei der Gravitationswechselwirkung oder der elektrostatischen Wechselwirkung waren wir

von der Kraft zwischen zwei Teilchen ausgegangen und hatten daraus alle übrigen Erscheinun-

gen abgeleitet. Über die magnetische Wechselwirkung ist nun im vorhergehenden eine ganze

Menge gesagt worden, aber das einfachste Problem: die Kraft zwischen zwei geladenen be-

wegten Teilchen können wir noch nicht lösen. Wir wollen dies im folgenden, so gut es geht,

nachholen.

Abb. 165: Das geladene Teilchen ruhe in S

und werde von S´ aus beobachtet.

Um die Kraft zwischen zwei bewegten geladenen Teilchen zu berechnen, muß man zunächst

sein E - und B - Feld kennen. Das elektrische Feld wurde in Kapitel C beschrieben. Da das be-

wegte Teilchen einen Strom darstellt, hat es auch ein Magnetfeld. Dieses wird im folgenden

berechnet, indem vom elektrischen Feld einer ruhenden Ladung Q ausgegangen wird und die-

ses in ein Koordinatensystem, von dem aus gesehen sich die Ladung bewegt, transformiert

wird.

In S´ soll Q ruhen. Wir messen die Kraft auf eine Probeladung q, die ebenfalls in S´ ruht. In S´

gibt es nur eine elektrostatische Kraft auf die Probeladung: F´ = qE´

(a)Fx/ = qEx

/ , Fy/ = qEy

/ , Fz/ = qEz

/

Von S aus gesehen bewegt sich Q und erzeugt daher auch ein Magnetfeld. Die Probeladung q

erfährt in diesem also zusätzlich zur elektrostatischen Kraft eine Lorentzkraft

mit und F = q(E + v × B) v =

v00

B =

Bx

By

Bz

In Komponenten: (b)Fx = qEx, Fy = q(Ey − vBz), Fz = q(Ez + vBy)

Die relativistische Transformation erfordert . Setzt man dies inFx/ = Fx, Fy

/ = γFy, Fz/ = γFz

Gleichung (b) ein und vergleicht (a) und (b), so erhält man die Transformation

128

Page 129: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

(12)Ex/ = Ex, Ey

/ = γ(Ey − vBz), Ez/ = γ(Ez + vBy)

Die früher gewonnene Transformation für E - Felder (Kapitel C, Gleichung (2)) ist also ein

Sonderfall für ein in S verschwindendes Magnetfeld. Bei der Ableitung von Gleichung (12)

geht nur als Vorraussetzung ein, daß in S ein Magnetfeld B existiert. Wie groß B ist, ist bisher

unbekannt. Die Größe von B ermittelt man in einem zweiten Schritt. Hierbei nutzt man trick-

reicherweise aus, daß wegen der Symmetrie des Problems die Rücktransformation der Felder

sofort angegeben werden kann, indem man v durch -v ersetzt und Ei mit Ei/ vertauscht.

(d)Ex = Ex/ , Ey = γ(Ey

/ + vBz/ ), Ez = γ

Ez/ − vBy

/

In dem konkreten Fall des obigen Beispiels wäre B´ = 0. Da die Form von Gleichung 12 aber

unabhängig davon ist, welche Größe B und B´ haben, gilt Gleichung (d) auch für den Fall, daß

B´ ≠ 0 ist. Aus (12) und (d) erhält man die Transformation für B, indem man etwa Ex´ und Ez´

eliminiert und nach By´ und Bz´ auflöst. Es ergibt sich

Bx/ = Bx, By

/ = γ By + v

2Ez

, Bz

/ = γ Bz − v

2Ey

oder mit der in der Relativitätstheorie üblichen Abkürzung v/c = β

(13)cBx/ = cBx, cBy

/ = γ(cBy + βEz), cBz/ = γ(cBz − βEy)

Um in einem System S´ nach Gleichung (13) B´ auszurechnen ( oder E´ aus Gleichung (12)),

benötigt man also die Angabe von E und B. Die Symmetrie der Transformationsgleichungen

(12) und (13) ist ein Hinweis darauf, daß das elektrische und das magnetische Feld eine zu-

sammenhängende Einheit ist. Wenn in S das Magnetfeld überall verschwindet, wird aus den

Gleichungen (12) und (13)

Ex/ = Ex, Ey

/ = γEy, Ez/ = γEz

cBx/ = 0, cBy

/ = γβEz = βEz/ , cBz

/ = −γβEy = −βEy/

Dies läßt sich zusammenfassen zu

129

Page 130: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

(14)B / =

v /

c2× E /

Wobei v´ die Geschwindigkeit des Systems von S´ aus gesehen ist, in dem überall B ver-

schwindet. D.h., wenn in einem System das Magnetfeld verschwindet, folgt aus Gleichung

(14) die Größe des Magnetfeldes in einem gegenüber dem ersten bewegten Systems. Ebenso

erhält man, wenn es ein System gibt, in dem E überall verschwindet,

E / = −v / × B/

wobei v/ die Geschwindigkeit des Systems von S´ aus gemessen ist, in dem E überall ver-

schwindet.

β) Magnetfeld eines geladenen bewegten Teilchens

Abb. 166: Die Feldlinien eines bewegten Teilchens sind

Kreise um die Bahn. Die Feldstärke beschränkt sich aber

auf ein Gebiet in der Umgebung des Teilchens.

Für eine Punktladung existiert im Ruhesystem S´ kein Magnetfeld. Daher läßt sich aus Glei-

chung (14) B aus dem bekannten E - Feld einer Punktladung bestimmen. Wir schreiben das Er-

gebnis nicht explizit hin. B ist senkrecht zu v und E, d.h. die Feldlinien des B - Feldes sind

konzentrische Kreise um die Bahn des Teilchens herum, ähnlich wie bei einem geraden strom-

führenden Draht, allerdings ist das Feld nur in der unmittelbaren Umgebung des Teilchens von

Null verschieden (Abb. 166). Bei hohen Geschwindigkeiten konzentriert sich B wie das E -

Feld in der Ebene, die durch das Teilchen geht und senkrecht zu v steht.

γ) Der Impuls von Feldern

Der Impulssatz der Mechanik beruht auf dem Newtonschen Axiom actio = reactio. Die Kräfte

auf die zwei wechselwirkenden Teilchen sind hiernach gleich groß und entgegengesetzt. Bei

elektromagnetischer Wechselwirkung sind die beiden Kräfte weder vom Betrag her gleich

noch von entgegengesetzter Richtung. Dies kann man am Verhalten der Lorentzkraft zeigen.

In Abb.167 sind die Teilchenbahnen von zwei Teilchen, die sich begegnen als Gerade einge-

zeichnet. Da die Lorentzkraft auf ein Teilchen senkrecht zu seiner Geschwindigkeit steht, und

das Magnetfeld des anderen Teilchens konzentrische Ringe um dessen Teilchenbahn bildet

130

Page 131: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 167: Die Lorentzkraft auf ein Teilchen

im Magnetfeld des anderen steht senkrecht auf

seiner Bahn. Die Kräfte auf beide Teilchen

sind also nicht antiparallel ausgerichtet.

ergeben sich die eingezeichneten Kraftrichtungen, die offensichtlich nicht antiparallel liegen.

Der Betrag von läßt sich durch Variation von Betrag und Richtung von v unabhängigv × B

vom anderen Teilchen verändern. Bei beschleunigten Teilchen ist auch E nicht auf der Verbin-

dungslinie. Man kann daher nicht davon ausgehen, daß der Impuls erhalten bleibt. Der Impuls-

satz kann gerettet werden, indem man dem Feld einen Impuls zuordnet. Dann läßt sich errei-

chen, daß

p1 + p2 + pFeld = const.

Ähnliche Überlegungen führen dazu, dem Feld auch Energie und Drehimpuls zuzuordnen.

h) Der Verschiebungsstrom

Abb. 168: Der Strom stößt durch die Fläche

(1). Durch (2) stößt kein materieller Strom und

doch ist das Ringintegral das gleiche.

Das Amperesche Gesetz gilt für Gleichstrom. Für zeitlich veränderlichen Strom muß es modi-

fiziert werden. Betrachtet man z.B. einen Kondensator, der aufgeladen wird, so gilt für das

Magnetfeld B des Stromes I in der Zuleitung

∫ B • ds = µ0I

I ist der Strom, der eine beliebige von der Kurve C aufgespannte Fläche durchstößt. Verbiegt

man die Fläche so, daß sie sich zwischen den Kondensatorplatten schließt (Kurve (2) in Abb.

168), so wird sie von keinem Strom durchstoßen, statt dessen von einem sich ändernden elek-

trischen Feld. Das Amperesche Gesetz bleibt gültig, wenn man annimmt, daß die Wirkung des

131

Page 132: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

elektrischen Feldes im Zwischenraum gleich dem des Stromes ist. Wir drücken also den Lade-

strom durch durch die Feldänderung aus. Aus Q = CU folgt

I = C•U= εA

d

•E d = εA

•E

Man sagt, es fließt ein Verschiebungsstrom oder eine Verschiebungsstromdichte IV = εA•E

(15)j = ε•E

jV fließt auch im Vakuum und hat dann mit der "Verschiebung" von Ladungen innerhalb eines

Dielektrikums nichts zu tun. Das Amperesche Gesetz im Vakuum hat dann die Form

(16)∫ B • ds = µ0∫ j + ε0

•E

• dA

oder die differentielle Form

(17)rot B = µ0 j + ε0

•E

Der von Maxwell geforderte Zusatzterm besagt, daß ein sich änderndes elektrisches Feld im

Vakuum von einem Magnetfeld umgeben ist. Als Folge wird gezeigt (s. Kap. H), daß sich im

Vakuum elektromagnetische Wellen ausbreiten können. Diese Hypothese wurde durch den

Nachweis elektromagnetischer Wellen durch Heinrich Hertz bestätigt.

2. Das Induktionsgesetz

a) Die Bewegung eines Leiters im homogenen Magnetfeld

Bewegt man ein Leiterstückchen in einem Magnetfeld, so werden die Ladungsträger im Leiter

durch die Lorentzkraft seitlich zur Geschwindigkeitsrichtung verschoben. Es bildet sichqv × B

ein Raumladungsfeld E, das der Lorentzkraft das Gleichgewicht hält: . Durch dieqE =−qv × B

Bewegung entsteht also eine elektromotorische Kraft, die einer Feldstärke entspricht.−v × B

Im Bezugssystem des Leiters S´ würde man überall im Raum die Feldstärke messen.E / =v × B

Dies folgt aus den im letzten Kapitel hergeleiteten Transformationsgleichungen für kleine

132

Page 133: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Geschwindigkeiten, da aus γ ≈ 1 folgt, daß B´ = B. Im Innern des Leiters wird dieses Feld

durch das Raumladungsfeld kompensiert.

