40
Hadron spectroscopy at Hadron spectroscopy at Belle Belle J J olanta olanta Brodzicka Brodzicka (Krakow) (Krakow) Hadron Workshop, Nagoya Hadron Workshop, Nagoya 6-7 December 2008 6-7 December 2008

Hadron spectroscopy at Belle

Embed Size (px)

DESCRIPTION

Hadron spectroscopy at Belle. J olanta Brodzicka (Krakow) Hadron Workshop, Nagoya 6-7 December 2008. Belle at KEKB. KEKB: a symmetric e + e - collider e + : 3.5 GeV  e - : 8.0 GeV √s= 10.58 GeV =  (4S) mass e + e -  (4S)  B B Operating since 1999 - PowerPoint PPT Presentation

Citation preview

Page 1: Hadron spectroscopy at Belle

Hadron spectroscopy at BelleHadron spectroscopy at Belle

JJolantaolanta Brodzicka Brodzicka (Krakow) (Krakow)Hadron Workshop, Nagoya Hadron Workshop, Nagoya

6-7 December 20086-7 December 2008

Page 2: Hadron spectroscopy at Belle

2

KEKB: asymmetric e+e- collider

e+: 3.5 GeV e-: 8.0 GeV

√s=10.58 GeV = (4S) mass

e+e- (4S) BB

Operating since 1999 Peak luminosity: 1.711034cm-2s-1

Integrated luminosity: 860 fb-1

750 fb-1 @ (4S) ~ 780 * 106 BB

~ 960 * 106 cc Beauty and Charm Factory

Belle at KEKB Belle at KEKB

Page 3: Hadron spectroscopy at Belle

3

History of spectroscopy at BelleHistory of spectroscopy at Belle

2002: 2002: ηηcc’’→→KsKKsKππ X(3872) X(3872) →J→J//ψπψπ++ππ--

D*D*00(2308)(2308)→→DDππ and D and D11’(2420)’(2420)→→DD**ππ properties of properties of D*D*s0s0(2317)(2317) and and DDs1s1(2460)(2460) Y(3940)Y(3940)→J/→J/ψψωω Z(3930)=Z(3930)=χχcc22’’→→DDDD X(3940)X(3940)→DD*→DD* ΞΞcc(2980) (2980) ΞΞcc(3077)(3077)→Λ→ΛccKKππ Y familyY family→→ψψ(1S,2S)(1S,2S)ππ++ππ-- DDsJsJ

++(2700) (2700) →D→D00KK++

X(4260)X(4260)→→DD*DD* ZZ++(4430)→(4430)→ψψ(2S)(2S)ππ++

ZZ++(4051) Z(4051) Z++(4281)(4281)→→χχc1c1ππ++

2008: Y2008: Ybb(?)(?) →→YYππ++ππ--

cccc-like XYZ states : exotics? I will focuse on -like XYZ states : exotics? I will focuse on them them

Z(3930Z(3930))

XX((38723872))

D*0

D*2

DDsJsJ(2700)(2700)

Ξc(2980)

Ξc(3077)

ZZ++(4430)(4430)

Y(3940) Y(3940)

Page 4: Hadron spectroscopy at Belle

4

• Quark Model by Gell-Manna and Zweiga (1964): (qq) mesons and (qqq) baryons = conventional states

• QCD based potential models → hadron masses, decays,... Observed cc multiplets agree with the models’ predictions

• States more complex than qq or qqq =exotics also predicted by the models

• cc spectrum „cleaner” than uu/dd/ss → cc-like exotics easier to identify

Conventional vs exotic statesConventional vs exotic states

q q

qqq

2M(D)

Page 5: Hadron spectroscopy at Belle

5

• Hybrids: cc + excited gluon (excited flux-tube)• Lattice QCD: lightest hybrids @ 4.2GeV • Exotic quantum numbers JPC = 0+-, 1-+, 2+-…• Γ(H→DD**) > Γ(H→DD(*) )• Large Γ(H→ ψππ, ψω,… )

• Tetraquarks: diquark-antidiquark [cq][cq]• Tightly bound diquarks (gluon exchange)• Decay: „coloured” quarks rearrange into „white” mesons → dissociation

• Molecules: M(cq)M(cq)• Meson and antimeson loosely bound (pion exchange) • Decay: dissociation into constituent mesons

