68
Heavy Fermions: a DMFT Perspective G. Kotliar Work with Kristjan Haule and Jihoon Shim at Rutgers University. Supported by the National Science Foundation. July 27 th 2008, Ohio State University

Heavy Fermions: a DMFT Perspective G. Kotliar

  • Upload
    tarmon

  • View
    49

  • Download
    0

Embed Size (px)

DESCRIPTION

Heavy Fermions: a DMFT Perspective G. Kotliar. Work with Kristjan Haule and Jihoon Shim at Rutgers University. Supported by the National Science Foundation. . July 27 th 2008, Ohio State University . - PowerPoint PPT Presentation

Citation preview

Page 1: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Heavy Fermions: a DMFT PerspectiveG. Kotliar

Work with Kristjan Haule and Jihoon Shim at Rutgers University. Supported by the National Science Foundation.

July 27th 2008, Ohio State University

Page 2: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

DMFT: trick to sum an infinite diagrams Lattice Model, i, j,k,l site indices

= [ , ] [ 0, 0, ]DMFT Gii ii Gij ij i j

10[ , ] [ ] [ ] [ ]G TrLn G Tr G G

[ ] Sum 2PI graphs with G lines andU G vertices

[ , ]G UG

1 1

0( )G G

1 10( [ ])ii ii iiG G G

DMFT sums an infinite number of graphs. One can provide a on perturbative definition for the sum, useful tricks for carrying with high precision, a simple picture in terms of impurity models

Page 3: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

But how accurate is it ?

Ulrich Schneider’s talk

But…..one band model, relatively high temperatures, how else canwe test (and therefore improve ) the method ?A different (tried and true) approach, compare against experiment in a wide set of materials, explore chemical trends.

Page 4: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

How do we know that the electrons are heavy ?

Heavy Fermions: intermetallics containing 4f elements Cerium, and 5f elements Uranium. Broad spd bands + atomic f open shells.

Page 5: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Heavy Fermion Metals

100

200

300

100 200T(K)

CeAl3

UBe13

-1 (e

mu/

mol

)-1

00

Page 6: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

A Very Selected Class of HF

Page 7: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

, ,

,

[ ] [ ]( )

[ ] [ ]spd sps spd f

f spd ff

H k H kt k

H k H kæ ö÷ç ÷ç ÷ç ÷çè ø

®

Determine energy and and self consistently from ex-tremizing a functional Chitra and Kotliar (2001) . Savrasov

and Kotliar (2001) Full self consistent implementation

12

1( , )[ ] ( )

G k ii H k i

LDA+DMFT. V. Anisimov, A. Poteryaev, M. Korotin, A. Anokhin and G. Kotliar, J. Phys. Cond. Mat. 35, 7359 (1997).

0 00 ( )ff w

æ ö÷ç ÷S =ç ÷ç ÷ç Sè ø

,[ ] [ , ]dft lda dmf loct G Ur r+G ¾¾®G

Treat the local correlations of the f shell using DMFT. Treat thenon local correlations and the spd bands using LDA.

Page 8: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

• At low T, very narrow q.p. peak (width ~3meV)

• SO coupling splits q.p.: +-0.28eV • Redistribution of weight up to very high

frequency

SO

• At 300K, only Hubbard bands

J. H. Shim, KH, and G. Kotliar Science 318, 1618 (2007).

CeIn

XLDA+DMFT CeIrIn5 (115)Local f spectral function vs T

Page 9: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Very slow crossover!

T*

Buildup of coherence in single impurity case

TK

cohe

rent

spec

tral w

eigh

t

T scattering rate

coherence peak

Buildup of coherence

Crossover around 50KSlow crossover compared to AIM

Page 10: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

• At 300K very broad Drude peak (e-e scattering, spd lifetime~0.1eV) • At 10K:

• very narrow Drude peak• First MI peak at 0.03eV~250cm-1

• Second MI peak at 0.07eV~600cm-1

Optical conductivity in LDA+DMFT Shim, HK Gotliar Science (2007)

K. Burch et.al.

D. Basov et.al.

Page 11: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Ce In

In

Structure Property Relation: Ce115’s Optics and Multiple hybridization gaps

300K

eV

10K

• Larger gap due to hybridization with out of plane In

• Smaller gap due to hybridization with in-plane In

non-f spectra

J. Shim et. al. Science

Page 12: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Conclusions Ce 115’s• Accounts for many of the observed features of

Ce based heavy fermions.• Crossover is slower than in single impurity be-

cause of the self consistency condition feedback.

