19
CMS/CERN. Nov, 2001 HCAL TriDAS 1 HCAL TPG and Readout CMS HCAL Readout Status CERN Tullio Grassi, Drew Baden University of Maryland Jim Rohlf Boston University

HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 1

HCAL TPG and Readout

CMS HCAL Readout StatusCERN

Tullio Grassi, Drew BadenUniversity of Maryland

Jim RohlfBoston University

Page 2: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 2

CMS TriDAS Architecture

• Data from CMS FE to T/DAQ Readout Crates

• Level 1 “primitives”– Crossing determined– Summing– Tx to Level 1 Trigger– Data is pipelined waiting

decision

• Level 1 accepts cause– Tx raw data to

concentrators– Buffered and wait for

DAQ readout

• System communication via separate path (TTC)– Clock, resets, errors, L1

accepts…

Event BuilderEvent

Manager

Level 1Trigger

Detector Front End

OnlineControls

Computing Services

ReadoutCrates

Level 2/3 FilterUnits

Page 3: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 3

HCAL Contribution to T/DAQ

• Includes:– Receiver cards ( including fiber input receivers and deserializers)– Cables to Level 1 Trigger system– Concentrators– VME crate CPU module– VME crates and racks

• Everything between but not including:– Fibers from QIE FEs– DAQ cables

Level 1Trigger

HCAL Data QIE Fibers Level 2 and DAQ

CMSHCAL

Trigger/DAQFront End Readout Crate- Level 1 Buffer- Level 2 Concentrator- Crate CPU

Page 4: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 4

HCAL FE/DAQ Overview

ShieldWall

CPUDAQ

RUI

HPD

FE MODULE

DAQ DATASLINK64 [1 Gbit/s]

≤ 18 HTRs perReadout Crate

FRONT-ENDRBXReadout Box (On detector)

READ-OUT Crate(in UXA)

Trigger Primitives

Fibers at 1.6 Gb/s3 QIE-channels per fiber

QIE

QIE

QIE

QIE

QIE

QIE

CC

A

GOL

DCC

TTC

GOL

CC

A

HTR

HTR

HTR

CALREGIONALTRIGGER

32 bits@ 40 MHz

16 bits@ 80 MHz

CC

A

Page 5: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 5

Readout Crate Components

• “BIT3” board – Commercial VME/PCI Interface to CPU– Slow monitoring

• FanOut board– FanOut of TTC stream– FanOut of RX_CK & RX_BC0

• HTR (HCAL Trigger and Readout) board– FE-Fiber input– TPs output (SLBs) to CRT– DAQ/TP Data output to DCC– Spy output

• DCC (Data Concentrator Card) board– Input from HTRs– Output to DAQ– Spy output

DCC

20 m CopperLinks 1 Gb/sDAQ

Calorimeter Regional Trigger

BIT3

Gbit Ethernet @ 1.6 Gb/s

FanOut

HTR

Front End Electronics

HTR

DCC

HTR

HTR ...

TTC fiber

Page 6: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 6

HCAL TRIGGER and READOUT Card

• I/O on front panel: – Inputs: Raw data:

• 16 digital serial fibers from QIE, 3 HCAL channels per fiber = 48 HCAL channels – Inputs: Timing (clock, orbit marker, etc.)

• LVDS– Outputs: DAQ data output to DCC

• Two connector running LVDS

• TPG (Trigger Primitive Generator, HCAL Tower info to L1) via P2/P3– Via shielded twisted pair/Vitesse– Use aux card to hold Tx daughterboards

• FPGA logic implements:– Level 1 Path:

• Trigger primitive preparation• Transmission to Level 1

– Level 2/DAQ Path:• Buffering for Level 1 Decision• No filtering or crossing determination necessary• Transmission to DCC for Level 2/DAQ readout

Page 7: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 7

HTR – “Dense” scheme

P1

DeSDeSDeS

DeS

DeS

DeS

DeS DeS

OPTICALRx

(8 LC)

P2LVDS Tx

LVDS Tx

P3

SLB -PMC

SLB -PMC

SLB -PMC

SLB -PMC

SLB -PMC

SLB -PMC

Trig

ger o

utp

ut

48 Trig

ger T

ow

ers

9U Board

DeSDeSDeS

FPGAXilinx

Vertex-2

DeS

DeS

DeS

DeS DeS

8 FE fibers24 QIE-ch’s

to DCC

OPTICALRx

(8 LC)