Abb. 169: Auf die Ladungsträger in einem im Ma-

gnetfeld bewegten Leiter wirkt die Lorentzkraft

b) Induktion in eine Leiterschleife

Abb. 170: Der bewegte Stab hat Kontakt mit

dem Drahtbügel. Daher wird in die Schleife

ein Strom induziert

Verbindet man den bewegten Leiterstab mit einer feststehenden Leiterschleife leitend, so wird

die Ladung über die ganze Schleife hinweg verschoben, so daß sich kein Gegenfeld ausbilden

kann. Es fließt ein Strom. Das Ringintegral entlang der Schleife ist ungleich Null. De-∫ F • ds

finiert man wie früher E = F/q, ergibt sich durch die Bewegung ein elektrisches Feld mit

, oder eine Ringspannung∫ E • ds ≠ 0

Uind = ∫ E • ds

die gleich der Arbeit ist, die man an einer Probeladung bei einmaligem Herumführen um die

Schleife gewinnen kann, geteilt durch die Ladung. Bei obiger Geometrie ist

F = qvB=q∆sB

∆t

E = Fq = ∆sB

∆t

Uind = Eb = b∆sB∆t

= ∆Φ∆t

Das hier für einen speziellen Fall abgeleitete Induktionsgesetz hat eine viel allgemeinere Gül-

tigkeit, wie im folgenden erläutert wird.

133

Page 134: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

c) Das allgemeine Induktionsgesetz

Abb. 171: Die Leiterschleife darf jetzt belie-

big bewegt und verformt werden.

In Abb. 171 ist eine Leiterschleife in einem magnetischen Feld gezeichnet, die in einer kurzen

Zeit dt verschoben und eventuell verformt wird. Die in das Stückchen dl in der Zeit dt indu-

zierte Spannung ist

dUind = (v × B) • dl

Mit der Vektoridentität (Man bedenke, daß das Volumen des(a × b) • c = (c × a) • b (a × b) • c

von den Vektoren a, b, c aufgespannten Rhomboeders ist, da die Grundfläche unda × b

c cosα die Höhe ist) wird

dUind = (dl × v) • B = −dΦdt

Die Änderung des Flusses, der während der Zeit dt durch die Schleife tritt, ist der gesamte

Fluß, der den Konusmantel in Abb. 171 durchsetzt. Man muß also über alle Teilflächen dA

summieren und erhält

Uind = −dΦdt

wie es sein sollte.

Abb. 172: In eine starre Schleife, die sich in

einem homogenen Magnetfeld bewegt, wird

keine Spannung induziert.

Bewegt sich eine starre Schleife senkrecht zu einem Magnetfeld, das homogen ist wie in

Abb.172 angedeutet, so wird in den beiden Seiten, die senkrecht zu B stehen, eine gleich große

aber bezüglich der Umlaufrichtung in der Schleife entgegengesetzte Spannung induziert.

, wie es das Induktionsgesetz fordert.∫ E • ds = 0

134

Page 135: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 173: Bei der Bewegung in einem inhomogenen

Feld kompensieren sich die induzierten Spannungen in

den Teilen senkrecht zu B nicht vollständig.

Ist das Magnetfeld in Bewegungsrichtung inhomogen, so wird in diese Leiterstücke eine un-

gleiche Spannung induziert (Abb. 173).

Uind = −dsdt

B1b + dsdt

B2b = −dΦdt

Man kann die gesamte Spannungsänderung also wieder durch die Änderung des Flusses aus-

drücken. Die Schleife kommt bei ihrer Bewegung in ein Gebiet mit veränderter Stärke des Ma-

gnetfeldes. Dadurch ändert sich der Fluß durch die Schleife und es wird eine Spannung indu-

ziert. Da die Ursache für die induzierte Spannung die Lorentzkraft ist, und in dieser die Ursa-

che für die Erzeugung des Magnetfeldes nicht eingeht, ist auch die Ursache für die Flußände-

rung beim Induktionsgesetz belanglos, d.h. es gilt auch, wenn die Schleife ruht und sich B

durch die Bewegung der Spule, die B erzeugt oder durch Änderung des Stromes, der B er-

zeugt, ändert.

Bei der Berechnung des Flusses ist es gleichgültig, über welche Fläche, die von der geschlos-

senen Kurve C aufgespannt wird, integriert wird. Dies folgt aus der Tatsache, daß B keine

Quellen hat. Die Quellenfreiheit besagt, daß der Gesamtfluß durch eine geschlossene Fläche

Null ist. Unterteilt man die geschlossene Fläche in zwei Teilflächen (1) und (2), die an der

Kurve C aneinander grenzen (Abb. 174), so muß der Fluß, der durch die Fläche (1) eintritt aus

(2) wieder austreten.

Abb. 174: Der magnetische Fluß durch die die

Kurve C kann gewonnen werden, indem man

über die Fläche (1) oder über die Fläche (2)

integriert. Das Ergebnis ist gleich.

Legt man die Richtung von E durch eine Schraubenregel fest, erhält man das Induktionsgesetz

in der allgemeinen Form

(18)Uind = ∫ E • ds = −dΦdt

135

Page 136: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Dabei ist Φ der gesamte Fluß des Magnetfeldes durch die Schleife. Beim Magnetfeld muß das

gesamte Feld, das die Schleife durchsetzt, berücksichtigt werden, also z.B. auch das Magnet-

feld, das der Strom in der Schleife selbst erzeugt. Die Änderung des Flußes kann z.B. durch

Änderung des Stromes, der das Magnetfeld erzeugt, durch Änderung der Schleifenfläche oder

des Winkels zwischen B und Schleifenfläche erfolgen.

d) Die differentielle Form des Induktionsgesetzes

Schreibt man den Ausdruck für den magnetischen Fluß aus, lautet das Induktionsgesetz (Glei-

chung 18)

Uind = − ddt ∫ B • dA = ∫ E • ds

Nach dem Satz von Stokes gilt

∫ E • ds = ∫rot E • dA

Hieraus folgt das Induktionsgesetz in differentieller Form

(19)rot E = −•B

e) Beispiele

α) Der Wechselstromgenerator

Abb. 175: Bei der Dynamomaschine werden

Drahtschleifen in einem Magnetfeld gedreht.

Bei einem Wechselstromgenerator werden meistens Schleifen in einem Magnetfeld gedreht.

Wir betrachten die Drehung einer einzelnen Schleife in einem homogenen Magnetfeld. Da

Φ = BAcosα, und α = ωt, hat der Fluß die Zeitabhängigkeit Φ(t) = BAcosωt, und die Spannug

hat nach dem Induktionsgesetz den zeitlichen Verlauf

Uind = −dΦdt

= BAωsin ωt

136

Page 137: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Bei mehreren Schleifen und inhomogenem Magnetfeld müssen mehrere sinusförmige Span-

nungen, u.U. mit unterschiedlicher Amplitude und gegenseitiger Phasenverschiebung aber

gleicher Frequenz addiert werden. Eine solche Addition führt immer wieder zu einer sinusför-

migen Zeitabhängigkeit. D.h. durch Drehen einer Spule in einem statischen Magnetfeld erhält

man eine sinusförmige Spannung.

β) Der Transformator

Abb. 176: Im Transformator kommt die Induktion

durch eine zeitliche Änderung des Stromes in der

Primärspule zustande

Der Aufbau ist in Abb. 176 skizziert. In einer Primärspule wird durch einen Wechselstrom ein

zeitveränderliches Magnetfeld erzeugt, das in der Sekundärspule eine Spannung induziert. Bei

einer Spule muß man in das Induktionsgesetz den gesamten Fluß zwischen den Anschlüssen

einsetzen. Wenn B das Magnetfeld in der Spule ist, A die Fläche einer Windung, N die Anzahl

der Windungen, wird der gesamte Fluß zwischen den Anschlüssen

Φges = NΦ0 = NAB

Daher gilt beim Transformator

Up = Np

•Φp

Us = Ns

•Φs

Wenn der Gesamtfluß, den die Primärspule erzeugt, auch die Sekundärspule durchsetzt,

Φp = Φs,

giltUp

Us=

Np

Ns

Das Spannungsverhältnis ist dann nur durch das Verhältnis der Windungszahlen bestimmt,

nicht jedoch durch die Frequenz.

137

Page 138: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

f) Das Vorzeichen der induzierten Spannung

Abb. 177: In den Maxwellschen Gleichungen steht das

Gesamtfeld. Für die Anschauung ist es manchmal hilf-

reich, das Gesamtfeld in ein induziertes und ein außen an-

gelegtes zu zerlegen.

Das Induktionsgesetz kann man selbstverständlich in beiden Richtungen lesen, d.h. wenn man

eine Ringspannung erzeugt, bildet sich ein Magnetfeld mit dem Fluß . Es ist al-Φ = −∫ Uinddt

lerdings schwierig eine Ringspannung anders als durch Induktion zu erzeugen. Legt man z.B.

eine äußere Spannung U an eine Schleife, wie in Abb. 177, so entsteht ein in Pfeilrichtung an-

steigender Strom, der ein ansteigendes Magnetfeld in der angegebenen Richtung erzeugt. Neh-

men wir an, der Leiter habe keinen Widerstand (σ → ∞), dann muß wegen j = σE die elektri-

sche Feldstärke verschwinden, da es keine unendlichen Ströme geben kann. E ist hier die ge-

samte elektrische Feldstärke an der Schleife. Man kann sich Eges zusammengesetzt denken aus

Eind, das durch das ansteigende Magnetfeld induziert würde, auch wenn kein Leiter vorhanden

wäre, und das durch die äußere Quelle entlang des Leiters erzeugte Feld EQ.

Eges = Eind + EQ

Wegen Eges = 0 wird Eind = -EQ. Eind wird also so groß, bis es das durch die äußere Quelle er-

zeugte Feld (EQ) gerade kompensiert. Wegen EQ = -Eind wird U = -Uind. Daher ist der Zusam-

menhang zwischen angelegter Spannung und Flußänderung

(20)U = dΦdt

Das Induktionsgesetz wird häufig mit einem negativen Vorzeichen geschrieben. Jetzt ist klar,

daß dann mit U die induzierte Spannung gemeint ist. Man sieht in diesem Fall die Schleife als

aktives Element an. Die Richtung der induzierten Spannung ist dann entgegengesetzt der durch

B vorgegebenen Schraubenrichtung. Betrachtet man statt dessen die Schleife als passives Bau-

element, so interessiert die induzierte Spannung weniger als die außen angelegte Spannung.

Diese erzeugt einen Strom, der mit B eine Rechtsschraube bildet. Man verwendet dann das In-

duktionsgesetz mit dem positiven Vorzeichen. Die Schwierigkeit bei der Vorzeichengebung

138

Page 139: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

liegt daran, daß man dazu neigt anzunehmen, daß der induzierte Strom die Richtung der indu-

zierten Spannung hat. Das Beispiel in Abb. 177 zeigt, daß dies nicht notwendigerweise so ist.

