39
High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Page 1: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

High energy cosmic rays&

neutrino astronomy

Eli WaxmanWeizmann Institute

Page 2: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

X-Galactic/Ultra-high energy (>1019eV)

Page 3: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

Cosmic accelerators

Cosmic-ray E [GeV]

log [dJ/dE]

1 106 1010

E-2.7

E-3

Heavy Nuclei

Protons

Light Nuclei?

Galactic

X-Galactic

[Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00]

Source: Supernovae)?(

Source?

Source?Lighter

Page 4: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

UHE, >1010GeV, CRs

3,000 km2

J(>1011GeV)~1 / 100 km2 year 2 sr

Ground array

Fluorescence detector

Auger:3000 km2

Page 5: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

Composition

HiRes 2005

Auger 2010

HiRes 2010

[Wilk & Wlodarczyk 10]

Page 6: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

Anisotropy

Galaxy density integrated to 75MpcCR intensity map (source~gal)

[EW, Fisher & Piran 97]

Biased (source~gal for gal>gal )

[Kashti & EW 08]

• Cross-correlation signal: Anisotropy @ 98% CL; Consistent with LSS Repeater absence Ns>N2 n>10-4/Mpc3

• Larger (27->69) sample: Aniso. @ 98.5% CL

• Correlation with AGN?- Signal gone- Even if there = LSS

[Foteini et al. 11]

[Auger coll. 08]

Page 7: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

Composition-Anisotropy connection

• Plausible assumptions: Acceleration of Z(>>1) to E ~ Acceleration of p to E/Z Jp(E/Z)>=JZ(E/Z)

+ Note: p(E/Z) propagation = Z(E) propagation

Anisotropy of Z at 1019.7eV implies Stronger aniso. signal (due to p) at (1019.7/Z) eV

! Not observed! No high Z at 1019.7eV.

[Lemoine & EW 09]

Page 8: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

[EW 1995; Bahcall & EW 03]

[Katz & EW 09]

• 2(dN/d)Observed=2(dQ/d) teff. (teff. : p + CMB N +

Assume: p, dQ/d~(1+z)m-

• >1019.3eV: consistent with protons, 2(dQ/d) =0.5(+-0.2) x 1044 erg/Mpc3 yr + GZK

• 2(dQ/d) ~Const.: Consistent with shock acceleration[Reviews: Blandford & Eichler 87; EW 06

cf. Lemoine & Revenu 06]

Flux & Spectrum

cteff [Mpc]GZK (CMB) suppression

log(2dQ/d) [erg/Mpc2 yr]

Page 9: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

G-XG Transition at ~1018eV?

@ 1018eV: Fine tuning

[Katz & EW 09]

Inconsistent spectrumG cutoff @ 1019eV

Page 10: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

The 1020eV challenge

RB eBRBR

R

BR

ccV p c

v

c

v

v/

1~

1 2

cec

BRL p

222

v/2

1v

84

v

v

sun122

20,

2

46

2

20

2

L10

erg/s10eV10/v

p

p

cL

2R

tRF=R/c)

l =R/

2 2

[Lovelace 76; EW 95, 04; Norman et al. 95]

Page 11: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

What do we know about >1019eV CRs?

• J(>1011GeV)~1 / 100 km2 year 2 sr

• Most likely X-Galactic (RL=/eB=40p,20kpc)

• (An)isotropy: 2, consistent with LSS• Composition? HiRes- p, Auger- becoming heavier(?), Anisotropy suggests p

• Production rate & spectrum:protons, 2(dQ/d) ~0.5(+-)0.2 x 1044 erg/Mpc3 yr + GZK

• No “repeaters”: Nsource>NCR2 n(@ 1019.7eV) > 10-4/Mpc3

• Acceleration (expanding flow): Confinement L>LB>1012 (2/) (/Z 1020eV)2 Lsun

Synch. losses > 102.5 (L52)1/10 (t/10ms)-1/5

!! No L>1012 Lsun at d<dGZK Transient Sources

Page 12: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

UHECR sources: Suspects• Constraints: - L>1012 (2/) Lsun , > 102.5 (L52)1/10 (t/10ms)-1/5