How to identify exotic cc hadron?• JPC forbidden for conventional cc • Final states with non-zero electric charge and/or strangness: J/ψπ- =(cc)(ud) Ds

+D- =(cs)(cd) • Too small/large rates in some decay modes

Menu of cMenu of ccc-like exotics-like exotics

q cqc

c

c

g

qcq

c

π

D D(*)

Page 6: Hadron spectroscopy at Belle

6

Recently observed cRecently observed ccc-like states-like states

Z+(4051) Belle 4051±14+20-41 + i(82+21

-17+47

-22) JP π+χc1B decays

Z+(4248) Belle 4248+44-29

+180-135

+ i(177+54-39

+316-61)

JP π+χc1B decays

Page 7: Hadron spectroscopy at Belle

7

• B meson decaysB meson decays: :

BB→X→Xcccc KK (BF~10(BF~10-3-3))

• initial state radiationinitial state radiation (ISR) (ISR)

ee++ee--→→γγISRISRXXcccc →→γγISRISR ψππψππ

Good experimental environmentGood experimental environment to search for new resonances to search for new resonances

Production of Production of cccc in B Factoryin B Factory

B X=ηc χc ψ… W

K

b c u, d c

s u, d

• double double cccc production production

ee++ee--→J/→J/ψψXXcccc

• γγγγ collision collision

ee++ee--→→γγγγ→→XXcccc→D→DDD

e+ J/ψ

X e-

c

γγ* c c c

e+

e-

ππ ππ

ψψ

γγISRISR

γγ*

X e+ e+

e- e-

X D D

γ

γJJPCPC(X)=1(X)=1----

JJPCPC(X)=0(X)=0++++, 0, 0--++

J(X)=0, 2 J(X)=0, 2 C(X)=+1C(X)=+1

Page 8: Hadron spectroscopy at Belle

8

Observation of ZObservation of Z++(4430)(4430)→→ψψ’’ππ++ • Study of B→ψ’π+K using 657M BB• ψ’→e+e-, μ+μ-, J/ψπ+π-

• after • K* veto

PRL100, 142001 (2008)

M2 (

ψ’π

+)

M2(Kπ+)

K*(890)K2*(1430)

???

M(ψ’π+)

Z+(4430)N =121±30 (6.5σ)

Mbc ΔE

M=4433±4±2 MeV Γ=45

MeV

+18 +30–13 -13

Too low statistic to determine JP

First charged cc-like state! Must be exotic! Proposed interpretations:• [cu][cd] tetraquark; neutral partner in ψ’π0 expected• D*D1(2420) molecule; should decay to D*D*π

Page 9: Hadron spectroscopy at Belle

9

No significant Z+(4430) in Babar

• B→ψ’π+K studied using 413/fb• Mass spectra corrected for efficiency

hep-ex/0811.0564

Page 10: Hadron spectroscopy at Belle

10

• B→ψ’π+K amplitude: coherent sum of Breit-Wigner contributions• Maximum likelihood fit to Dalitz plot• Models: all known K*→Kπ+ resonances only

all known K*→Kπ+ resonances and Z→ψ’π+ favored by data

B→ψ’π+K Dalitz plot analysis

Significance: 6.4σ Fit CL: 36%

A B

C D

E

M2(ψ’π+)

M2(ψ

’π+)

M2(K-π+ )

A B C D EZ+(4430) confirmed

M2(ψ’π+)

A+C+E=K*veto

Page 11: Hadron spectroscopy at Belle

11

B0→χc1π+K- study. study. More Z’sMore Z’s

• Dalitz-plot analysis of B0→χc1π+K-

χc1 →J/ψγ with 657M BB

ΔE M(J/ψγ)

• B0→χc1π+K- amplitude: coherent sum

of Breit-Wigner contributions• Maximum likelihood fit performed• Models tried: known K*’s→Kπ only K*’s + one Z→χc1π+

K*’s + two Z states : favored by data

M2(χ

c1π

+)

M2(K-π+ )

K2*(1430) K*(1680)

K*(892) K0*(1430) K3*(1780)

???

