34
Holger Schlarb for the optical synchronization team Femtosecond Synchronization Motivation Synchronizationsystem Komponenten des optischen Synchronisationssystem bei FLASH

Holger Schlarb - indico.desy.de

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Holger Schlarb - indico.desy.de

Holger Schlarb for the optical synchronization team

Femtosecond Synchronization

Motivation

Synchronizationsystem

Komponenten des optischen Synchronisationssystem

bei FLASH

Page 2: Holger Schlarb - indico.desy.de

Femtosecond synchronization

2

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

31km

Motivation: shorter electron bunch length

Towards shorter electron pulse duration 1 ps = 10-12 s

= 1000 fs

= 300 m/c0

Synchrotron light sources …BESSY z = 10mm ~ 20 ps

Low-alpha Multi Bunch Hybrid Modus ~ 2 ps

Linac driven colliders … SLC z = 2 mm ~ 6 ps

ILC =0.3 mm ~ 1 ps

Free Electron Lasers … European XFEL z = 20 um ~ 60 fs

Short pulse operation modes: FEL pulses < 5 fs

Circ = 240 m

t

t

31km~ 10-3

Page 3: Holger Schlarb - indico.desy.de

Femtosecond synchronization

3

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Motivation: Pump-probe experiments

Classical setup:

Variable delay

pump

probe

Probe = flash

Pump

Shot pulses fs ps

Knowledge of time delay is crucial!

Same source

Pump pulse initiate reaction, probe pulse records current state.

Atomic / Molecular Physics// Solid state dynamics

FELs: two different pulse sources: FEL beam and optical laser

Comments: 1) measured at experiment => post analysis

2) for small event rates => not possible

Page 4: Holger Schlarb - indico.desy.de

Femtosecond synchronization

4

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Motivation: seeding with higher harmonics

Ti:Sa Laser

Gas cell 800nm30nm

undulatorSeparation

100kW>1 GW

Experiment

Electron beam

Temporal overlap

New class of experiments:

• Electron beam is seeded or manipulated using external laser

• Timing of FEL pulse defined by now by seed (laser)

Requirements:

• Temporal overlap between electron bunch & seed pulse essential ~ 10-50 fs

• Particular high demands on synchronization to pump-probe laser ~ 1-5 fs

Gain 104

Generic layout of seeding a single pass FEL

Transfer line ~ 30-100m, << 10 fsTi:Sa Laser

t

t

Page 5: Holger Schlarb - indico.desy.de

Femtosecond synchronization

5

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Motivation: Peak current & arrival time jitter

RF

gun

photo cathode laser

booster

magnetic

chicaneacc. modules undulator

target

pump-probe laser

Compression process & FEL resonance condition

• stability of peak current I/I < 1-10 %

• control of arrival t < 10-50 fs

• FEL wavelength fluctuations E/E < 10-4

Increased acceleration RF stability requirements

Phase stability (rel.) ~ 0.05 …0.005 (~ H … ~ 1 MHz)

Amplitude stability ~ 0.05% …0.005% (~ H … ~ 1 MHz)

seed laser

z

E

z

E

z

E

z

E

Acc-RF

Ipeak ~ 10 A Ipeak ~ 1000 A

Page 6: Holger Schlarb - indico.desy.de

Femtosecond synchronization

6

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Motivation: Lasers for FELs

Generic layout of single pass FELs

injector pre-linac main linacchicanechicane

Ph

oto

-ca

thod

e

La

ser

hea

ter

EO

E-S

AS

E

Op

tica

l re

pli

ca EO

See

dS

eed

Few

cy

cle

lase

r

Pu

mp

-pro

be

Pla

sma

la

ser

Ma

nip

ula

tio

n

Ma

nip

ula

tio

n

RF RF

Master Laser

Oscillator

>> 100 m but < 10fs

Page 7: Holger Schlarb - indico.desy.de

Femtosecond synchronization

7

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Motivation: summary

Accelerator technology advanced from

picosecond bunch duration few 10 fs bunches

Facility length range from ~100 m up to 3.5 km (European XFEL)

Stability of FELs puts stringent demands on RF requirements

Optical laser systems become an integral part of FEL facilities for the beam generation,

beam diagnostics,

beam conditioning/seeding and

for user experiments

Changed the requirements on synchronization from ps to fs precision

Page 8: Holger Schlarb - indico.desy.de

Femtosecond synchronization

8

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Synchronization

Several scheme on the market!