Lenzsche Regel

In der Praxis ist es oft einfacher, das Vorzeichen über die Lenzsche Regel zu ermitteln, die im

Grunde eine Folge des Energiesatzes ist. Die Lenzsche Regel besagt

Der Induktionsstrom ist so gerichtet, daß er den Vorgang, der ihn erzeugt, zu hemmenversucht.

Beispiel:

Abb. 178: Eine Leiterschleife werde zwischen

den Polen eines Magneten hindurch bewegt.

Der Strom muß so fließen, daß die Bewegung

gebremst wird.

Abb. 179 und 180: Der Fluß, der durch die

Schleife tritt, im Verlaufe der Bewegung

(oben) und dessen zeitliche Ableitung

Eine Leiterschleife werde mit konstanter Geschwindigkeit zwischen zwei Magnetpolen hin-

durchbewegt (Abb. 178). Abb. 179 zeigt Φ(t) qualitativ. Φ(t) hat die gleiche Form wie Φ(x)

entlang der Bahn der Schleife, da x = vt. Abb. 180 zeigt dΦ(t)/dt und damit qualitativ den Ver-

lauf von U.

Die Richtung des induzierten Stroms überlegt man sich folgendermaßen: Fließt in der Schleife

ein Strom, so hat das Magnetfeld die Form eines Dipolfeldes. Es ist damit dem eines Stabma-

gneten ähnlich. Nach der Lenzschen Regel erhält dieser eine Polarität so, daß er vom festste-

henden Magneten anfangs abgestoßen wird, d.h. oben entsteht ein Nordpol, unten ein Südpol

in Abb. 178. Daraus ergibt sich die in Abb. 178 angedeutete Stromrichtung. Wenn sich die

Schleife vom Magneten entfernt, muß sie angezogen werden, um die Bewegung zu behindern.

Daher polt der Strom um.

139

Page 140: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

3. Induktivität

a) Definition der Induktivität

Ein im Kreis fließender Strom erzeugt an einer beliebigen Stelle im Raum ein Magnetfeld, das,

wie z.B. das Biot - Savartsche Gesetz zeigt, proportional zu I ist. Da dies an jedem Ort gilt, ist

auch der magnetische Fluß dieses Feldes durch irgendeine Fläche proportional zu I. Man

schreibt für den Gesamtfluß, der durch einen Kreisstrom oder durch eine an den Anfangspunkt

zurückkehrende Leiterschleife geht

(21)Φ = LI

und definiert damit die Induktivität L der Leiterschleife oder des Kreisstroms. Φ folgt aus der

Geometrie der Leiterschleife oder der Stromfäden. Das Gleiche gilt für L. Nach Gleichung

(21) ergibt sich für die Dimension von L

[L] =[Φ/I] = Vs/A = H (Henry)

Der Fluß kann durch den Strom in der Leiterschleife selbst hervorgerufen werden, L heißt

dann die Selbstinduktivität, oder durch den Strom in einer anderen Leiterschleife. Man schreibt

dann

Φ = MI

Abb. 181: Die Gegeninduktivität gibt den Zusammenhang

zwischen dem Fluß in der einen Spule und dem Strom in

der anderen Spule an, der das Magnetfeld erzeugt.

und nennt M die Gegeninduktivität. Diese wird ebenfalls in Henry gemessen. Allgemein gilt

also für zwei Leiterschleifen Φ1 = L1I1 + M12I2, Φ2 = M12I1 + L2I2. Es läßt sich zeigen, daß

M12 = M21. Diese Gleichungen zusammen mit dem Induktionsgesetz bilden die Grundlage zur

Berechnungen von Schaltungen mit Transformatoren, für den Fall, daß sich der Fluß durch die

beiden Spulen unterscheiden darf.

140

Page 141: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

b) Die Selbstinduktivität

α) Das Induktionsgesetz als Zusammenhang von Strom und Spannung an einer Induktivität

Setzt man in Gleichung (21) den Strom I = 1A, so erkennt man, daß L der Gesamtfluß ist, den

ein Stromkreis umfaßt, wenn in ihm 1A fließt. Soll z.B. die Induktivität in einem Kreis mög-

lichst klein gehalten werden, was in Hochfrequenzkreisen entscheidend sein kann, so muß

auch der Fluß möglichst klein gemacht werden. Eine einfache Maßnahme besteht darin, die

Fläche durch die das Magnetfeld greift, so weit wie möglich zu verringern, indem der Abstand

zwischen den Stromzufürungen möglichst eng gehalten wird. Durch Differenzieren von Glei-

chung (21) erhält man das Induktionsgesetz in der Form

(22)U = L•I

Setzt man , so wird U = L. L gibt also an,wie groß die Spannung an einer Leiter-•I = 1A/s

schleife sein muß damit sie einen Stromanstieg von 1 A/s erzeugt. Die Selbstinduktivität ist al-

so ein Maß für die Behinderung, die ein Stromkreis einer Stromänderung entgegensetzt, ähn-

lich wie die Kapazität ein Maß für die Behinderung gegenüber Spannungsänderungen ist. Dies

ist der Grund dafür, daß man in Hochfrequenzschaltungen auf möglichst kleine Induktivität in

den Zuleitungen achten muß.

Abb. 182: Das Induktionsgesetz hat positives

Vorzeichen, wenn Strom- und Spannungspfeil

gleiche Richtung aufweisen.

Das positive Vorzeichen im Induktionsgesetz rührt daher, daß bei außen angelegter positiver

Spannung U ein positiver Stromanstieg erfolgt (s. Abb. 182). Die Vorzeichen werden, wie in

Kapitel E/1 erläutert, mit Zählpfeilen festgelegt. Haben Spannungs- und Strompfeil an einer

Induktivität gleiche Richtung, wird das Induktionsgesetz mit positivem, sonst mit negativem

Vorzeichen geschrieben.

β) Flußerhaltung

In einer Leiterschleife mit genügend hoher Leitfähigkeit, z.B. in einem Supraleiter, kann sich

kein elektrisches Feld ausbilden. Daher kann auch keine Ringspannung existieren, und es muß

nach dem Induktionsgesetz Φ innerhalb der Schleife konstant bleiben. Unser

141

Page 142: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Gedankenexperiment zur Erläuterung des Induktionsgesetzes (s. Abb. 183) würde also in die-

sem Fall zu einer Flußkonstanz innerhalb der Schleife führen.

Abb.183: Bei diesem Experiment würde sich

der Fluß in der Schleife bei genügender Leitfä-

higkeit der Leiterschleife nicht ändern.

Durch die Bewegung des Stabes in der angegebenen Richtung wird ein Strom induziert, der

das ursprüngliche Magnetfeld um so viel abschwächt, daß die durch die Flächenvergrößerung

mögliche Flußvergrößerung gerade kompensiert wird, so daß sich der Gesamtfluß nicht ändert.

Ist L bekannt (hier ist L eine zeitabhängige Größe!), kann die Änderung von I auf grund der

Flußerhaltung sofort aus dem Induktionsgesetz (Gleichung 21) ausgerechnet werden. Anschau-

lich gesehen können sich die Feldlinien nicht durch die supraleitende Materie senkrecht zu ih-

rer Richtung bewegen. Diese Betrachtungsweise erleichtert das Verständnis von dynamischen

Prozessen von leitfähiger Materie in Magnetfeldern. Die höchsten Magnetfelder kann man er-

zeugen, indem man ein Magnetfeld mit einem letfähigen Mantel umgibt und diesen (etwa

durch eine Sprengladung) mit dem Magnetfeld zusammen komprimiert (Abb. 184).

Abb. 184: Hohe Magnetfelder lassen sich

durch Flußkompression herstellen.

In einer Flüssigkeit mit unendlicher Leitfähigkeit, die von einem Magnetfeld durchsetzt ist,

kann sich das Magnetfeld nicht relativ zur Flüssigkeit bewegen. Man spricht von eingefrore-

nem Magnetfeld. Besonders in astronomischen Plasmen sind Magnetfelder häufig eingefroren.

Bei endlicher Leitfähigkeit werden Magnetfelder durch die Strömung einer leitfähigen Flüssig-

keit verzerrt. Mit diesem Bild läßt sich die Verformung des Magnetfeldes der Erde im solaren

Wind anschaulich erklären.

γ) Berechnung von Selbstinduktivitäten

Der Gedankengang zur Einführung des Begriffs Induktivität gibt auch die einzelnen Schritte

für ihre Berechnung an: Man berechnet zunächst das Magnetfeld, das ein beliebig vorgegebe-

ner Strom I in der betrachteten Leiterschleife erzeugt. Der Gesamtfluß Φ ist dann eine Größe,

die proportional zu I ist. L erhält man, indem man Φ durch I teilt. Bei Hochfrequenzfeldern ist

142

Page 143: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

die Stromverteilung in ausgedehnte Leitern nicht von vorneherein bekannt, wodurch eine zu-

sätzliche Erschwerung hervorgerufen wird.

Beispiele

i. Induktivität einer langen Spule

Abb. 185: Die Spule habe N Windungen auf einer

Länge l, die groß ist gegenüber dem Radius.

Wir betrachten die Spule als Ausschnitt einer Ringspule. Bei dieser verschwindet das Magnet-

feld außerhalb der Wicklung. In der zylindrischen Spule schließt sich das Magnetfeld im Au-

ßenraum, so daß es dort nicht vollständig verschwindet. Wenn die Länge der Spule (l) sehr viel

größer als ihr Radius ist, kann man davon ausgehen, daß das Feld der Ringspule nur wenig ge-

stört wird. Wir setzen daher das Feld im Außenraum Null Baus = 0 und im Innenraum Binnen = B0

= const und integrieren nach dem Ampereschen Gesetz entlang einer Feldlinie

∫ B • ds = µNI = ∫ Baus • ds + ∫ B0ds = B0l

Wir haben im Ampereschen Gesetz µ statt µ0 geschrieben. µ enthält die Eigenschaften des ma-

gnetischen Materials (s. nächsten Abschnitt). Da das Integral über den Außenraum verschwin-

det, ergibt sich das Magnetfeld im Innenraum

B0 =µNI

l

Der Gesamtfluß durch alle Windungen ist

Φ = NB0A =µN2IA

l

und daher wegen Φ = LI L = µN2Al

ii. Induktivität eines Bandleiters

143

Page 144: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 186: Der Bandleiter verbinde eine Strom-

quelle mit einem Verbraucher. Der vom Strom er-

zeugte Fluß geht dann durch die Fläche, die durch

l und d aufgespannt wird.

Wir betrachten den Bandleiter (Abb. 186) als Ausschnitt aus einem axialsymmetrischen Leiter

aus zwei koaxialen Zylindern (Koxialkabel Abb. 187) für den Grenzfall großer Radien bei

festgehaltenem Abstand d. Das Magnetfeld ist auf den Spalt beschränkt und senkrecht zu I.