• Structure Property Relation. Out of plane In site controls hybridization. Confirmed by NMR.

• Predictions for ARPES currently being tested.• Validates renormalized band theory at T=0 , ex-

plains why it is not a good guide to experiments at most temperatures.• Accounts for Co 3d –Rh 4d -Ir 5d (Haule et. al.

2009)

Page 13: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

A Very Selected Class of HF

Page 14: Heavy Fermions:  a  DMFT Perspective G.  Kotliar
Page 15: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Hidden Order in URu2Si2 dark matter problem.

T. T. M. Palstra et.al. PRL 55, 2727 (1985) D. A. Bonn et al. PRL (1988).

U

SiRu

Page 16: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

• Similar T0 and TN

• Almost identical thermodynamic quantities (jump in Cv)

“Adiabatic continuity” between HO & AFM phase

E. Hassinger et.al. PRL 77, 115117 (2008)

Page 17: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Two Broken Symmetry Solutions

Hidden Or-der

LMA

K. Haule and GK

Page 18: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Order parameter:

Different orientation gives different phases: “adiabatic continuity” explained.Hexadecapole order testable by resonant X-ray

In the atomic limit:

DMFT excitonic order parameter

Page 19: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

DMFT “STM” URu2Si2 T=20 K

Fano lineshape:

q~1.24, ~6.8meV, very similar to exp Davis

USi

RuSi

Page 20: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Orbitally resolved DOS

Page 21: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Mean fieldExp. by E. Hassinger et.al. PRL 77, 115117

(2008)

Simplified toy model phase diagram mean field theory

Page 22: Heavy Fermions:  a  DMFT Perspective G.  Kotliar
Page 23: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

A Hidden Order The CMT dark matter problem. (A. Schofield)

URu2Si2: T. T. M. Palstra, A. A. Menovsky, J. van den Berg, A. J. Dirkmaat, P. H. Kes, G. J. Nieuwenhuys and J. A. Mydosh Physical Review Letters 55, 2727

(1985)

U

SiRu

Page 24: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Neutron Scattering. Specific heat vs. magnetic Bragg-peak intensity.

Tc’s.

mord ~ 0.01 - 0.04 mB

xc ~ 100 Åxa ~ 300 Å

To

Tc

URu2Si2

C 5f /

T (m

J/K2 m

ol)

0100

200

300

400

500

T (K)

Inte

nsity

(arb

.uni

t)

0

1

0 5 10 15 20 25

Q = (1,0,0)

MasonFåkHonma

Type-I AF

Smag ~ 0.2 R ln 2

Page 25: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Hidden order

• Moment is tiny (likely small admixture of AFM phase)

• Large loss of entropy can not be reconciled with small moment

• Other primary symmetry breaking.

WHICH?

Page 26: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Small Effect at T0. Resistivity decreases as T de-crease.

URu2Si2ThCr2Si2 bct - type ( I4/mmm )

U

SiRu

a = 4.127 (Å)c = 9.570 (Å)

Heavy fermion at high T,low T HO + SC

0

100

200

300

400

500

1 10 100 1000

r (mW c

m )

T (K)

I // a

I // c

To ~ 17.5 K

Tc ~ 1.2 K

T.T.M. Palstra et al.(1985)W. Schlabitz et al.(1986) M.B. Maple et al.(1986)

Page 27: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Pseudo-gap opens at Tc. URu2Si2 measured through optical conductivity, D. A. Bonn et al. PRL (1988).

Page 28: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Hall effect as function of temperature in different external fields, Y.S. Oh et al. PRL 98, 016401(2007). Fermi surface reconstruction in zero and small fields. Very large fields polarized Fermi liquid.

Page 29: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Frequency (kHz)-60 -40 -20 0 20 40 60 80

Inte

nsity

(AU

)

0.00

0.02

0.04

0.06

0.08

0.10

Bernal et. al. PRL,2002. P. Chandra P. Coleman et. al. (orbital antiferromagnetism) time reversal symmetry breaking.

T = 4.2 K URu2Si2

Frequency (kHz)-40 -20 0 20 40 60

Inte

nsity

(AU

)

0.00

0.05

0.10

FitData

Si NMR SpectraT = 20

K

See however the later experiments in unstrained samples that do not show the effect.

Page 30: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

• Lev. P. Gorkov: 1996:-Three spin correlators.