1) RF distribution

~f ~ 100MHz …GHz

3) Carrier is optically + detection

~f ~ 200 THz

2) Carrier is optically

~MZT

f ~ GHz

3) Pulsed sourcef ~ 5 THz

OXC

Mode locked

Laser

t ft f=

Page 9: Holger Schlarb - indico.desy.de

Femtosecond synchronization

9

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Optical synchronization system

Narrow

Band.

Direct/

Interferometer

EOMs/

SeedingTwo color bal.

Opt. cross-corr.

End-station

Laser

MLOMO-RF

Laser pulse Arrival beam/laser DWC/Kly

A & cavity

Desired point-to-point stability ~ 10 fs

<5fs

Direct

Distribution

LO-RF

Optical link Optical link

<5fs <5fs

Optical link

FB

EDFL, t~100-200 fs,

f=50-250MHz, P > 100mW,

phase noise < 10fs ( 1kHz)

Free space + EDFA /

HP-EDFA + fiber dist

OXC / RF

Polarization contr.

Dispersion comp.

Other lasers

Main issue: robustness, stability and maintainability Prototype at FLASH

Page 10: Holger Schlarb - indico.desy.de

Femtosecond synchronization

10

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

FLASH synchronization system (Sep. 2009)

FLASH accelerator and optical end-stations for synchronization:

Master laser oscillator (EDFA) with 4 stabilized optical links to

• 3 Beam arrival monitors (BAM)

• 1 cross-correlator for locking diagnostic TiSa laser system (OXC)

• and large aperture BPM for energy measurements (EBPM)

Courtesy: S. Schulz

Page 11: Holger Schlarb - indico.desy.de

Femtosecond synchronization

11

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Master laser oscillator (MLO)

Specification/Requirements

- Mode-locked erbium-doped fiber laser

- Repetition rate of 216.66MHz

- Average power > 100mW

- Pulse duration < 100 fs (FWHM)

- Integrated timing jitter < 10 fs [1kHz,40MHz]

- Amplitude noise < 2 10-4 [10Hz,40MHz]

- Mechanical robust/easy to maintain

1st generation MLO 2nd generation MLO 3st generation MLO

Original design:

J. Chen et. al., Opt. Lett. 32,

1566-1568 (2007)

Page 12: Holger Schlarb - indico.desy.de

Femtosecond synchronization

12

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

RF Lock

Master laser oscillator (MLO)

Courtesy: S. Schulz

Carrier = 1.3 GHz

Performance:

Integrated timing jitter 11.5 fs @ [1kHz, 10MHz] / 4fs @ [10kHz,10MHz]

Very short pulses < 90 fs

Power stability: 2% pkpk and 0.4% rms over 240 hours! (no FB stabilization)

Problems

Output power < 70mW otherwise double pulses

Reproducibility and maintance

Page 13: Holger Schlarb - indico.desy.de

Femtosecond synchronization

13

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Master laser oscillator (MLO)

Pulse duration (sech2(t/ p)-fit)

Courtesy: S. Schulz

Output stability

Performance:

Integrated timing jitter 11.5 fs @ [1kHz, 10MHz] / 4fs @ [10kHz,10MHz]

Very short pulses < 90 fs

Power stability: 2% pkpk and 0.4% rms over 240 hours! (no FB stabilization)

Problems

Output power < 70mW otherwise double pulses

Reproducibility (spectrum/pulse duration/phase noise) & maintenance

Requires special diagnostics and complex exception handling

Page 14: Holger Schlarb - indico.desy.de

Femtosecond synchronization

14

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Master laser oscillator (MLO)

0 5 10 15 20 25 30 35 40 4599

99.5

100

100.5

Long-Term Amplitude (Menlo M-Comb 2 x ET3010)