- 2(dQ/d) ~1043.7 erg/Mpc3 yr - d(1020eV)<dGZK~100Mpc

!! No L>1012 Lsun at d<dGZK Transient Sources

• Gamma-ray Bursts (GRBs) L~ 1019LSun >1012 (2/) Lsun= 1017 (/ 102.5)2 Lsun

~ 102.5 (L52)1/10 (t/10ms)-1/5

2(dQ/d) ~ 1053erg*10-9.5/Mpc3 yr = 1043.5 erg/Mpc3 yr

Transient: T~10s << Tp~105 yr

• Active Galactic Nuclei (AGN, Steady): ~ 101 L>1014 LSun= few brightest

!! Non at d<dGZK Invoke:

* “Hidden” (proton only) AGN * L~ 1014 LSun , t~1month flares

If e- accelerated: X/ observations rare L>1017Lsun

[Blandford 76; Lovelace 76]

[EW 95, Vietri 95, Milgrom & Usov 95]

[EW 95]

[Boldt & Loewenstein 00]

[Farrar & Gruzinov 08]

[EW & Loeb 09]

Page 13: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

A comment on transientsNumber density of active flares (nxt)

Caveats: Inefficient e-acceleration Flares turn on at z<<1 [EW & Loeb 09]

Page 14: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

Two comments

• “Q,MeV,GRB~10-2QUHECR”

- Discrepancy due mainly to Assuming UHECRs X-Galactic above ~1018eV (instead of ~ 1019eV)

• Magnetars?

[e.g. Wick et al. 04 ; Berezinsky 08; Eichler et al 10]

[Hillas 84; Arons 03]

Page 15: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

The GRB “GZK sphere”

• LSS filaments: D~1Mpc, fV~0.1, n~10-6cm-3, T~0.1keV

B=(B2/8nT~0.01 (B~0.01G), B~10kpc

• Prediction:

p

D

B

few~)eV103( 20GRBsN[EW 95; Miralda-Escude &

EW 96, EW 04]

BBVGRBs

GRB

BBVp

DelaySpread

BBVp

fDN

R

fDd

c

d

fDd

2220

3

2

2

2052

2/1

20

2/10

10~)eV10(

yrGpc/5.0~

eV10/

Mpc100/yr10~~~

eV10/

Mpc100/3.0

Page 16: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

GRB Model Predictions

[Miralda-Escude & EW 96]

Page 17: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

GRBs & UHECRs: Predictions

• CR experiments: - Few narrow spectrum sources above 3x1020eV

- Difficult to check, even with Auger

• HE experiments ~10 (100TeV events)/Gton/yr Accessible to IceCube, Km3Net

[Miralda-Escude & EW 96]

[EW & Bahcall 97, 99; Rachen & Meszaros 98; Guetta et al. 01; Murase & Nagataki 06]

Page 18: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

• GRB: 1019LSun, MBH~1Msun, M~1Msun/s, ~102.5

• AGN: 1014 LSun, MBH~109Msun, M~1Msun/yr, ~101

• MQ: 105 LSun, MBH~1Msun, M~10-8Msun/yr, ~100.5

Source physics challenges

Energy extraction

Jet acceleration

Jet content (kinetic/Poynting)

Particle acceleration

Radiation mechanisms

[Reviws: GRBs Kouveliotou 94; Piran 05 AGN Begelman, Blandford & Rees 84 MQ HE: Aharonian et al 2005; Khangulyan et al 2007]

Page 19: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

Particle acceleration mechanism:(Mildly) Relativistic Collisionless Shocks?

Page 20: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

Why Collisionless shock?

p

p

cm101

~:Coulomb 1312.