PRD 78, 072004 (2008)

Page 12: Hadron spectroscopy at Belle

12

Z+1,2→χc1π+ exotic states

• Model with two Z’s significantly favored by data Model with two Z’s significantly favored by data • Spin of ZSpin of Z statesstates not determined: not determined: spin 0 and 1spin 0 and 1 givegive similarsimilar fit fit

qualitiesqualities

M(χc1π+) for 1<M2(K-π+)<1.75GeV

–hhhhhh –hhhhhh fit for null model

–hhhhhh –hhhhhh fit for double Z model

–hhhhhh –hhhhhh Z1 contribution

–hhhhhh –hhhhhh Z2 contribution

Non-zero charge suggests multiquark Non-zero charge suggests multiquark

iinterpretationnterpretation of Z of Z11 and Z and Z22

Page 13: Hadron spectroscopy at Belle

13

cccc-like example:-like example: X(3872) X(3872) • X(3872)→J/ψπ+π- observed in B+→X(3872)K+ by Belle • Confirmed by BaBar, CDF, D0

• mX=3871.2±0.5 MeV mmXX-(m-(mD*D*00+m+mDD00)=-0.6±0.6MeV)=-0.6±0.6MeV Γ<2.3MeV

• M(M(π+π-) suggests ) suggests X(3872)→J/ψ ρ (S- or P-wave) • Other decay modes: Other decay modes: J/ψγ, ψ(2S)γ, J/ψω, DD*, no X→DD

• JJPCPC= = 1++, 2-+ favored avored (from angular analysis by CDF,

M(M(π+π-),), decay modes)

PRL91, 262001 (2003)

M(π+π-)

M(J/ψπ+π-)

152M BB 117M BB

Page 14: Hadron spectroscopy at Belle

14

What is X(3872) ?What is X(3872) ?

• cccc? ? No obvious assignment No obvious assignment

• DD00DD**00 molecule? molecule? Non-trivial line shape Non-trivial line shape ΓΓ(X(X→→DDDD*)>*)>ΓΓ(X(X→→J/J/ψππψππ) ) Production in BProduction in B00 suppressed suppressed in regard to Bin regard to B++

• 4-quark? 4-quark? Xu [uc][uc] Xd [dc][dc] Different mass of X produced Different mass of X produced in in BB00 and B and B++

Finding charged X is critical Finding charged X is critical (no evidence so far) (no evidence so far)

Braaten et al. hep-ph/0710.5482

Maiani, Polosa et al. PRD 71, 014028 (2005)

PRD71, 031501 (2005)

M(J/ψπ-π0)

Page 15: Hadron spectroscopy at Belle

15

• Study of X(3872)→J/ψπ+π- in B+→XK+ and B0→XK0s

• Similar properties of X(3872) from B+ and B0 decays

X(3872)X(3872) in Bin B++ vsvs B B00 decays decayshep-ex/0809.1224

B+→XK+ Ns=125±14 (12σ)

657M BB

M(J/ψπ+π-)

B0→XK0

Ns=30±7 (6.5σ)

First observation!

M(J/ψπ+π-)

Page 16: Hadron spectroscopy at Belle

16

• X(3872)→D*0D0 in B+→D*0D0K

• New Belle M(X) measurement ruled out scenario of two states: X(3872)→J/ψππ and X(3875)→D*D

X(3872)X(3872)→→DD00DD**0 0 ( (??))

N=33±7 (4.9σ)

PR

D77, 011102(2008)

M(X)=3875.1+0.7-0.5 ±0.5MeV

Γ=3.0+1.9-1.4 ± 0.9 MeV

Maiani, Polosa et al.

hep-ph/0707.3354Xu [uc][uc]→ D0D0π0= X(3875)

Xd [dc][dc]→ J/Ψππ = X(3872)

hep-ex/0810.0358

M(X)=3872.6+0.5-0.4 ±0.4MeV

Γ=3.9+2.5-1.3

+0.8-0.3 MeV

B K D0D*0

605 fb-1

D*→Dγ

D*→D0π0 Preliminary

Flatte vs BW similar result: 8.8σ

Page 17: Hadron spectroscopy at Belle

17

• x-sections muchx-sections much larger than QCD predicted larger than QCD predicted

→→ ffactory of 0actory of 0++++ and 0 and 0--++ charmonia charmonia

• Search for XSearch for X→→DDD* and D* and DD*D* in*D* in ee++ee--→J/→J/ψψDD((**))D*D*