• Chandra et al., Nature’02 - Incommensurate Orbital Antiferromagnetism

• Mineev & Zhitomirsky, PRB ’05 - SDW with tiny moment.

• Varma & Zhu, PRL’06 - Helical Order, Pomeranchuk instability of the Fermi surface ?

• Elgazaar, & Oppeneer, Nature Materials’08- DFT: with weak antiferromagnetic order parameter

• Santini and Amoretti PRL 04 -Quadrupolar ordering.• Fazekas and Kiss PRB 07 -Octupolar ordering.

Some Proposals for hidden order in the literature

Page 31: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Neutron scattering under hydrostatic pressure

H. Amitsuka, M. Sato, N.Metoki, M. Yokoyama, K. Kuwahara, T. Sakakibara, H. Morimoto, S.

Kawarazaki, Y. Miyako, and JAMPRL 83 (1999) 5114

Page 32: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

URu2Si2 Stress in ab planeLarge moment when stress in ab planeNo moment when stress in c plane

M Yokoyama, JPSJ 71, Supl 264 (2002).Further Japanese work showed that NMR in unstrained samples did not broaden below T0

Page 33: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

H. Amitsuka et al.,JMMM

310, 214(2007).

P – T phase diagram

LMAF

Little change in bulk properties with const. P when crossings into HO(T0) or LMAF(TN) phases, e.g. opening of similar gaps: Adiabatic

Continuity.

Page 34: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Phase diagram T vs P based upon resistivity and calorimetric experiments under pressure. E. Hassinger et al. PRB 77, 115117(2008).

Similar to Amitsuka’s T – P phase diagram

Page 35: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

• Similar T0 and TN

• Almost identical thermodynamic quantities (jump in Cv)

“Adiabatic continuity” between HO & AFM phase

E. Hassinger et.al. PRL 77, 115117 (2008)

Page 36: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

J.D. Denlinger et.al., 2001

ARPES does not agree with LDA

Page 37: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Comparison of low-field bulk properties - pure vs.4%Rh

Y.S.Oh, K.H.Kim, N. Harrison, H.Amitsuka & JAM, JMMM 310,855(2007).

Page 38: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Effects of Rh Dopiong. U(Ru1-x,Rhx)2Si2

Tcoh~56 K

THO=17.5 K

TC1.5 K

T

0K

HO state in URu2Si2 develops a gap in FS below 17K

M. Jaime et al. PRL (2002)N. Harrison PRL (2003)K. H. Kim et al., PRL (2003)K. H. Kim et al., PRL (2004)

Rh x

HFHOHO+AF

0.040.0

Rh doping removes HO state to make HF groundstates

Page 39: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Comments concerning Hidden Order

URu2Si2, at high temperatures is not too different from a garden variety heavy fermion. ARPES does not agree with LDA at 30 K. HO can be totally destroyed by H and Rh-xHO converts to LMAF by P thru a first order line.HO and LMAF are remarkably similar (“Mydosh’s adiabatic conti-

nuity”) HO opens some form of a gap in optics.HO likely involves an electronic topological transition [Hall Effect, also Nernst]HO exhibits two INS modes:(100)@2meV and (1.400)@5meV of lon-

gitudinal fluctuations/excitations.HO (but not LAMF) turns into superconductivity at 1.7 K.

Page 40: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Heavy Femions Early Theoretical Work.

Early work : variational wave functionsVarma, C. M. and Yafet, Y., Phys. Rev. B13, 295 (1975);

SlaveBosons MFT , 1/ N , A. Auerbach and K. Levin. Phys. Rev. Lett. 57 (1986), p. 877

A. Millis and P.A. Lee. Phys. Rev. B 35, 3394 (1987) Simple description of high and low T regimes.Very simple Renormalized band theory at T=0.G.Kotliar A. Ruckenstein extensions to finite U

Page 41: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Early workGeneralized Anderson Lattice Model † † †

,

,

, ,

,

( )( )

. .

ij ij i j j ii j

f i j i ii i

i ALMij ji j

f t c c c c

V c c c H

f U n n

f

m

6

• High temperature Ce-4f local moments

• Low temperature – Itinerant heavy bands

† †

, ,

, ,

† †

,

( )( )

. .

[ † 1] ij ij i j j ii j

f ii j i i i ii

ALMij ji

i

i

ji

f f b t c cb f c c

V cf c c

f

b H

m

Page 42: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Dynamical Mean Field Theory. Cavity Construction.