22

0

ndnd

ecm Coulsp

cm10~4

:Plasma 2/172

0

nc

m

ne

psds

pp

Relativistic shock:

cm101

~:Nuclear 1125. 0

nn pp

Nucs

(n’=n)

sUB/nmpc2<<1

(eg ~10-9 for ISM)

Page 21: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

Fermi shock acceleration

• Test particle, elastic scattering, small momentum change: “diffusion”

• v/c<<1: p=2 (strong shock)

• v/c~1, Assuming Isotropic diffusion Simulations: p(>>1)=2.2+-0.2 Analytic approximation: p(>>1)=20/9

• Open Q’s: Relativistic- p depends on diffusion form Self-consistent (particles + EM fields) theory

[Krimsky 77; Axford, Leer & Skadron 78; Blandford & Eichler 78]

v~c/3

s

v~cEnergetic particle

[Bednarz & Ostrowski 98; Kirk et al. 00; Ellison 05; Meli & Quenby 06]

[Keshet & EW 05, Keshet 06 ]

Page 22: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

Plasma simulations: 3D

• 3D e+ e - plasma, =15 “piston” Shock forms, width ~10 c/p ,

Reach B~0.01,

But: >>1/p field decay?

Particle acceleration? Relevance for e/p plasma?

• e/p (mp/me=16) plasma simulations:

Study physical process, but Do not reach shock formation. [Nishikawa et al. 03;

Fredriksen et al. 04; Hededal et al. 04]

[Spitkovsky 06]

200c/p

40c/p

Page 23: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

Plasma simulations: Large 2D e+ e –

=15 “piston”, transverse ~100 c/p, pt~104

B Particles pt/103=2,5,13 Non-thermal (>>15)

tail

B scale grows, B grows to 0.01 However: Note 2!

Cooling = no >80 No steady state @ pt~104

[Sironi & Spitkovsky 09][Keshet et al. 09]

Page 24: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

Simulations: What have we learned?

• 2D e+ e - plasma, =15 “piston”: Shock forms, width ~10 c/p

B scale grows, B grows to 0.01 Growth associated with non-thermal particles No steady state @ pt~104

• Open: Does B survive to pt~109? Particle acceleration to >2? e+ e - = e-p plasma?

2D=3D?

Numerics unlikely to directly resolve open Qs. Provides input/tests for analytic studies.

Page 25: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

High energy neutrinos

Page 26: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

High energy’s: A new windowMeV detectors:• Solar & SN1987A ’s• Stellar physics (Sun’s core, SNe core collapse) physics

>0.1 TeV detectors:

• Extend horizon to extra-Galactic scale

MeV detectors limited to local (Galactic) sources

[10kt @ 1MeV1Gton @ TeV , TeV/MeV~106 ]

• Study “Cosmic accelerators” [p, pp ’s ’s] physics

Cosmic accelerator:

• Open questions Prime scientific motivation

• Observed properties Detector characteristics

Page 27: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

HE: UHECR bound• p + N + 0 2 ; + e+ + e + + Identify UHECR sources Study BH accretion/acceleration physics

• For all known sources, p<1:

• If X-G p’s:

Identify primaries, determine f(z)

3

2344

28

WB2

)1(,1)(for5,1

srscm

GeV

yrerg/Mpc10

/10

zzf

ddQ

d

dj

[EW & Bahcall 99; Bahcall & EW 01]

WB192 )eV10(

d

dj[Berezinsky & Zatsepin 69]

Page 28: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

Bound implications: I. AGN models

BBR05

“Hidden” ( only) sources

Violating UHECR bound

Page 29: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

Bound implications: II. experiments

5.0yrerg/Mpc10

/344

2

ddQ

2 flavors,

No ”hidden” sources!