Nach dem Ampereschen Gesetz erhält man

Abb. 187: Der Bandleiter kann als Ausschnitt

aus einem Koaxialleiter aufgefaßt werden.

∫ B • ds = Bb = µ0I B =µ0Ib

Die Fläche, durch die der Fluß von B tritt, ist ld. Daher wird Φ = Bld =µ0Ild

b

L =µ0ld

b

L ist, wie erwartet proportional zu ld. Die Abhängigkeit ~1/b rührt daher, daß bei gleichblei-

bendem Strom das Magnetfeld umgekehrt proportional zur Breite des Leiters ist. Ein Bandlei-

ter ist eine extrem niederinduktive Leitung. Da , hat ein Bandleiter besonders hoheC = εlbd

Kapazität.

δ) Die Energie des magnetischen Feldes

Transportiert man eine Ladung dq durch eine Induktivität L (Abb. 188), so leistet man eine Ar-

beit dW = dqU = dq L . Indem man q auf die Variable I transformiert, erhält man mitdIdt

dq = Idt

dW = LIdtdIdt

= LIdI

144

Page 145: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 188: Den Energieinhalt der stromdurchflossenen

Spule rechnen wir aus, indem wir sie nacheinander mit

dq gegen die aktuelle Spannung laden.

Die gesamte Energie, die notwendig ist, um die Induktivität mit einem Strom I0 zu laden, ist

daher . Durch Integration erhält manW =I0

∫ LIdI

(23)W = 12

LI02

Abb. 189: Die kurzgeschlossene stromführende Spule, auf

neudeutsch: die Crow - Bar Schaltung.

Induktivitäten können wie Kapazitäten als Energiespeicher verwendet werden. Schließt man

nach dem Laden die beiden Enden kurz, so bleibt wegen und U = 0 der Strom konstantU = L•I

(Abb. 189). Die Energie bleibt gespeichert. Der Vorteil eines induktiven Speichers gegenüber

einem kapazitiven ist die deutlich höhere Energiedichte. Der Nachteil besteht darin, daß bisher

induktive Speicher mehr Verluste aufweisen als kapazitive.

Abb. 190: Kurzschluß einer verlustbehafteten

stromführenden Spule

Um das Zeitverhalten des Stroms in einer verlustbehafteten kurzgeschlossenen Spule zu erhal-

ten, betrachten wir Abb.190. Die verlustbehaftete Spule wird durch eine ideale Induktivität mit

einem in Serie geschalteten Widerstand R beschrieben. Die Maschengleichung lautet

L•I = −IR

145

Page 146: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Die Differentialgleichung

•I + R

LI = 0

Sie wird mit dem Ansatz gelöst. Der Ansatz eingesetzt in dieDifferentialgleichung er-I = Aeλt

gibt die charakteristische Gleichung , also . Die allgemeine Lösung hat alsoλ + RL

= 0 λ = −RL

die Form . Die Konstante A wird aus den Anfangsbedingungen bestimmt, etwaI = Ae−Rt/L

I(0) = I0. Es folgt A = I0. Die Lösung lautet

I = I0e−Rt/L

Abb.191: Der Strom klingt in einer verlustbehafte-

ten kurzgeschlossenen Spule gemäß einer e - Funk-

tion mit der charakteristischen Zeit L/R ab.

Der Zeitverlauf ist in Abb. 191 dargestellt. Ähnlich, wie bei einer Kapazität die Spannung,

nimmt hier der Strom exponentiell ab. Die Zeitkonstante ist L/R.

Drückt man die Energie einer Spule durch B aus, erhält man aus , indem man L er-W = 12

LI2

setzt durch LI = NΦ = NAB und B ersetzt durch Bl = µ0IN

W = 12

ABN Blµ0N

= B2Al2µ0

Man sagt, die Energiedichte des magnetischen Feldes ist

(24)W∆V

= B2

2µ0

4. Materie im Magnetfeld

a) Magnetisches Moment einer Stromschleife

Ähnlich, wie die Induzierung und Ausrichtung von elektrischen Dipolen, aus denen die Mate-

rie besteht, das elektrische Feld in einem Stoff beeinflußt, geschieht dies auch durch magneti-

sche Dipole. Um diesen Vorgang quantitativ zu beschreiben, muß zunächst das magnetische

Dipolmoment definiert werden. Da es keine magnetischen Monopole gibt, betrachten wir als

146

Page 147: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

elementaren Dipol eine Stromschleife, die ja ein Feld wie ein Dipol hat, und definieren ihr Di-

polmoment durch ihre Kraftwirkung im Magnetfeld in Analogie zur Kraftwirkung auf einen

elektrischen Dipol. Ein elektrischer Dipol vom Dipolmoment p erfährt im homogenen elektri-

schen Feld ein Drehmoment

Abb. 192: Das Drehmoment auf die Schleife kommt

durch die Beiträge der Lorentzkraft auf die Seiten l

zustande.

MD = p × E

Die Ladungsträger in einer rechteckigen Stromschleife (s. Abb. 192) erfahren eine Kraft.v ×B

In den Seiten d kompensieren sich diese Kräfte gegenseitig. In den Seiten l bleibt ein Drehmo-

ment MD auf die Schleife übrig. Jede Seite l hat einen Kraftarm . Das Drehmoment auf12

d sin α

die Schleife ist also . Q ist die Ladung eines Teilchens und N die Ge-MD = 212

d sin α NQvB

samtzahl der Ladungsträger in dem Leiterstück l. N = nA/l. A/ ist der Leitungsquerschnitt. Da

der Strom I = jA/ = nQvA/, erhält man MD = IdlB sinα. Für diese rechteckige Schlefe kann

man also vektoriell schreiben

(25)MD = IA × B

wobei A die Fläche der Stromschleife ist. Wir sparen uns, zu beweisen, daß dieses Gesetz auch

für alle möglichen anderen Ausrichtungen der Schleife gilt. Schleifen mit anderer Form teilen

wir in eine Vielzahl von rechteckigen Schleifen auf, wobei sich im Innern alle Ströme aufhe-

ben. Durch Vergleich von Gleichung (25) mit der entsprechenden Formel für das Drehmoment

auf einen elektrischen Dipol im elektrischen Feld erhält man für das magnetische

Dipolmoment

(26)m = IA

Das Drehmoment auf einen magnetischen Dipol im Magnetfeld ist damit

147

Page 148: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

(27)MD = m × B

b) Magnetisches Dipolmoment in Atomen

Wir betrachten als ein Modell ein Elektron, das sich auf einer Kreisbahn um den Kern bewegt.

Es führt einen Strom, der gleich der Ladung ist, die pro Sekunde durch eine Fläche senkrecht

zur Bahn tritt (s. Abb. 193). Wenn ν die Anzahl der Umläufe pro Sekunde ist, gilt

Abb. 193: Das kreisende Elektron verkörpert

einen Strom.

I = −νe0 = − ω2πe0 = − v

2πre0

Hier wurde ausgenutzt, daß v = ωr. Für das magnetische Moment erhält man dann nach Glei-

chung (26)

m = πr2I = −12

rve0

während der Bahndrehimpuls des Elektrons L = mevr ist. (me ist die Masse des Elektrons). Das

Verhältnis von Dipolmoment m und Drehimpuls L der Bahn ist also unabhängig von r und v.

Es ist sogar für alle Bahnen gleich groß. Man nennt dieses Verhältnis g das gyromagnetische

Verhältnis.

(28)g = mL

= −12

e0me

Abb.194: Auch ein Teilchen mit Spin hat ein

magnetisches Dipolmoment

148

Page 149: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Für den Spin, der im klassischen Bild einer Drehung des Elektrons um seine Figurenachse ent-

spricht (Abb. 194), ist das Gyromagnetische Verhältnis allerdings doppelt so groß wie für die

Bahnbewegung

gs = − e0me

Klassisch könnte man diese Abhängigkeit durch eine geeignete Ladungsverteilung

konstruieren.

Das gyromagnetische Verhältnis im Atom kann über den Einstein - de - Haas Effekt gemessen

werden (Abb. 195). Man magnetisiert einen Eisenstab. Durch Umkehren des äußeren Feldes

kippen die Elementarmagnete um und übertragen ihre Impulsänderung auf den Eisenstab. Man

erhält den Wert -e0/me, also den Wert für den Spin des Elektrons. Man erklärt dies damit, daß

der Bahndrehimpuls im Grundzustand Null ist, und nur der Spin eines Elektrons gemessen

wird.

Abb. 195: Einstein - de - Haas Versuch

c) Die Magnetisierung M

Abb. 196: Das geasamte Dipolmoment pro

Volumen in einem Stab ist die

Magnetisierung.

Hat man in einem Stoff n Dipole pro Volumeneinheit mit einem Dipolmoment m, so ist das

gesamte Dipolmoment pro Volumen

M = nm

M heißt die Magnetisierung. Ein parallel zu B liegender Stab der Querschnittsfläche A und der

Länge l hat das gesamte Dipolmoment mges = MV =MlA = (Ml)A. Da andererseits mges = IA, ist

149

Page 150: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

M der Strom pro Länge an der Oberfläche des Stabes, der bei Addition aller Elementarströme

übrig bleibt (Abb. 197). Dieser Strom erzeugt das gesamte magnetische Moment. Man nennt

ihn den gebundenen Strom. (Im elektrischen Fall ist die Größe, die der Magnetisierung M ent-

spricht die Polarisation P. P = np ist das elektrische Dipolmoment pro Volumeneinheit, oder

die Ladung pro Fläche auf grund der Verschiebung der gebundenen Ladungen. Die Flächenla-

dung liegt auf den Stirnflächen.)

Abb. 197: Im Innern gehört zu jedem Strom ein

gleich großer entgegengesetzter. Es bleibt also ins-

gesamt nur ein Oberflächenstrom übrig.

Den Beitrag der Materie kann man wie im elektrischen Feld auf zwei verschiedene Weisen

beschreiben:

i. Analog zu εr führt man eine Materialeigenschaft µr ein, die den gesamten Beitrag der gebun-

denen Ströme enthält. In allen Formeln, in denen im Vakuumfall µ0 steht, schreibt man bei An-

wesenheit von Materie µrµ0. Die Permeabilität µr ist eine dimensionslose Zahl. Für Vakuum ist

µr = 1. Es gibt Stoffe, für die µr < 1 (diamagnetische Stoffe), µr > 1 (paramagnetische Stoffe)

und solche, für die µr >> 1 (ferromagnetische Stoffe). Für anisotrope Stoffe wie Kristalle ist µr

ein Tensor. Für skalares µr schreibt man das Amperesche Gesetz

∫ B • ds = µrµ0I

Manchmal faßt man zusammen µrµ0 = µ. Um eine Feldgröße zu erhalten, die unabhängig von

den Stoffeigenschaften ist, definiert man ein H - Feld über

(28)B = µrµ0H

H hat die Dimension [A] = A/m. Das Amperesche Gesetz schreibt sich mit H

∫ H • ds = I

H ist also unmittelbar mit den freien Strömen verknüpft.