0 0 0

( )[ ( ' ] ( '))o o o oc c U n nb b b

s st m tt

t t ¯¶ + D-¶ - +òò ò

,ij i j i

i j i

J S S h S- -å å eMF offhH S=-† †

, ,

( )( )ij ij i j j i i ii j i

t c c c c U n n

m

*

( ) V Va a

a a

ww e

D = -å

† † † † †Anderson Imp 0 0 0 0 0 0 0

, , ,

( +c.c). H c A A A c c UcV c c c

m

A()

10

Page 43: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

A. Georges, G. Kotliar (1992)

( )wDlatt ( , 1 G [ ]

( ) [( ) ])

[ ]n impn

n

ik ii

ktw m

ww+ + - SD D=

latt( ) G ([ [)] ] ,imp n nk

G i i kw wD D=å

[ ]ijij

jm mJth hb= +å1

1( ( )( )

( [))

][ ]

imp n

imp n

kn

G i

Gti

ik

w

ww -D D

=+-

åA()

11

Page 44: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Dynamical Mean Field Theory Exact in the limit of large coordination (Metzner and

Vollhardt 89) . Can treat arbitrary broken symmetry solutions delta

is site , spin, orbital, etc. dependent. Extension to real materials (Anisimov and Kotliar

1997, Kotliar et. al. RMP 2006). DMFT equations are still hard to analyze and solve.

, ,

, 22

[ ] [ ]( )

[ ] [ ]spd sps spd f

f spd ff

H k H kt k

H k H kæ ö÷ç ÷ç ÷ç ÷çè ø

®| 0 ,| , | ,| | ... JLSJM g> > ¯> ¯> >®

DFT+DMFT 12

Page 45: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

DMFT “STM” URu2Si2 T=20 K

Fano lineshape:

q~1.24, ~6.8meV, very similar to exp Davis

USi

RuSi

Page 46: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Partial DOS

At T=20 small effects on spd larger gapping of the f’s. PES-DMFT

J=4

Ground state atomic multiplet of f2 configuration in tetragonal field

Only 35K!

High TLow T

|state>==|J=4,Jz>

Page 47: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

DMFT allows two broken symmetry states at low T. Look for two sublattice

structure.

Moment free phase:

Large moment phase:

tetragonal symmetry broken->these terms nonzero

Density matrix for U 5f state the J=5/2 subspace

J=5/2

J=5/2

Page 48: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

The DMFT density matrix has mostly weight in two singlet f^2 con-figurationsDefinitely f^2, “Kondo “ limit, J=4, two low lying singletsTest via photoemission [Denlinger and Allen ]

Therefore there are two singlests relevant at low energies but they are not non Kramer doublets. Conspiracy between cubic crystal field splittings and tetragonal splittings bring these two states close.This is why URu2Si2 is sort of unique.

.

Valence histogram point of view.

Page 49: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Order parameter:

Different orientation gives different phases: “adiabatic continuity” explained.Hexadecapole order testable by resonant X-ray

In the atomic limit:

DMFT excitonic order parameter

Page 50: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Mean fieldExp. by E. Hassinger et.al. PRL 77, 115117

(2008)

Simplified toy model phase diagram mean field theory

Page 51: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Arrested Kondo effect

• DFT f-core: goof descrip-tion of bands 30meV

away from EF

200meV

• DFT f-valence: many f-bands at EF, substantial disagree-

ment with ARPES & DMFT

DMFT: very narrow region of f-spectral weight ±10meV around EF appears below T*~70KBelow 35K, partial gap starts to open-->singlet to singlet Kondo effect

At low temperature, full gap in f’s (not spd’s).

On resonance

Page 52: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

DMFT A(k,) vs ARPES

Very good agreement, except at X point

Off resonance

Page 53: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Surface Slab CalculationLDA+DMFT - bulk

• Hole pocket surface state appears at X-point!

LDA+DMFT - Si-terminated surface slab

• No hole-pocket at the X-point.

Z X Z X

Surface origin of pocket at X point

Page 54: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Layer resolved spectra

Page 55: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Fermi surface nesting, reconstruction below Tc

Nesting 0.6a* and 1.4a*

T>T0 T<T0

Page 56: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Conclusions URu2Si2

•5f^2 configuration in the Kondo limit•Hidden order has hexadecapole character•Simple connection between the LMAF and the HO state.•Fermi surface reconstruction at low temperature•Absorbtion of f degrees of fredom at very low energies is arrested by a (small) crystal field splitting•D. Cox original guess for UBe13 was (almost) right for URu2Si2.•DMFT results should be confronted carefully with experiments.