Fermi

Page 30: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

AMANDA &IceCube

Completed

Page 31: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

The Mediterranean effort

• ANTARES (NESTOR, NEMO) KM3NeT

Page 32: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

Bound implications: II. experiments

Radio Cerenkov

Page 33: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

Transient sources: GRB ’s

• If: Baryonic jet

• Background free:

2GeV3.0// peV10,eV1010,MeV1 5.14165.2 p

GRB/1001~ yr,km/yrerg/Mpc105.0

/

2.0510

eV10,2.0

2344

2

5.142

ddQf

J

WB

2.0pf

[EW & Bahcall 97, 99; Rachen & Meszaros 98; Guetta et al. 01; Murase & Nagataki 06]

;skm/TeV1005.0

10~ 22

10

EJ

oA

TeV1005.2

TeV1007.1

E

E

Page 34: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

FERMI: GRB & fp

• Prompt ~1MeV synch fp ~ (100MeV)~1 (100MeV)~1

~300 Prompt GeV photons (100MeV)<<1, >>300, no ’s ??

Is >>300, (100MeV)<<1?• 95% of LGRB not detected by LAT For bright GRBs, non detection implies: F(>100MeV)/F(1MeV) < 0.1 (100MeV)>~1 ?

• Caution in inferring min: - No exponential cutoff at >1, rather f~1/ - GeV & MeV emission likely originate from different radii (HE delay), (=1)~R

[Abdo et al. 09; Greiner et al. 09; Dermer 10]

6/1

52,

ms10

MeV100

)(/300

t

L

[Guetta et al. 10J. McEnery Talk]

Page 35: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

GRB ’s

• Internal collisions at R0 “residual” coll. @ R>> R0

E(R)~1/Rq with q<2/3 f~1/q for >(=1,R= R0)

May account for: prompt optical (avoid self-abs.) prompt GeV (avoid pair prod.)

GRB080916c HE delays ~300

[Li & EW 08]

[Li 10]

[Li 10]

Page 36: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

GRB ’s: IC40 constraints

• No ’s for 117 GRBs (~1 expected, at 90%CL <2)

• IC is achieving relevant sensitivity

1yrerg/Mpc10

/344

2

ddQ

Page 37: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

What will we learn?

• Detection: highly informative- Identify CR source- Strong support: Baryonic jets, p acceleration,

dissipation by collisionless shocks- Fundamental/ physics

• Non-detection: ambiguous - 10/km2yr is an order of mag. (proportional to x dQ/dE x f)- Significant non-detection (<<10/km2yr, <<1/100GRB)

Poynting jet (no p?) orDissipation mechanism (eg no p acceleration to

relevant E) orRadiation mechanism (f<<0.2)

Page 38: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

- physics & astro-physics

• decay e:: = 1:2:0 (Osc.) e:: = 1:1:1

appearance experiment

• GRBs: - timing (10s over Hubble distance) LI to 1:1016; WEP to 1:106

• EM energy loss of ’s (and ’s) e:: = 1:1:1 (E>E0) 1:2:2

GRBs: E0~1015eV

• Optimistic (very): Combining E<E0, E>E0 flavor measurements may constrain flavor mixing

[CPV, Sin13 Cos]

[EW & Bahcall 97]

[Rachen & Meszaros 98; Kashti & EW 05]

[EW & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07]

[Blum, Nir & EW 05; Winter 10]

Page 39: High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute

Summary• UHE, >1019eV, CRs - Anisotropy (2) consistent with LSS, supports protons - Likely X-Galactic protons, 2(dQ/d) ~1043.7 erg/Mpc3 yr - No “repeaters”: Nsource>NCR

2 n(@ 1019.7eV) > 10-4/Mpc3

- Acceleration: L>LB>1012 (2/) Lsun, > 102.5 (L52)1/10 (t/10ms)-

1/5

Transient Sources, GRBs / L> 1050erg/s AGN flares?

• HE ’s: IceCube’s sensitivity meets minimum requirements for detection of XG sources

• Detection of a handful of ’s may resolve outstanding puzzles:

- Identify UHECR (& G-CR) sources - Resolve open “cosmic-accelerator” physics Q’s (related to BH-jet systems, particle acc., rad.

mechanisms) - Constrain physics, LI, WEP - The unexpected?• Coordinated wide field EM transient monitoring crucial (“Multi-messenger”)