150

Page 151: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

ii. Man setzt das gesamte B - Feld aus zwei Anteilen zusammen, einen Anteil, der durch die

Ströme in einer äußeren Spule erzeugt wird, wenn kein Stoff innerhalb des Feldes wäre, also

durch die freien Ströme

B1 = µ0H

und einen Anteil durch die gebundenen Ströme

B2 = µ0M

Insgesamt (29)B = µ0(H + M)

Diese Darstellung ist auch für anisotrope Medien geeignet. M ergibt sich aus dem äußeren

Feld über die Suszeptibilität χm ähnlich wie im elektrischen Fall.

(30)M = χmH

Setzt man dies in Gleichungen (28) und (29) ein, erhält man einen Zusammenhang zwischen

der Suszeptibilität, die sich aus der Polarisierbarkeit und daher im Prinzip aus atomaren Eigen-

schaften ausrechnen läßt, und der Permeabilität, die eine makroskopische Stoffeigenschaft

beschreibt.

Nach einer weniger gebräuchlichen Konvention definiert man χm über . Man be-M = χmBµ0

gründet dies damit, daß das mittlere Feld im Festkörper, das die Magnetisierung verursacht B

und nicht H ist. Man definiert χm also über ein Feld, das schon durch den Festkörper modifi-

ziert ist. µr = 1 + χm gilt dann nur für kleine χm.

d) Dia- Para- und Ferromagnetismus

α) Kraft auf eine Stromschleife im veränderlichen B - Feld

Eine Stromschleife befinde sich in einem B - Feld, dessen Änderung in z - Richtung bekannt

ist, wobei die Schleifenebene senkrecht auf dem Feld steht. Die Kraftdichte ist gegeben durch

(s. Gleichung (10)), in dieser Geometrie durch fz = -jθBr. Die Kraft auf die Schleife istf = j × B

damit

151

Page 152: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 198: Über die Divergenzfreiheit des B -

Feldes läßt sich Br durch dBz/dz ausdrücken.

Fz = −jθAdlBr = −2πrIBr

Da Bz bekannt ist, wird Br über die Quellenfreiheit von B durch Bz ausgedrückt (s. Abb. 198).

Der Fluß, der an den Seitenflächen des Zylinders in Abb.198 austritt, muß an den Stirnflächen

eintreten

2πr∆zBr = πr2(Bz(z) − Bz(z + ∆z))

Bz(z + ∆z) wird durch Taylorentwicklung auf Bz(z) zurückgeführt

Bz(z + ∆z) = Bz(z) + ∂Bz

∂z∆z

damit wird und 2πr∆zBr = −πr2 ∂Bz

∂z∆z Br = −r

2∂Bz

∂z

Fz = πr2I∂Bz

∂z= m

∂Bz

∂z

In einem inhomogenen Feld wird der Dipol je nach Vorzeichen von m, d.h. je nach Vorzeichen

der Polarisierbarkeit in oder entgegen Richtung des Gradienten von B gezogen.

β) Diamagnetismus

Abb. 199: Beim diamagnetischen Material

werden Dipole induziert, die dem äußeren Feld

entgegengesetzt sind.

Hier ist χm < 0 und damit µr < 1, d.h. die Elementardipole richten sich entgegengesetzt zum äu-

ßeren Feld aus. Dies ist durch Induktion eines Stromes möglich. Als physikalisches Modell

dient eine Drahtschleife unendlicher Leitfähigkeit. Da bei ihr der Fluß, den sie umfaßt, beim

Einführen in ein Magnetfeld erhalten bleibt, wird in ihr ein Strom induziert, der einen Dipol

nach sich zieht, der dem ursprünglichen Magnetfeld entgegengesetzt gerichtet ist. Die Ströme

152

Page 153: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

der Elektronen in Atomen verhalten sich wie derartige verlustfreie Stromschleifen. In inhomo-

genen Feldern wirkt auf diamagnetische Stoffe eine Kraft in Richtung zum Gebiet mit kleine-

rem Feld. Die Richtung macht man sich am einfachsten über die Kraft auf Stabmagneten klar

(Abb. 200). Alle Stoffe haben einen natürlichen Diamagnetismus. Paramagnetismus kann den

Diamagnetismus überdecken. Bei den meisten diamagnetischen Stoffen ist die Suszeptibilität

von der Größenordnung χm = -(1 - 10)·10-6. Besonders große Suszeptibilität hat Wismuth mit

χm = -157·10-6. Plasmen verhalten sich diamagnetisch.

Abb. 200: Diamagnetische Stoffe werden aus

dem Gebiet mit größerer Feldstärke gedrückt

γ) Paramagnetismus

Bei paramagnetischen Stoffen ist χm > 0 und damit µr > 1, d.h. die Elementatmagnete richten

sich parallel zu B aus. Dies ist der Fall, wenn die Atome von vorneherein ein Dipolmoment be-

sitzen. Paramagnetische Stoffe werden in einem inhomogenen Magnetfeld in das Gebiet mit

größerem Magnetfeld gezogen (Abb. 201). Beispiele : Aluminium hat χm = 20,8·10-6, flüssiger

Sauerstoff χm = 5670·10-6.

Abb. 201: Paramagnetische Stoffe werden in

das Gebiet mit stärkerem Magnetfeld gezogen.

δ) Ferromagnetismus

Bei ferromagnetischen Stoffen wie Fe, Co, Ni ist µr >> 1. µr kann Werte bis 106 annehmen.

Dieser hohe Wert wird dadurch erreicht, daß ein großer Prozentsatz der Elementarmagnete

ausgerichtet werden kann. Sie werden durch den Spin der Elektronen erzeugt. Die Ausrichtung

erfolgt über ein Wechselspiel von ausrichtenden Kräften im Feld und Unordnung stiftender

thermischer Bewegung. Oberhalb der Curie Temperatur Tc = 770°C ist Eisen paramagnetisch,

unterhalb gilt in einem weiten Bereich das Curiesche Gesetz

153

Page 154: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

M = CT

Ohne Magnetfelder existieren Bereiche ("Weißsche Bezirke"), in denen der Spin einheitlich

ausgerichtet ist, die aber untereinander unterschiedliche Magnetisierungsrichtung aufweisen.

Bei zunehmendem Magnetfeld verschieben sich die Grenzen dieser Bezirke, die Bloch Wände,

zugunsten von energetisch günstigeren Positionen. Während diese Bezirksgrenzen wandern,

können sie an Gitterfehlern hängen bleiben. Das impulsartige Weiterlaufen erzeugt in einer In-

duktionsschleife ein Rauschen. Diesen Effekt nennt man Barkhausen Effekt. Trägt man M ge-

gen das die Polarisation erzeugende Feld auf, das proportional dem Strom in der Spule ist, die

das Magnetfeld erzeugt, so erhält man die Magnetisierungskurve (Abb. 202). Man erkennt, daß

bei Ferromagnetika M nicht proportional zu B ist, daß M sogar von der Vorbehandlung der

Probe abhängt. Man sagt, die Magnetisierungskurve zeigt eine Hysterese. Wir hatten schon in

der Schaltungstheorie Bauteile mit Hysterese kennengelernt und gesehen, daß diese Eigen-

schaft zur Speicherung von Information ausgenutzt werden kann. Um gute Speichereigen-

schaften zu erzielen - etwa auf Disketten - benötigt man hohe und breite Kurven. Für geringe

Verluste in Transformatoren oder ähnlichen Bauteilen benötigt man schmale Kurven.

Abb. 202: Die Magnetisierungskurve von

Ferromagnetika.

154

Page 155: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

KAPITEL G

Wechselstromkreise

1. Einleitung

Wenn Netzwerke von Strom- und Spannungsquellen gespeist werden, die sinusförmige Zeit-

verläufe aufweisen, und nur der eingeschwungene Zustand interessiert, ergeben sich starke

Vereinfachungen gegenüber der Behandlung in Kapitel E. Einschwingvorgänge müssen nach

wie vor mit der allgemeinen Methode über Differentialgleichungen berechnet werden. Wir be-

schreiben sinusförmige Zeitverläufe durch komplexe Zahlen

U = U0eiωt

Der zeitabhängige Faktor enthält die Frequenzinformation. Die übrige In-eiωt = cos ωt + i sin ωt

formation ist in der komplexen Amplitude enthalten. |U0| ist die reelle Amplitude, arg U0 die

Phasenverschiebung gegenüber einer Schwingung mit reeller Amplitude.

2. Impedanzen

a) Definition

Um Spannungs- bzw. Stromverlauf an einem der Elemente zu berechnen, müßte man die spe-

zielle Lösung der inhomogenen Differentialgleichung finden, wobei die Inhomogenität die

Zeitabhängigkeit der Quellen enthält (eventuell deren Ableitungen). Wenn die Inhomogenität

wie hier endlich viele Ableitungen besitzt, kann man die Lösung aus einer Linearkombination

der Inhomogenität und ihren Ableitungen bilden. Bei einem Zeitverlauf heißt dies, daßA0eiωt

in Wechselspannungskreisen an allen Elementen sinusförmige Ströme und Spannungen

vorliegen.

Für den Zusammenhang von Strom- und Spannungsamplitude an den einzelnen Elementen gilt

daher:

R: U=IR, , alsoU0eiωt = I0eiωtR U0 = RI0

C: (1)I = C•U, I0eiωt = CiωU0eiωt U0 = 1

iωCI0

L: , U = L•I U0eiωt = LiωI0eiωt U0 = iωLI0

155

Harald Schüler
Page 156: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

R, und iωL nennt man die Impedanzen der einzelnen Elemente. Formal ähneln die U0I0 -1

iωCBeziehungen dem Ohmschen Gesetz. An Stelle des Widerstandes tritt die Impedanz und an

Stelle des Momentanwertes die Amplitude.

b) Strom und Spannung an L und C

Betrachtet man eine Kapazität, an der eine Wechselspannung mit reeller Spannungsamplitude

U0 liegt,

U = U0sin ωt

dann ist I = iωCU0 sinωt. ist eine komplexe Zahl, die um π/2 gegenüber der reellenI0 = iωCU0

Achse gedreht ist. I ist also um π/2 gegenüber U phasenverschoben. Der Zeitverlauf wird da-

her durch beschrieben (Abb.203). I = ωCU0cos ωt

Abb. 203 - 205: Strom- und Spannungsverlauf an einer Kapazität, Amplituden in der

Der Strom eilt der Spannung vor. Dies können wir uns mit der Tatsache veranschaulichen, daß

beim Laden eines Kondensators zuerst Strom fließen muß, bevor die Spannung ansteigt. Das

Verhältnis von U und I kann während einer Periode alle Werte von -∞ bis +∞ annehmen. Es

ist daher nicht sinnvoll, einen Widerstand zu definieren. Der Betrag der Impedanz einer Kapa-

zität nimmt mit steigender Frequenz ab (Abb. 205). Je höher die Frequenz ist, desto durchlässi-

ger wird der Kondensator. Bei einer Induktivität läuft umgekehrt die Spannung um π/2 vor

dem Strom, da (Abb. 206). Der Betrag der Impedanz ist |ZL| = ωL. Die InduktivitätU0 = iωLI0

sperrt zunehmend bei wachsender Frequenz.