• Possible assignments: Possible assignments: ηηcc(3S) (3S) ηηcc(4S)(4S) (but (but X X masses ~100-150MeV above predictions for masses ~100-150MeV above predictions for ηηcc’s)’s)

ee→J/ee→J/ψψ DD*D**D*X(4160) 5.5X(4160) 5.5σσ

M(M(DD*D*)*D*)

ee→J/ee→J/ψψ DDD*D*X(3940) 6.0X(3940) 6.0σσ

M(M(DD*D)*D)

M =3942 ± 6 MeV =37 ± 12 MeV

+7–6

+26 –15

M=4156 ± 15 MeV =139 ± 21 MeV

+25–20

+111 – 61

CCXX=+1 so =+1 so X(4160)≠X(4160)≠ψψ(4160)(4160)

X(3940) and X(4160) inX(3940) and X(4160) in e e++ee--→→J/J/ψψXXcccc PRL100, 202001 (2008)

e+ J/ψ

X e-

c

γγ* c c c

Page 18: Hadron spectroscopy at Belle

18

M=4324 ± 24 MeV

=172 ± 33 MeV

• ISR gives access to JISR gives access to JPCPC=1=1---- states states• Hard photon emission suppressed, Hard photon emission suppressed,

‘ ‘compensated’ by high luminosity of B-compensated’ by high luminosity of B-factoryfactory

Y family through ISRY family through ISR PRL 95, 142001 (2005) for 232fb-1

M=4259 ± 8 MeV

=88 ± 23 MeV

+2–6

+6 –4

PRL 98, 212001 (2007) for 298fb-1

Y(43Y(43660)0)→→ψψ’’ππππ

Y(4260)Y(4260)→J/→J/ψππψππ

PRD74, 091104 (2006)PRL 96, 162003 (2006)for [email protected]

e+

e-

ππ ππ

ψψ

γγISRISR

γγ*

Y

Page 19: Hadron spectroscopy at Belle

19

1 1 - -- - Y Y→→ψππψππ states via ISR states via ISR • Y(4008), Y(4260), Y(4360), Y(4008), Y(4260), Y(4360),

Y(4660)Y(4660) • More More 11–– states states than empty slots than empty slots

in cin ccc spectrum spectrum Unusual properties:Unusual properties:• Large widths for Large widths for ψππψππ

transition: unlike for transition: unlike for conventional cconventional ccc

• AAbove Dbove DDD threshold threshold but don’t match the peaks but don’t match the peaks in Din D(*)(*)DD(*)(*) x-sections x-sections

Other options: Other options: • DDDD11 or D or D**DD00 molecules molecules• cqcqcqcq tetraquarks tetraquarks• ccg hybridccg hybrid:: DDDD11 decay decay mode should mode should

dominatedominate• Coupled-channel effects Coupled-channel effects • Charm-meson threshold effectsCharm-meson threshold effects

ee→J/

ee→’

Y(4260)Y(4260)Y(4008)Y(4008)

Y(4360) Y(4360) Y(4660)Y(4660)

Page 20: Hadron spectroscopy at Belle

20

Exclusive x-sections with ISRExclusive x-sections with ISR

• Difficult interpretation in Difficult interpretation in terms terms of resonances of resonances ((model model dependent coupled-channel dependent coupled-channel and threshold effects…)and threshold effects…)

PRL 98, 092001 (2007) for 548fb-1

PRD 77, 011103 (2008) for 673fb-1

PRL 100, 062001 (2008) for 673fb-1

D*D*

DD*

(4

040)

(4

160)

Y(4

008)

(4

415)

Y(4

660)

Y(4

260)

Y(4

350)

DD

DDπ

Λc+Λc

?

PRD77,011103(2008)

PRL100,062001(2008)

NEW

PRL98, 092001 (2007)

arXiv:0807.4458

Page 21: Hadron spectroscopy at Belle

21

cccc (-like) state of art (-like) state of art • We We have observedhave observed a few new state a few new statess• Most of them don’t match Most of them don’t match cccc spectrum spectrum

ηc(4S)

Y(3360), Y(3660)

Page 22: Hadron spectroscopy at Belle

22

bbbb analoganalog of Y(4260) of Y(4260)??