Page 57: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Conclusion: some general comments. •DMFT approach. Can now start from the material. •Can start from high energies, high temperatures, where the method (I believe ) is essentially exact, far from critical points, provided that one starts from the right “reference frame”. •Still need better tools to analyze and solve the DMFT equations.•Still need simpler approaches to rationalize simpler limit.•Validates some aspects of slave boson mean field theories, modifies quantitatively and sometimes qualitatively the answers.

Page 58: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

•At lower temperatures, one has to study different broken symmetry states. •At lower temperatures, one has to study different broken symmetry states.

•Compare free energies, draw phase diagram

•Beyond DMFT: Write effective low energy theories that •match the different regions of the phase diagram. •Close contact with experiments.•Many materials are being tried, methods are being refined•Contemplating material design using correlated electronsystems.

Page 59: Heavy Fermions:  a  DMFT Perspective G.  Kotliar
Page 60: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Conclusions

• DMFT tools can be used to understand/predict

properties of correlated materials• Kondo effect in URu2Si2 is arrested bellow crystal field splitting energy. Gives room to ordered states, either AFM state or orbital or-der.

• Mystery of URu2Si2 hidden order solved.

• AFM state and hidden order state have the same order parameter: mixing between atomic singlet states.

• Orientation of the order parameter decided which state is stabilized.

Page 61: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Surface State(s) origin

A(k,), first 4 layers

Si

Ru

Si

U

• SS hole band distinctly originates from the top Si atom

• Strong 2nd layer Ru contri-bution to G=Z equivalence

• Very little 3rd layer Si contri-bution to the SS hole band

• Some U5f weight pulled into Ru surface bands

Page 62: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

CeRhIn5: TN=3.8 K; 450 mJ/molK2 CeCoIn5: Tc=2.3 K; 1000 mJ/molK2; CeIrIn5: Tc=0.4 K; 750 mJ/molK2

CeMIn5 M=Co, Ir, Rh

out of plane

in-plane

CeIn

Ir

Page 63: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

• Ir atom is less correlated than Co or Rh (5d / 3d or 4d)• CeIrIn5 is more itinerant(coherent) than Co (further away from QCP)

Why CeIrIn5?

Phase diagram of 115’s

Page 64: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Generalized Anderson Lattice Model

† † †

,

,

, ,

,

( )( )

. .

ij ij i j j ii j

f i j i ii i

i ALMij ji j

f t c c c c

V c c c H

f U n n

f

m

6

• High temperature Ce-4f local moments

• Low temperature – Itinerant heavy bands

C+ff+

Page 65: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Angle integrated photoemission

Experimental resolution ~30meVSurface sensitivity at 122 ev , theory predicts 3meV broad band

Expt Fujimori et al., PRB 73, 224517 (2006) P.R B 67, 144507 (2003).

Theory: LDA+DMFT, impurity solvers SUNCA and CTQMC Shim Haule and GK (2007)

Page 66: Heavy Fermions:  a  DMFT Perspective G.  Kotliar
Page 67: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Relevance of the Kondo effect.

Dan Cox, 5f^2 configuration +crystal fields select a ground which is a non Kramers doublet.

Multichannel Quadrupolar Kondo effect in U . Non Fermi liquid.

Early work of D. Cox. U Phys. Rev. Lett. 59, 1240 (1987) 

Other possibilities, magnetic Kondo effect when U is f^3

When a heavy Fermi liquid is formed, what is the volume of the Fermi surface? Luttinger theorem: it contains nf+ ncond elec-trons. Mod 2. For f^1 configuration ( Cerium ) the Fermi surface expands as the temperature is reduced. The T=0 Fermi surface is well ap-proximated by the LDA Fermi surface.

Is the true (experimental) Fermi surface of f^2 compounds close to the LDA Fermi surface as well ? URu2Si2

Uranium Heavy Fermions

Page 68: Heavy Fermions:  a  DMFT Perspective G.  Kotliar

Heavy Fermion Problem (more general). o Intermetallic compounds.

o Bare (high energy) degrees of freedom: open shell ions , i.e. Ce, U and conduction electrons.

o Low energy degrees of freedom. Quasiparticles composed of those degrees of freedom sometimes form a heavy Ferm liquid. M*/M ~50-1000.

o Large variety of ground states, superconducting, mag-netic, etc.