Abb. 206 - 208: Verlauf von Strom und Spannung, komplexe Amplituden und Frequenzverhalten

der Impedanz bei einer Induktivität.

156

Page 157: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

c) Wechselstromleistung

Durch eins der passiven Elemente R, L, C, fließe der Strom I, während die Spannung U an-

liegt. Da die Arbeit, die dazu benötigt wird, eine Ladung dq durch das Bauelement zu treiben,

dW = dqU ist, wird . An einem Widerstand hat manP = dWdt

= IU

, U = U0sin ωt I = I0sin ωt

Abb. 209: Die Leistung an einem Wider-

stand hat den zeitlichen Verlauf eines sin2.

Die Leistung ist also . Bei der Mittelung bleibt, da derP = U0I0sin2ωt = U0I012

(1 − cos 2ωt)

Mittelwert von cos ωt über ganze Perioden verschwindet,

⟨P⟩ = 12

U0I0

Man definiert den Effektivwert von U und I über

und Ueff = 12

U0 Ieff = 12

I0

und kann dann wie gewohnt schreiben

.⟨P⟩ = UeffIeff

Wechselstrom Meßgeräte zeigen Effektivwerte an. Widerstände verbrauchen Leistung.

Bei einer Kapazität und einer Induktivität sind Spannung und Strom um 90° phasenverscho-

ben. Man erhält daher für die in ihnen verbrauchte Leistung Terme, die proportional zu

sin ωtcos ωt = sind. Es wird also in einer Halbwelle genau so viel Energie an das12

sin 2ωt

Element abgegeben, wie in der nächsten von ihm aufgenommen wird. Die mittlere Leistung

verschwindet. Man nennt solche Elemente Blindelemente. Vorsicht! Wir sind bei der Berech-

nung der Leistung zu der reellen Schreibweise zurückgekehrt. Dies ist notwendig, denn bei

Operationen mit quadratischen Termen führt die komplexe Schreibweise zu Fehlern.

157

Page 158: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

3. Berechnung von Netzwerken

a) Die Grundgesetze

Wir hatten gelernt, daß die Berechnung von Netzwerken auf den Kirchhoffschen Gesetzen und

den Gesetzen, die den Zusammenhang von Strom und Spannung an den einzelnen Bauteilen

beschreiben, beruht. Bei Wechselstromnetzwerken benutzt man statt der allgemeinen U/I - Ge-

setze die entsprechenden Gesetze für die komplexen Amplituden (Gleichungen (1)). In den

Kirchhoffschen Gesetzen läßt sich der Zeitfaktor wegkürzen

Σ Ui = 0 ⇒ Σ U0ieiωt = 0 ⇒ Σ U0i = 0

KnotenΣ Ii = 0 ⇒ Σ I0ieiωt = 0 ⇒ Σ I0i = 0

Es gelten also für die komplexen Amplituden formal die gleichen Grundgesetze wie für U(t)

und I(t) in Widerstandsnetzwerken. Man kann daher wie bei Widerstandsnetzwerken die Me-

thode der Knotenpunktspotentiale und der Maschenströmme anwenden. Die reellen Amplitu-

den ergeben sich dann aus den Beträgen der komplexen Amplituden, die Phasenverschiebun-

gen aus ihren Argumenten.

b) Beispiele

α) In der Schaltung von Abb. 210 sollen die Ströme durch die Elemente berechnet werden.

Abb. 210: An diesem Beispiel wird die Me-

thode der Knotenpunktspotentiale bei Wech-

selstromnetzwerken demonstriert.

Die Anwendung der Methode der Knotenpunktspotentiale auf Knoten A ergibt:

UA − U1

ZC+ UA − U2

ZL+ UA − U3

ZR= 0

UA iωC + 1

iωL+ 1

R = U1iωC + U2

iωL+ U3

R

UA = U1iωC + U2/iωL + U3/RiωC + 1/iωL + 1/R

158

Page 159: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Hieraus lassen sich die Ströme durch die Elemente ausrechnen.

β) Der Tiefpaß (Abb. 211)

Abb. 211: Schaltbild eines RC Tiefpasses

Wir stellen uns vor, die Eingangsspannung Ue sei gegeben, Ua sei gesucht. Wir berechnen das

Verhältnis , die sogenannte Übertragungsfunktion und können, wenn sie bekanntH(iω) = Ua

Uist, durch Multiplikation der Eingangsamplitude mit H die Ausgangsspannung Ua bestimmen.

H(iω) = Ua

Ue= ZC

ZC + ZR=

1iωC

R + 1ω

= 11 + iωRC

H(iω) = H ⋅ H = 1

1 + (ωRC)2

Diskussion:

Für kleine Frequenzen ωRC << 1 ist H = 1. Ausgangs- und Eingangssignal sind gleich groß

und in Phase. Für große Frequenzen ωRC >> 1 ist und . Das Ausgangs-H = 1ωRC

H = 1iωRC

signal eilt dem Eingangssignal um 90° nach und seine Amplitude nimmt mit zunehmender Fre-

quenz ab (Abb. 212 und 213).

Abb. 212 und 213: Amplitude und

Phase bei der Übertragung durch ei-

nen Tiefpaß.

Häufig wählt man eine logarithmische Darstellung und schreibt

(sprich: H in Dezibel)H dB = 20 logUa

Ue

Die Darstellung |H|dB gegen logω/ω0 nennt man das Bodediagramm. Für ωRC << 1 erhält

man

159

Page 160: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

H dB = 20 log 1 = 0

für ωRC >> 1

H dB = 20 log 1ωRC

= −20 log ωRC

Identifiziert man im Bode Diagramm mit der Ordinate (y) und log ωRC mit der Abszis-H dB

se (x), so erkennt man, daß sich als Asymptoten Geraden mit der Steigung 0, bzw. -20 ergeben

(Abb. 214). Die Übertragungsfunktion nimmt bei hohen Frequenzen mit 20 dB pro Dekade ab.

Manchmal sagt man auch, sie nimmt mit 6 dB pro Oktave ab und meint damit, sie nimmt um

6dB ab, wenn sich die Frequenz um einen Faktor 2 erhöht. Viele Halbleiterbauelemente wie

z.B. Operationsverstärker haben alleine durch die Zuleitungskapazität und den Zuleitungswi-

derstand im Ausgang hier einen Tiefpaß. Ein Tiefpaß nter Ordnung hat n Blindelemente und

einen um den Faktor n steileren Frequenzgang und eine entsprechend stärkere Phasenver-

schiebung.

Abb. 214: Übertragungsfunktion eines Tiefpasses

4. Schwingkreise

a) Der Parallelschwingkreis

α) Wechselstrombetrachtung

Abb. 215: Ein verlustbehafteter Parallelschwingkreis

besteht aus parallel geschalteten L, R und C. Zur An-

regung soll eine Stromquelle dienen.

Der Parallelschwingkreis ist eine Parallelschaltung von L und C (Abb. 215). Die Verluste von

L und C sind in R zusammengefaßt, wobei zu beachten ist, daß der verlustfreie Schwingkreis

einem entspricht. Um auf den Kreis Methoden für Gleichstromnetze anwenden zu kön-R → ∞nen, transformiert man ihn in einen Gleichstromkreis, der statt der Elemente RLC Widerstände

160

Page 161: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

von der Größe der zugehörigen Impedanzen enthält. Ströme und Spannungen werden zu

Gleichspannungen von der Größe der Amplituden (Abb. 216).

Abb. 216: Der Übergang zu Impedanzen hat den Sinn, Me-

thoden der Gleichstromnetze anwenden zu können.

Wie bei der Parallelschaltung von drei Widerständen ergibt sich für die Gesamtimpedanz Zges

1Zges

= 1ZR

+ 1ZC

+ 1ZL

= 1R

+ iωC + 1iωL

(2)I0

U0= 1

Zges= 1

R+ i ωC − 1

ωL

β) Der verlustfreie Schwingkreis

Abb. 219: Der verlustfreie Parallelschwingkreis

Für 1/R = 0 wird aus Gleichung (2)

U0 = I01

i ωC − 1ωL

= I0iωL

1 − ω2LC

Zur Abkürzung setzen wir . Dann wird ω02 = 1

LC

U0 = I0iωL

1 − (ω/ω0)2U0 = I0

ωL1 − (ω/ω0)2

Abb. 217 und 218: Amplitude

und Phase des verlustfreien Par-

allelschwingkreises in der Um-

gebung der Resonanz.

Für kleine ω ((ω/ω0)2 << 1) ist . U eilt vor. Da bei kleinen Frequenzen L wie einU0 ≈ I0iωL

Kurzschluß wirkt und daher der meiste Strom durch L fließt, bestimmt L das Verhalten der

161

Page 162: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Schaltung. Bei großen Frequenzen bestimmt umgekehrt C das Verhalten des Schwingkreises

. I eilt vor. U0 ≈ −I0i/ωBei ω = ω0 wird bei endlicher äußerer Stromamplitude U0 unendlich und wegen Ui =ZiIi auch

die Amplitude des Stroms in L und C unendlich. Anders ausgedrückt, ergibt sich bei ω → ω0

nur dann eine endliche Spannung, wenn von außen kein Strom zugeführt wird (I0 = 0). Man

sagt, der Schwingkreis ist in Resonanz. Weil dann

ω02 = 1

LC

ist und damit |ZL| = |ZC| . Da die Spannungen an L und C gleich ist, sind unter die-ω0L = 1ω0C

sen Bedingungen auch die Stromamplituden gleich: |IL| = |IC|. Da der Strom an C um π/2 vor-

eilt, an L um π/2 nacheilt, ist die Phasendifferenz zwischen den Strömen an den beiden Ele-

menten π. Dies kann man entweder dadurch beschreiben, daß man sagt, IC und IL überlagern

sich zu Null, so daß aus dem Verbindungsknoten zwischen C und L kein Strom herausfließt,

oder indem man sagt, der gesamte Strom, der aus C herausfließt, ist gleich dem, der in L hin-

einfließt. Die Ladung Q des Kondensators bewegt sich schwingend zwischen den beiden Kon-

densatorplatten hin und her. Von diesem Bild rührt der Name Schwingkreis her.

Abb 220 und 221: Die Ladung schwingt von

einer der Platten des Kondensators zur

anderen.