• If bIf bbb follows follows the the cccc pattern: pattern: YYbb→Y(nS)→Y(nS)ππππ with large partial with large partial widthwidth

• Study of Study of Y(Y(mSmS)→Y)→Y(nS)(nS)ππ++ππ-- with with datadata at Yat Y(5S)(5S)~~1010..887G7GeVeV ((21.721.7/fb)/fb)

• Energy scan around Y(5S) Energy scan around Y(5S) ((7.97.9//fbfb))

PRL100, 112001(2008)

•Large Large ΓΓ((Y(5S)Y(5S)→Y(nS)→Y(nS)ππππ))!! F For other bor other bbb states states: : ΓΓ~~O(keV)O(keV) •Is it YIs it Ybb? Mixture of Y(5S) and ? Mixture of Y(5S) and YYbb??

Observed shape disagree Observed shape disagree

with Y(5S) hypothesis (fit).with Y(5S) hypothesis (fit).

Yb at 10.89GeV?Yb at 10.89GeV?

Page 23: Hadron spectroscopy at Belle

23

SummarySummary

• New charmonium spectroscopy @4GeVNew charmonium spectroscopy @4GeV • Candidates Candidates forfor exotic exotic hadronshadrons observed: observed:

ZZ++(4430)(4430)→ψ’π+ Z++(4(4050050)), Z, Z++(4(4248248)) →χc1π+

• Many other states await understanding Many other states await understanding

X(3872) Y(3940) Y-family…X(3872) Y(3940) Y-family…• YYbb? ? New spectroscopy also in New spectroscopy also in b quark sectors? b quark sectors? • Theory input needed (models to verify, Theory input needed (models to verify,

threshold effects, coupled channel effects)threshold effects, coupled channel effects)

Page 24: Hadron spectroscopy at Belle

BackupBackup

Page 25: Hadron spectroscopy at Belle

25

J. Brodzicka @ PIC08J. Brodzicka @ PIC08

Page 26: Hadron spectroscopy at Belle

26

J. Brodzicka @ PIC08J. Brodzicka @ PIC08

Page 27: Hadron spectroscopy at Belle

27

• Belle: B+→D0D0π0K (447M BB) BaBar: B+→D*0D0K (383MBB)

• Mass ~4σ above M(X) for X→J/ψππ

• Is this X(3872) or are there two states X(3872) and X(3875)?

• More precise measurement of mass/width/line shape needed

N=24±6 (6.4σ)

X(3872)X(3872)→→DD00DD**0 0 ( (??))

N=33±7 (4.9σ)

PR

D77, 011102(2008)

M(X)=3875.1+0.7-0.5 ±0.5MeV

Γ=3.0+1.9-1.4 ± 0.9 MeV

Maiani, Polosa et al.

hep-ph/0707.3354

Xu [uc][uc]→ D0D0π0 = X(3875)

Xd [dc][dc]→ J/Ψπ+π- = X(3872)

PR

L97, 162002(2006)

M(X)=3875.4± 0.7+0.4-1.7 ±0.9MeV

Page 28: Hadron spectroscopy at Belle

28

• Study of BStudy of B→ → KJ/KJ/ψωψω ω→πω→π++ππ--ππ00 • MMbcbc , , ΔΔE and M(E and M(ππ++ππ--ππ00) selection) selection

mass/width mass/width discrepancy discrepancy

needs further needs further study study

• Y(3940) above DY(3940) above DDD threshold but has large c threshold but has large ccc transition transition• Candidate for cCandidate for ccc-gluon hybrid?-gluon hybrid? (but hybrids predicted >4GeV)(but hybrids predicted >4GeV)• Re-scattering DRe-scattering DDD**→J/→J/ψωψω??