Time [h]

Rel. P

ow

er [%

]

0 5 10 15 20 25 30 35 40 4560

70

80

90

100

Time [h]

Pie

zo [V]

0 5 10 15 20 25 30 35 40 4521

21.5

22

22.5

23

Time [h]

Tem

pera

ture

[°C

]

Commercial lasers

Based on same technologyAfter some trouble shooting ok

High output power > 100 mW

Similar problems in terms of reproducibility

Long term measurements: observed instabilities

New laser based on different mode lockingType: saturable absorber laser (SESAM)

Output power > 100mW

Pulse duration p < 150 fs

Robust mechanics, high reproducibility

Integrated timing jitter 4.3 fs [1kHz,10MHz]

Inspected at tested at PSI

Changed specification to our purpose

Delivery April 2010

Problem: long term live time

Instabilities

Page 15: Holger Schlarb - indico.desy.de

Femtosecond synchronization

15

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Distribution system

Courtesy: S. Schulz

120 mW input

5 mW out

90% incoupling eff.

Page 16: Holger Schlarb - indico.desy.de

Femtosecond synchronization

16

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Distribution system

Page 17: Holger Schlarb - indico.desy.de

Femtosecond synchronization

17

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Fiber Link Stabilization

216 MHz

Er-doped

fiber laser

J. Kim et al., Opt. Lett. 32, 1044-1046 (2007)

Page 18: Holger Schlarb - indico.desy.de

Femtosecond synchronization

18

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Fiber Link Stabilization

Single crystal background free optical cross-correlator

Detector 1

Detector 2

Page 19: Holger Schlarb - indico.desy.de

Femtosecond synchronization

19

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Fiber Link Stabilization

Single crystal background free optical cross-correlator

Detector 2

Detector 1

Page 20: Holger Schlarb - indico.desy.de

Femtosecond synchronization

20

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Fiber Link Stabilization

Single crystal background free optical cross-correlator

Detector 1

Detector 2

Link is locked at zero crossing

Amplitude fluctuations are converted to gain fluctuations

Page 21: Holger Schlarb - indico.desy.de

Femtosecond synchronization

21

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

• Three layer design:-Free space optics with OXC (top)

-Fiber layer (middle)

-Electronic layer (bottom)

• 5 links completely assembled

• mechanically very robust

• several problems identified-Yawing/pitching of delay line

-Some optics holders

-Easy to assembly

• 2nd prototype design ready for prod.

Drawback link stabilization:- requires dispersion compensation

- precise overlap of laser pulses

- to cost intensive to supply many end-stations

Room for further improvements

(packaging/costs)

DESY design

Fiber Link Stabilization: engineered version

Page 22: Holger Schlarb - indico.desy.de

Femtosecond synchronization

22

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Fiber Link Stabilization: engineered version

Page 23: Holger Schlarb - indico.desy.de

Femtosecond synchronization

23

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Fiber Link Stabilization: engineered version

Page 24: Holger Schlarb - indico.desy.de

Femtosecond synchronization

24

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Calibration of detector signal Still varies from link to link (learning curve …)

Courtesy: S. Schulz

Fiber Link Stabilization: cross-correlator

Varies likely due to dispersion compensation & optical power achieved in link

Calibration is used to determine remaining in-loop error

Page 25: Holger Schlarb - indico.desy.de

Femtosecond synchronization

25

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Calibration of detector signal Still varies from link to link (learning curve …)

Courtesy: S. Schulz

Fiber Link Stabilization: cross-correlator

Out-of-loop jitter cannot be determined easily

LINK15 uses different link end configuration

Page 26: Holger Schlarb - indico.desy.de

Femtosecond synchronization

26

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

link 1

link 2

8 days

link 1

link 2

2 month

Installation of two fiber links at FLASH Much smoother correction

For 6 month in operation

Day/night periods & spring -> summer observable

Smooth operation (interruptions understood)

Courtesy: F. Löhl

Fiber Link Stabilization: long term behavior

Page 27: Holger Schlarb - indico.desy.de

Femtosecond synchronization

27

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Principle of the bunch arrival time monitor (BAM)sampling times of ADCs

4.7 ns

(216 MHz)The timing information of the electron bunch is

transferred into a laser amplitude modulation.