γ) Die freie Schwingung

Abb. 222: Der Schwingkreis mit

Einschwingverhalten.

Ohne äußere Energiezufuhr nimmt die Amplitude eines anfangs angestoßenen Schwingkreises

ab. Man kann daher diesen Fall nicht ohne weiteres mit der Methode der Wechselstromkreise

berechnen. Die Methode der Knotenpunktspotentiale mit den allgemeineren U/I Beziehungen

auf den in Abb. 222 angedeuteten Knoten angewandt ergibt

162

Page 163: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

UR

+ C•U +1

L ∫ Udt = I0eiωt

Diese Gleichung wird nach der Zeit differenziert und durch C dividiert

(3)••U + 1

RC

•U + 1

LCU = I0iω

Ceiωt

mit den Abkürzungen und wird hieraus1RC

= 2δ 1LC

= ω02

(4)••U +2δ

•U +ω0

2U = I0iωC

eiω

Die freie Schwingung ergibt sich für den Sonderfall daß keine äußere Stromquelle angeschlos-

sen ist. Die Differentialgleichung wird dann homogen.

••U +2δ

•U +ω0

2U = 0

Mit dem Ansatz erhält man die charakteristische GleichungU = eλt

•U= λU,

••U= λ2U

λ 2 + 2δλ + ω02 = 0

mit der Lösung . Für kleine Dämpfung erhält manλ = −δ ± δ2 − ω02 δ < ω0

2

. Mit der Abkürzung wird die Lösung .λ = −δ ± i ω02 − δ2 ω2 = ω0

2 − δ2 U = e−δt(Aeiωt + Be−iωt)

A und B können aus den Anfangsbedingungen bestimmt werden. In reeller Schreibweise ergibt

sich eine gedämpfte Schwingung der Form (s. Abb. 223)

U = U0e−δtcos (ωt + ϕ)

Abb. 223: Zeitlicher Verlauf der freien ge-

dämpften Schwingung.

163

Page 164: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

ist die Zeit, in der die Schwingungsamplitude auf 1/e des Anfangswertes abfällt. Die An-τ = 1δ

zahl der Schwingungen bis zu dieser Zeit ist

τT

= 2RCω0

2π= RCω0

π = Rπω0L

Hierbei wurde ausgenutzt, daß und ω ≈ ω0.ω0C = 1ω0L

δ) Die Güte des Schwingkreises

Die Dimensionslose Zahl , d.h. das Verhältnis von Ohmschen Widerstand zuQ = Rω0C = Rω0L

Blindwiderstand |Z| nennt man die Güte des Kondensators bzw. der Spule, Wenn R ein im Er-

satzschaltbild parallel geschalteter Widerstand ist. Bei Resonanz ist der Strom, den die Quelle

liefert, gegeben durch

IR = U0

R

Dieser leistet an R Arbeit. Man nennt ihn daher Wirkstrom. Der Strom, der zwischen L und C

hin und herpendelt, ist gegeben durch . Weil er in Blindelementen fließt, leistet er kei-IB = U0

ωLne Arbeit und heißt Blindstrom. Das Verhältnis von Blind- zu Wirkstrom ist

ω0/ωLω0/R

= RωC

= Q

also gleich der Güte des Schwingkreises. Ein Schwingkreis kann daher bei einer bestimmten

Frequenz wie ein Transformator einen stärkeren Strom liefern als man hineinsteckt. Beschreibt

man die Verluste durch einen zu L in Serie geschalteten Widerstand mit r, so ist für hohe Gü-

ten, d.h. r << ωL

Q = 1rω0C

= ω0Lr

ε) Die erzwungene Schwingung

Die Schaltung von Abb. 222 mit Wechselstromquelle führt zu einer inhomogenen Differential-

gleichung (Gleichung (3)). Der eingeschwungene Zustand wird durch die spezielle Lösung der

inhomogenen Gleichung beschrieben und stellt physikalisch eine erzwungene Schwingung dar.

Nach der Theorie der Differentialgleichungen löst man die inhomogene Gleichung mit dem

Ansatz

164

Page 165: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

U = U0eiωt

•U= iωU0eiωt,

••U= −ω2U0eiωt

wobei jetzt ω die vorgegebene Frequenz des äußeren Kreises, hier der Stromquelle, ist. In

Gleichung (3) eingesetzt erhält man

−ω2U0eiωt + iωRC

U0eiωt + 1LC

U0eiωt = I0iωC

eiωt

Indem man diese Gleichung durch eiωt dividiert und mit multipliziert, erhält manCiω

iωC + 1R

+ 1iωL

= I0

U0

die gleiche Formel, die wir oben aus den Impedanzen erhalten hatten (Gleichung (2)).

η) Die Resonanzkurve

Die Resonanzkurve stellt in Abhängigkeut von ω dar.U0

I0

I0

U= 1

R+ i ωC − 1

ωL

I0

U0

2

= 1R2

+ ωC − 1

ωL

2

= 1R2

1 + C2R2

ω2 ω2 − 1

LC

2

Berücksichtigt man, daß , so schreibt sich |I0/U0|2:RC = 1

2δ, ω02 = 1

LC

U0

I0= R

1 +

ω2−ω02

ω/RC

2

Dies ist eine glockenförmige Kurve, die bei kleinem ω mit ω ansteigt, bei großem ω mit 1/ω2

abfällt. Bei ω = ω0 hat sie ein Maximum . Bei Resonanz fließt kein Strom in die Par-U0

I0= R

allelschaltung von C und L. Der Kreis verhält sich nach außen so, als ob nur R angeschlossen

165

Page 166: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 224: Die Spannungsamplitude folgt in Abhängig-

keit von der Frequenz einer Resonanzkurve.

wäre. Vorsicht! Hier wurde die Resonanzkurve für U(ω) berechnet, für den Fall, daß der Kreis

von einer Stromquelle gespeist wird. Für andere Quellen oder andere elektrische Größen kann

das Maximum etwas verschoben sein.

Bei sehr kleinen Verlusten ist die gesamte Resonanzkurve nur in einem schmalen Bereich um

ω0 von Null verschieden. Daher kann man die Näherung machen:

∆ω = ω0 − ω << ω0

Dann ist ω02 − ω2 = (ω0 − ω)(ω0 + ω) ≈ ∆ω2ω

Die Resonanzkurve hat dann die Form

U0

I0

2

= R2

1 +

∆ωδ

2

F(x) = 1

1 + ( xxh )

2

Abb.225: Bei kleinen Verlusten ist die Resonanz-

kurve ein Lorentzprofil.

F(x) nennt man ein Lorentzprofil (Abb.225). Es ist symmetrisch zu x = 0, fällt in den Flügeln

mit 1/x2 ab und hat eine Halbwertsbreite xh. Die Halbwertsbreite der Resonanzkurve für kleine

Dämpfung ist δ. Messen der Halbwertsbreite ermöglicht die Bestimmung der Güte von L und

C, bei Spektrallinien die Bestimmung der Häufigkeit von Stößen, die zu einer Dämpfung

führen.

166

Page 167: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

ζ) Schwingkreis als Filter

Legt man statt einer Stromquelle eine Spannungsquelle an den Schwingkreis, so ist U0 vorge-

geben, I0 ergibt sich im verlustfreien Fall aus

I0 = 1 − (ω/ω0)2

ωLU0

Bei Resonanz überlagern sich wieder IC und IL zum Gesamtstrom Null, so daß trotz der außen

angelegten Spannung kein Strom fließt. Der Schwingkreis verhält sich wie eine Sperre für die-

se Frequenz. Er wird daher zum Herausfiltern einer bestimmten Frequenz benutzt. Man spricht

dann von einer Bandsperre.

Abb. 226: Der Parallelschwingkreis als Filter (Bandsperre)

b) Der LC - Transformator

Abb. 227: Die optimale Anpassung einer Quelle an den

Verbraucher liegt vor, wenn der Widerstand des Verbrau-

chers gleich dem Innenwiderstand der Quelle ist.

Eine Spannungsquelle gibt das Maximum an Leistung an einen Lastwiderstand RL, wenn die-

ser gleich dem Innenwiderstand der Quelle ist. Diese Aussage folgt aus einer einfachen Mini-

max Aufgabe mit RL als unabhängige Variable. Wir stellen uns einen Wechselstromgenerator

vor mit Innenwiderstand Ri, der auf einem Lastwiderstand r << Ri arbeiten soll. Als Anpas-

sungsglied ist ein Schwingkreis geeignet, dessen Bedämpfung durch den Lastwiderstand r er-

folgt. Wenn man L und C so wählen kann, daß das gesamte an den Sender angeschlossene

Netzwerk einen Widerstand Ri hat, sieht der Generator seine optimale Last und die gesamte

Leistung wird auf r übertragen, da L und C keine Leistung verbrauchen.

Die Gesamtimpedanz des Kreises ist (s. Abb. 228).

167

Page 168: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Abb. 228: Ein LC Glied kann einen nicht passenden

Widerstand auf den erforderlichen Arbeitswiderstand

transformieren, wobei die Verluste nur durch die Ver-

luste der Bauelemente des Transformationsgliedes ge-

geben sind.

1Z

= iωC + 1r + iωL

= iωC + r − iωLr2 + (ωL)2

Die komplexe Last muß zwei Bedingungen erfüllen: Der Realteil von Z muß Ri sein, der Ima-

ginärteil Null. Wir betrachten statt dessen die reziproken Werte der Last. Wenn der Imaginär-

teil des Reziproken Widerstandes verschwindet, verschwindet er auch für den Widerstand

selbst.

i. Re

1Z

= 1

Ri

1Ri

= rr2 + (ωL)2

rRi

= 1

1 +

ωLr

2

ωLr

2

= Rir − 1

ii. Im

1Z

= 0 iωC − iωL

r2 + (ωL)2= 0 ωC = ωL/r2

1 +

ωLr

2

Hier wird der vorher gewonnene Ausdruck für eingesetzt. Die Gleichung hat dann dieωLr

Form

ωCr =Rir − 1Rir

ωL und ωC lassen sich also aus gegebenen r und Ri berechnen.

c) Der Serienschwingkreis

Schaltet man L und C in Serie mit einer Spannungsquelle, so fließt durch beide Elemente der

gleiche Strom, die Spannungen sind aber um π phasenverschoben. Die Amplituden der Span-

nungen sind im allgemeinen ungleich. Bei Resonanz sind wie beim Parallelschwingkreis die

Blindwiderstände und mit ihnen die Spannungsamplituden gleich. Da die Spannungen unter-

einander eine Phasenverschiebung von π haben, überlagern sie sich zu Null. Obgleich also die

168

Page 169: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

äußere Spannung Null ist, liegt an L und C eine Spannung. Im realen Fall, d.h. unter Berück-

sichtigung von Verlusten, erzeugt eine kleine äußere Spannung eine große Spannung an L und

C. Formal ähnelt der Serienschwingkreis einem Spannungsteiler. Die Spannung beim Abgriff

ist allerdings gegenüber der außen angelegten Spannung erhöht.