BF(BF(BB→→KKYY)*BF(Y→J/)*BF(Y→J/ψωψω)=)=Belle Belle (7.1±1.3±3.1)*10(7.1±1.3±3.1)*10-5 -5

BabarBabar (4.9±1.0±0.5)*10 (4.9±1.0±0.5)*10-5-5

Y(3940)Y(3940)→J/→J/ψωψω Belle PRL 94, 182002 (2005)

MM22((ωωK)K)

MM22(( ωω

J/J/ψψ

)) K*’sK*’s

Y(3940) Y(3940)

M(M(ωωJ/J/ψψ)) M(M(ωωJ/J/ψψ))

Babar hep-ex/0711.2047 submitted to PRL

Page 29: Hadron spectroscopy at Belle

29

• Reconstruct J/Reconstruct J/ψψ and one D and one D((**)),, aassociatedssociated DD((**)) seen as peak in seen as peak in MMrecoilrecoil(J/(J/ψψDD((**))))

• Possible assignments: Possible assignments: ηηcc(3S) (3S) ηηcc(4S)(4S)

(but (but X X masses ~100-150MeV above predictions for masses ~100-150MeV above predictions for ηηcc’s)’s)

X(3940)X(3940)→D→DDD** and X(4160) and X(4160)→D*→D*DD**

ee→J/ee→J/ψψ DD**D*D*X(4160) 5.5X(4160) 5.5σσ

M(D*M(D*DD*)*)

ee→J/ee→J/ψψ DDD*D*X(3940) 6.0X(3940) 6.0σσ

M(D*M(D*DD))

M =3942 ± 6 MeV =37 ± 12 MeV

+7–6

+26 –15

M=4156 ± 15 MeV =139 ± 21 MeV

+25–20

+111 – 61

Mrec(J/ψD) DD D*D* D*D*ππ DD D*D* Mrec(J/ψD*)

CCXX=+1 so =+1 so X(4160)≠X(4160)≠ψψ(4160)(4160)

PRL100, 202001 (2008)

Page 30: Hadron spectroscopy at Belle

30

YY→J/→J/ψππψππ via ISR via ISR • Study of eStudy of e++ee--→J/→J/ψπψπ++ππ- - γγISRISR (548 fb(548 fb-1-1))

• J/J/ψψ→ee, →ee, μμμμ + + ππππ; no extra tracks; no extra tracks• ISR photon is not detected ISR photon is not detected • Missing mass used to identify processMissing mass used to identify process

• Y(4260)Y(4260) confirmed confirmed • Y(4008)Y(4008) resonance? Re-scattering from DD*? Coupled-channel resonance? Re-scattering from DD*? Coupled-channel

effect? effect?

PRL 99, 182004 (2007)

Y(4260)Y(4260)Y(4008)Y(4008)

Page 31: Hadron spectroscopy at Belle

31

YY→→ψψ’’ππππ via ISR via ISR

• Study of eStudy of e++ee--→→ψψ’’ππ++ππ- - γγISRISR (673 fb(673 fb-1-1))

• ψψ’’→J/→J/ψππψππ,, J/ J/ψψ→ee, →ee, μμμμ + + ππππ• no additional tracks allowedno additional tracks allowed

• γγISRISR not detected not detected• Two significant peaks in M(Two significant peaks in M(ψψ’’ππππ)) : :

one close to Babar’s Y(4360) but narrowerone close to Babar’s Y(4360) but narrower• M(M(ψψ’’ππππ)) fitted with two coherent Breit-Wignersfitted with two coherent Breit-Wigners

PRL 99, 142002 (2007)

Y(4360)Y(4360)

Y(4660)Y(4660)

Page 32: Hadron spectroscopy at Belle

32

ψ’π+π-J/ψπ+π-

x-sections for x-sections for ee++ee--→→ψππψππ • ISR allows us to measure hadronic x-sections in wide energy ISR allows us to measure hadronic x-sections in wide energy

range: model independent measurementrange: model independent measurement• M(M(ψππψππ)): background subtracted, corrected for efficiency and : background subtracted, corrected for efficiency and

luminosity → luminosity → Cross-section for Cross-section for ee++ee--→→ψπψπ++ππ- -

Page 33: Hadron spectroscopy at Belle
Page 34: Hadron spectroscopy at Belle

34

ICHEP2008 Galina Pakhlova, ITEP

X(3872)→J/ψπ+π–

BELLE-CONF-0849

Mass(Kπ)

K*0→Kπ

non-resonant Kπ

X(3872) sideband

first observation

B0 →X(3872)K+π–

Br(B0 →X(K+π–)non_res) Br(X→J/ψπ+π–) = (8.1±2.0+1.1–1.4)10–6

dominates ! unlike B→K”cc”