8 FE fibers24 QIE-ch’s

to DCC

FPGAXilinx

Vertex-2

Throughput: 17 Gb/sLatency: + 2 TCK

Page 8: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 8

“Dense” HTR

• Strong reasons to push to dense scheme– Money

• Fewer boards!– Programmable logic vs. hardware

• Avoid hardware MUXs• Maintain synchronicity

– Single FPGA per 8 channels• Both L1/TPG and L1A/DCC processing• Xilinx Vertex-2 PRO will have deserializer chips built in!

– Saves $500/board– Many fewer connections– ~20 DeS->FPGA connections replaced by 1 1.6 GHz line– Challenges:

» Layout of 1.6 GHz signals» Schedule implications for final production may have to slip ~6 months to wait for Vertex-2 PRO

• What do we give up?– Each board much more epensive– More difficult layout– Need transition board to handle TPG output

• So does ECAL – common solution will be used– Need 2 DCC/crate (but half the number of crates!)

Page 9: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 9

Changes from HTR Demo to Final

• Front-end input– From 800MHz HP G-Links to 1600MHz TI Gigabit ethernet

• Timing– TTC daughterboard to TTC ASIC

• Core logic– Altera to Xilinx

• Trigger output– Moved to transition board

• Form factor– 6U to 9U

• More understanding in general– Tower mapping, TPG sums, etc.

Page 10: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 10

6U HTR

Demonstrator

Demonstrator Status

• Demonstrator– 6U HTR, Front-end emulator

• Data, LHC structure, CLOCK• 800 Mbps HP G-Links works like a champ• Dual LCs

– This system is working. FEE sends clock to HTR, bypasses TTC

• Will be used for HCAL FNAL source calibration studies

• Backup boards for ’02 testbeam– Decision taken 3/02 on this (more…)

– DCC full 9U implementation• FEE ⇒ HTR ⇒ DCC ⇒ S-Link ⇒ CPU working

– Will NOT demonstrate HTR firmware functionality as planned

• Move to 1.6 Gbps costs engineering time• Firmware under development now

6U FEE

Page 11: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 11

Current Status HTR

• Pre-prototype HTR board– 9U board, being worked on “as we

speak”– Will have only 1 FPGA with full

complement of associated parts• Xilinx XCV1000E

– 400kbits BLOCK RAM– 900 pins, 660 user– 1.8Volts

• Stratos dual LC receivers– Rated to 1.6Gbaud– 850 or 1300 nm– 3.3Volts

• Deserializers– TI TLK2501 TRANSCEIVER– 8B/10B decoding– 2.5Volts

– Internal use only

8 deSerializersDual LC (Stratos) Xilinx XCV1000E 6 SLB daughterboards

Page 12: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 12

HTR Issues

• Opitcal link– Happy with the dual LC’s – work well, available. No longer an issue– Front-END clock issues will be important for us.– O-to-E to deserializer work continuing

• Need to have it understood soon…looks pretty good but not yet complete

– Tracker Link? We will continue R&D until a decision…but we do not have much time left.

• Xilinx Vertex-II PRO– Internal deserializer. Very attractive advantages, integration and cost issues– Current schedule: Chips availble Q1 2002….we shall see– Current plan: we will stick with discrete components but will keep an eye on Xilinx PROs

• Testbeam 2002– Current prototype will need another iteration.– Next version will be used in Testbeam 2002. – Schedule calls for next iteration in Feb.

• Tight schedule, but we think it’ll work out ok.

• Energy filters still undefined– No impact on the schedule – we are waiting….