Abb. 229: Der Serienschwingkreis

Entsprechend hat der Parallelschwingkreis formale Ähnlichkeit mit einem Stromteiler. Er führt

aber im Gegensatz zu diesem zu einer Stromerhöhung in einem der Zweige und nicht zu einer

Stromerniedrigung.

169

Page 170: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

KAPITEL H

Die Maxwellschen Gleichungen (Zusammenfassung)

1. Die Grundgleichungen

Die Maxwellschen Gleichungen geben die Quell- und Wirbelstärke des elektrischen und ma-

gnetischen Feldes an. Jede Gleichung kann in einer differentiellen und einer integralen Form

geschrieben werden. In differentieller Schreibweise heißen die Maxwellschen Gleichungen

rot E = −•B

div E =ρε0

rot B = µ0 j + ε0

•E

div B = 0

ρ ist die Ladungsdichte, j die Stromdichte und die Dichte des Verschiebungsstroms. Inε0

•E

kartesischen Koordinaten lassen sich die Differentialoperationen durch den Nabla Operator be-

schreiben , , . Um aus der differentiellen Form die inte-rot v = ∇ × v div v = ∇ • v grad ϕ = ∇ϕgrale Form abzuleiten, benötigt man den Gaußschen und den Stokeschen Integralsatz.

Gaußscher Integralsatz ∫div vdV= ∫ v • dA

Stokescher Integralsatz ∫rot v•dA = ∫ v • ds

Beim Gaußschen Satz steht rechts ein Flächenintegral, das sich auf die gesamte Oberfläche er-

streckt, über das auf der linken Seite der Gleichung integriert wird. Beim Stokeschen Satz steht

rechts ein Linienintegral, das sich über die Umrandung der Fläche erstreckt, über die auf der

linken Seite integriert wird. Durch Integration der differentiellen Form der Maxwell Gleichun-

gen über ein Volumen (bei div) oder eine Fläche (bei rot) erhält man:

∫rot E•dA = −∫•B •dA

∫ E•ds = −∫•B •dA

170

Harald Schüler
Page 171: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Dies ist das Induktionsgesetz von Faraday Uind = −•Φ

∫div EdV= 1ε0 ∫ ρdV

∫ E • dA = 1ε0 ∫ ρdV

Dies ist das Gaußsche Gesetz Φel = 1ε Q

∫rotB • dA = µ0∫ j + ε0

•E

• dA

∫ B • ds = µ0∫ j + ε0

•E

• dA

Dies ist das Amperesche Gesetz ∫ B • ds = µ0(I + Iversch.)

∫div BdV = 0

∫ B • dA = 0

2. Einfluß von Materie

Bei Anwesenheit von Materie muß in Q die gebundene Ladung und in j der gebundene Strom

mitberücksichtigt werden. Die Flächenladungsdichte durch gebundene Ladungen beschreibt

man durch den Polarisationsvektor P, die Stromdichte pro Länge durch den Magnetisierungs-

vektor M. Diese geben gleichzeitig das elektrische bzw. magnetische Dipolmoment pro Volu-

men an.

Eine andere Möglichkeit für die Berücksichtigung der Stoffeigenschaften besteht darin, in den

obigen Gleichungen µ0 durch µ0µr und ε0 durch ε0εr zu ersetzen und nur die freie Ladung bzw.

den freien Strom in die Maxwellgleichungen einzusetzen.

Es gilt D = εrε0E = ε0E + P

B = µrµ0H = µ0H + M

171

Page 172: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Die freien Ströme werden über das Ohmsche Gesetz durch die Feldstärke bestimmt. Im ein-

fachsten Fall, d.h. ohne Magnetfeld und für ein ruhendes, isotropes Medium gilt das Ohmsche

Gesetz in der Form (Kap. D, Gleichung (3))

j = σE

Bei Anwesenheit des Halleffektes mit der Hallfeldstärke und bewegter MaterieEH = − 1nej × B

mit einem induzierten Feld hat man das Ohmsche Gesetz in magnetohydrodynami-E = v × B

scher Näherung

j = σ E + v × B − 1

nej × B

3. Technische Hilfsbegriffe

Spannung U = ∫ E • ds

Kapazität Q = CU

Induktivität Φ = LI

4. Stetigkeitsbedingungen

Zur Berechnung der Felder benötigt man außer den Maxwellschen Gleichungen Bedingungen

für das Verhalten der Felder an Grenzflächen

Da Flächenladungen vorkommen können, sieht man, wie das Beispiel des Plattenkondensators

zeigt, daß sich E⊥ unstetig ändern kann, während B⊥ wegen div B = 0 stetig ist. Dafür kann

sich, wenn Oberflächenströme fließen, wegen B|| sprunghaft ändern (Abb. 230).∫ B • ds ≠ 0

Abb.230: Die Komponente von E, die senkrecht auf der Grenzflä-

che steht, und die von B, die parallel zur ihr steht, können sich un-

stetig ändern.

172

Page 173: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

5. Typen von partiellen Diff. Gleichungen, die sich aus den Maxwell

Gleichungen ergeben

a) Die Potentialgleichung

In der Elektrostatik kann man wegen ein Potential des elektrischen Feldes∫ E • ds = 0

definieren

ϕ = −r

r

∫ E • ds

Aus der Umkehrung wird mit E = −grad ϕ div E =ρε0

div grad ϕ = −ρε0

Dies ist die Poisson Gleichung. In kartesischen Koordinaten erhält man

∇ • (∇ϕ ) =

∂∂x∂∂y∂∂z

∂ϕ∂x∂ϕ∂y∂ϕ∂z

=

∂2ϕ∂x2

+∂2ϕ∂y2

+∂2ϕ∂z2

= −ρ(x, y, z)

ε0

Die Poisson Gleichung ist vom Typ einer Potentialgleichung

b) Wellengleichung

Im Vakuum ist j = 0 und damit

rot E = −•B

rot B = µ0ε0

•E = 1

2

•E

Aus diesen Gleichungen wird E eliminiert, indem die erste Gleichung nach der Zeit differen-

ziert wird und von der zweiten die Rotation gebildet wirdrot•E = −

••B

rot rot B = −••B

Diese Gleichung läßt sich mit der Bedingung div B = 0 umschreiben in

∇ 2B =••B

173

Page 174: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

Dieser Typ heißt Wellengleichung. Wir veranschaulichen dies an einer einfachen Geometrie

einer eindimensionalen Welle mit

, B =

B00

∇ =

00∂∂z

Dann ist

rot B =

ex 0 Bey 0 0ez

∂∂z 0

=

0∂B∂z

0

rot(rot B) =

ex 0 0ey 0 ∂B

∂t

ez∂∂z 0

=

−∂2

z2 B

00

Die eindimensionale Wellengleichung hat also die Form

∂2B∂z2

= 1c2

••B

Zur Lösung führt man die Transformation z = vt + ξ ein. f(ξ ) ist dann ein beliebiges Signal,

das in einem mit konstanter Geschwindigkeit v bewegten System seine Form nicht ändert.

Derartige Signale nennt man Wellen. Sie besitzen im ruhenden System die Abhängigkeit

f(z - vt) . Eine solche Funktion erfüllt die Wellengleichung, wie man durch Einsetzen erkennt.

Abb. 231: Die Wellengleichung wird von einer belie-

bigen Funktion gelöst, die die die Abhängigkeit

f(z - vt) besitzt. Dies ist ein Signal, das mit konstanter

Geschwindigkeit läuft und seine Form nicht ändert.

mit f(ξ) = f(z − vt) ξ = z − vt

es folgt ∂f∂z

=∂f∂ξ

∂ξ∂z

=∂f∂ξ

∂2f

∂z2=

∂2f

∂ξ 2

174

Page 175: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

es folgt ∂f∂t

=∂f∂ξ

∂ξ∂t

= −v∂f∂ξ

∂2f

∂ξ 2= v2 ∂2f

∂ξ 2

Einsetzen in die Wellengleichung führt zu

∂2f

∂ξ 2= v2

c2

∂2f

∂ξ 2

Die Differentialgleichung wird erfüllt, wenn v = c. Die Maxwellsche Theorie sagt also Wellen

voraus, die sich mit Lichtgeschwindigkeit ausbreiten. Für eine größenordnungsmäßige Ab-

schätzung hätte man und ersetzt, wobei T und L eine charakteristische∂∂z

durch 1L

∂∂t

durch 1T

Zeit und eine charakteristische Länge der Lösungsfunktion sind. Die Wellengleichung ergibt

dann

und damit . Man erwartet also ein Phänomen, das sich mitBL2

= 1c2

BT2

LT

= c

Lichtgeschwindigkeit ausbreitet.

c) Die Diffusionsgleichung

Man betrachtet eine leitfähige Materie, etwa Kupfer in einem zeitabhängigen Magnetfeld. Hall

Effekt und Verschiebungsstrom sollen vernachlässigbar sein. Dann gilt

rot E = −•B

rot B = µ0jj = σE

Man eliminiert aus den letzten beiden Gleichungen j, und erhält . Durch Bildungrot B = µ0σE

der Rotation von dieser Gleichung und Einsetzen der ersten Gleichung kann man E elimi-

nieren.

rot(rot B) = −µ0σ•B

Mit Hilfe der Vektoridentität und div B = 0 ergibt sich dierot rot B = −∇ 2B + grad div B

Diffusionsgleichung

∇ 2B = µ0σ•B

Im eindimensionalen Fall erhält man

175

Page 176: Grundlagen der Physik II Elektromagnetismus · c) Sätze von Thevenin und Norton 77 4. Berechnungsverfahren von linearen Netzwerken 79 a) Die Methode der Knotenpunktspotentiale 79

∂2

∂z2B = µ0σ

•B

Hiermit wird die Diffusion von Magnetfeldern durch leitfähige Materie beschrieben. Bei einer

Dimensionsbetrachtung ergibt sich

und damit BL2

= µ0σBT

TL2

= µ0σ

Mit dieser Formel läßt sich abschätzen, wie weit ein Magnetfeld in der Zeit T diffundiert. Bei

σ → ∞ wird L = 0. Materialien mit hoher Leitfähigkeit eignen sich zum Abschirmen von zeit-

lich veränderlichen Magnetfeldern. Ein Wechselfeld dringt nur insgesamt um

L ≈ 1µ0σ/T

= 1µ0σν

ein. Diesen Effekt nennt man Skineffekt.

Durchsetzt das Magnetfeld den Leiter, so ändert es sich nicht mehr, auch wenn sich der Leiter

bewegt. Man spricht von eingefrorenem Magnetfeld. Bei σ → 0 durchdringt es den Körper

wie es ein Vakuum durchdringen würde.

176