Br(B0 →XK*0)Br(X→J/ψπ+π–) < 3.4x10–6 90% CLBr(B0 →X(K+π–)non res) Br(B0 →XK0

s)~1

Page 35: Hadron spectroscopy at Belle

35

ICHEP2008 Galina Pakhlova, ITEP

K = K, K0s, K*(892)

B→J/γK & B→(2S)γK

X(3872)→J/γ

B± →XK±

B0 →XK0s

B0 →XK*0B± →XK*±

3.6σconfirmation

B± →XK*± B0 →XK*0

B± →XK±

B0 →XK0s

X(3872)→(2S)γ

NEW

evidence

3.5σ

Br(B±→XK±)Br(X→J/γ) = (2.8±0.8±0.2)10–6

Br(B±→XK±)Br(X→(2S)γ) = (9.9±2.9±0.6)10–6

Br(X→(2S)γ) / Br(X→J/γ) = 3.5 ± 1.4Br(X→(2S)γ) / Br(X→J/π+π–) = 1.1 ± 0.4

424fb–1

Relatively large Br(X→(2S)γ) is inconsistent with a pure D0D*0 molecular interpretation for X(3872)Favors cc - D0D*0 mixing models─ ─

HQ session: Arafat G.Mokhtar

Page 36: Hadron spectroscopy at Belle

36

X(2175) strange X(2175) strange analoganalog of of Y(4260)?Y(4260)?

• X(2175)→ φ f0(980), φη (confirmed by BESII and Belle)

PRD74, 091103 (2006PRD74, 091103 (2006) ) hep-ex/0808.0006hep-ex/0808.0006

Page 37: Hadron spectroscopy at Belle

37

Hadronic x-sectionsHadronic x-sections • From CLEO: scan at 3.97-4.26GeV in 12 pointsFrom CLEO: scan at 3.97-4.26GeV in 12 points• Total hadronic x-section above DTotal hadronic x-section above DDD from BES from BES• Belle: sum of all measured exclusive contributions Belle: sum of all measured exclusive contributions

(3

770)

Durham Data Base

Y(4

008)

(4

040)

(4

160)

Y(4

260)

Y(4

350)

(4

415)

Y(4

660)

Page 38: Hadron spectroscopy at Belle

38

Is X(3872) a cIs X(3872) a ccc state ? state ?

Page 39: Hadron spectroscopy at Belle

39

Yb counterpart ?Yb counterpart ?

• M(M(ππππ) and cos) and cosθθhel hel studiedstudied

Brown-Cahn (CLEO) model Brown-Cahn (CLEO) model (grey) (grey)

generic phase space (open)generic phase space (open)

J. Brodzicka @ PIC08J. Brodzicka @ PIC08

Process Yield Process Yield σσ(pb) (pb) BF(%) BF(%) ГГ(MeV) (MeV)

““Y(5S)”→Y(1S)Y(5S)”→Y(1S)ππππ 325 325±20 1.6±20 1.6±0.1±0.1 0.53±0.03±0.05 ±0.1±0.1 0.53±0.03±0.05 0.590.59±0.04±0.09±0.04±0.09““Y(5S)”→Y(2S)Y(5S)”→Y(2S)ππππ 186±15 2.3±0.2±0.3 0.78±0.06±0.11 186±15 2.3±0.2±0.3 0.78±0.06±0.11 0.850.85±0.07±0.16 ±0.07±0.16 ““Y(5S)”→Y(3S)Y(5S)”→Y(3S)ππππ 10±4 1.4±0.5±0.2 0.48±0.18±0.07 10±4 1.4±0.5±0.2 0.48±0.18±0.07 0.520.52±0.20±0.10 ±0.20±0.10

Page 40: Hadron spectroscopy at Belle

40

How to identify B meson signalHow to identify B meson signal

• Advantage of e+e-→(4S) → BB kinematics: m(4S)~mB+mB no accompanying particles

→ EB=Ebeam=√s/2 in cms • kinematical variables used in B-Factories Mbc= √E2

beam- p2B

beam-constrained mass

(signal at mB~5.28GeV)

ΔE=EB - Ebeam

cms energy difference

(signal peaks at 0)

• Resolution improvement Resolution improvement

((Ebeam is precisely known)is precisely known)

• Background separationBackground separation

Mbc ΔE

Mbc

ΔE

Example: B0→J/ψ KS