This modulation is measured with a photo

detector and sampled by a fast ADC.

ADC1

ADC2

See: EPAC’06, Loehl et al., p.2781

Courtesy: F. Loehl

17mm14.5mm 6.2mm

1.2mm thick

Alumina disk

New pickup design &

Improved readout

Courtesy: K. Hacker

resolution < 10 fs

Bunch arrival time monitor

Page 28: Holger Schlarb - indico.desy.de

Femtosecond synchronization

28

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Bunch arrival time monitor

Bunch arrival time monitor (BAM)

• Coarse and fine measurements

• 10GHz Mach-Zehnder interferometer

• Precision encoder + high duty cycle delay stages

• Controls: Bias, Temp. readout & regulation

• New engineered design (2nd iteration)

Performance & findings:

• Typical resolution: 6-10 fs, (down to 4 fs) @ 1nC

• Stable operation after establishing FB on coarse

• Assembly + slicing ~ 4 weeks

• Problematic fiber management (too long fibers)

• hardware + firmware + automation software

Page 29: Holger Schlarb - indico.desy.de

Femtosecond synchronization

29

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Bunch arrival time monitor

Optical front-end in accelerator tunnel

Temperature stabilized (40mK pkpk)

High duty cycle optical delay line

10GHz Mach-Zehnder modulators

Coarse/fine channel

Remote controlled (Bias/Temp/Motors)

Heidnhain encoder

Page 30: Holger Schlarb - indico.desy.de

Femtosecond synchronization

30

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Bunch arrival time monitor

Scan of laser phase

Fine channel, dynamic range ~ 4 ps,

intrinsic resolution ~ 4-10fs

Coarse channel, dynamic range ~ 60 ps,

intrinsic resolution ~ 60-100fs

Fluctuations within pulse train

Finding the signal

Page 31: Holger Schlarb - indico.desy.de

Femtosecond synchronization

31

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

uncorrelated jitter

over 4300 shots:

8.4 fs (rms)

<6fs rms resolution

BC3BC2 ACC 23

Diag.

ACC 456ACC 1

Diag.

CDR

LOLAISR

BPM

BAMBAM 1

ORSUndulators

PP-laser

ISR

BAM 2

60 m drift

• Complete test: includes timing jitter of MLO & 2*LINK & 2*BAM

• Remark: old configuration (no distribution & bread board type LINK)

Courtesy: F. Löhl

Bunch arrival-time monitor (BAM)

Page 32: Holger Schlarb - indico.desy.de

Some measurements last user run

Arrival time drift & jitter from photo-injector

0.8ps

t = 86fs

Gun rf

30%

Laser rf

70%

Tuning

pulse train

arrival

& exit of linac

t = 82fs

1.1ps

4.0ps

drifts

jitter

intra-train

300 s

t = 64fs

residual

Without FB!Without FB! Without AFF!Without AFF!

For FB missing: robust exception handlingFor FB missing: robust exception handling

Page 33: Holger Schlarb - indico.desy.de

Femtosecond synchronization

33

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Infrastructure for FLASH optical synchronization 300 cables to optical table (including 120 signal cables)

58 motors

20. . . 24 laser diodes for MLOs and EDFAs

16. . . 20 piezo stretchers

4 VME crates (change to uTCA in planning)

optical fibers to all critical end-stations

42 temperature sensors, 2 active temperature

regulations

air conditioning and option for water cooling

. . . and almost everything assembled in-house!

Status: ~ 95% done

In house electronics developments:

VME laser diode driver (FPGA)

VME ADCs 130MHz, 16bit

LN Piezo driver 300V

DSP regulation (old)

ADC (9MHz, 14bit)

DAC (9MHz, 14bit)

Vector modulator

Status: exist or in productions

Page 34: Holger Schlarb - indico.desy.de

Femtosecond synchronization

34

24.03.2010, Groemitz, “Beschleuniger Seminar”

Holger Schlarb, MSK, DESY

Thanks for your attention