Page 13: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 13

Dat

a fr

om 1

8 H

TR c

ards

6 P

C-M

IP m

ezza

nine

car

ds-3

LV

DS

Rx

per c

ard

DAQ

PMC Logic BoardBuffers 1000 Events

PCI Interfaces

P2

P0

P1

DATA CONCENTRATOR CARD

Motherboard/daughterboard design:– Build motherboard to accommodate

• PCI interfaces (to PMC and PC-MIP)• VME interface

– PC-MIP cards for data input• 3 LVDS inputs per card• 6 cards per DCC (= 18 inputs)• Engineering R&D courtesy of D∅

– 1 PMC card for• Buffering• Output to TPG/DCC and DAQ• Fast busy, overflow, etc.• Giant Xilinx Vertex-2 1000 (XC2V1000)

– Transmission to L2/DAQ via S-LinkTPGDCC

TTCrx

“Fast”(Busy, etc)

Page 14: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 14

Current Status DCC Motherboard

• Motherboard finished– 5 in hand for CMS.

• Production to start Q1 ’02– Piggyback on DZero order

• No real issues left

Page 15: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 15

Current Status DCC Logic Board and LRBs

• Logic board– New version arrived, being assembled.

• Parts for 3 available

– Testing to start next week.• Working on event builder to send stuff to DAQ

– Will have 2 S-Link connectors. • Raw data and TPG outputs• This prototype has only 1 now

– Estimate for production: ~Fall 02– Issues:

• DCC LB is daughterboard, has 2 granddaughter boards – Next will not have granddaughter boards, will be integrated

• Input bandwidth measurements

• LRBs finished– Some software issues…

Page 16: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 16

• Fanout of TTC info:– Both TTC channels fanout to each HTR and DCC– Separate fanout of clock/BC0 for TPG synchronization

• “daSilva” scheme

• Single width VME module

HCAL TIMING FANOUT Module

Page 17: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 17

Current Project Timeline

2001 2002 20032000

Prototype

New I/OsSimple Algorithms

Pre-Prod

Corner cases, HF heavy ions

Production

Test bench

Slice Test I

FNAL source calib.

Cern Test

Beam

2004

Slice Test II

Pre-prod too short: not usefulTest bench before production ?Slice Test I with pre-production ?Vertex-2 PRO?

DemonstratorRequirements

ResourcesLinks

6U board

STILL SOME UNCERTAINTIES…

Page 18: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 18

Manpower

• All Engineering/technical identified and on board.

Drew BadenPhysicist

University of MarylandLevel 3 Manager

Drew BadenPhysicist

University of MarylandHTR Task

Jim RohlfPhysicist

Boston UniversityDCC Task

Mark AdamsPhysicist

Univ. of Ill, ChicagoHRC Task

Weiming QianEngineer

Univ. of Ill, ChicagoFull-time

Eric HazenSenior Engineer

BU20%

Shouxiang WuSenior Engineer

BU50%

Chris TullyPhysicist

Princeton University

Sarah EnoPhysicist

UMD

Suichi KunoriPhysicist

UMD

Salavat Abdoulinne

UMDPost-Doc

Silvia Arcelli

UMD 30%Post-Doc

Rob BardSenior Engineer

UMD50%

John GigantiSenior Engineer

UMDPart-time

Hans BredenEngineer

UMD

Rich BaumEngineer

UMD

Jack TouartEngineer

UMD

Tullio GrassiEngineer/Integration

UMD

Hardware Simulation

Gueorgui Antchev Senior Engineer

BU50%

Page 19: HCAL TPG and Readout - UMD Physics · 2003. 6. 2. · HCAL FE/DAQ Overview Shield Wall C P U DAQ RUI HPD FE MODULE DAQ DATA SLINK64 [1 Gbit/s] ≤ 18 HTRs per Readout Crate FRONT-END

CMS/CERN. Nov, 2001 HCAL TriDAS 19

Project Status Summary• HTR (Maryland):

– 6U Demonstrator built • 800 Mbps G-Links works fine• Integration with FEE and DCC

complete

– Tower mapping well in hand• Rohlf and Tully

– 9U pre-Prototype underway– 9U Prototype layout underway

• Plan to have this board on the test bench by Jan ’02

• “HRC”– Now the TTC fanout– First board being assembled

• DCC (BU)– DCC 9U motherboard built and

tested ≡ finished• PCI meets 33MHz spec• Card is done!

– Link Receiver Cards built and tested

• Done– PMC logic board

• First version complete• FPGA and etc. underway

• Crate CPU issues– Rohlf to lead– Tully is playing with BIT3 and

DELL 3U rack mounted dual CPU