56
SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY “How can we assure nuclear safety?” Is the risk of big technology controllable? Jukka Laaksonen Director General Radiation and Nuclear Safety Authority STUK 1 17.12.2011 J.Laaksonen Institute of Applied Energy Symposium 17 December 2011, Tokyo

“How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

  • Upload
    hakien

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Page 1: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

“How can we assure nuclear safety?” ― Is the risk of big technology controllable? ―

Jukka

Laaksonen

Director General

Radiation and Nuclear Safety Authority ‐

STUK

1

17.12.2011   J.Laaksonen

Institute of Applied Energy Symposium 17 December 2011, Tokyo

Page 2: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Introduction ‐

1

Large hazards involved in the use of nuclear energy were  recognized already before starting the development of  power reactors. 

Potential risks were explored by experimental and  theoretical studies

Concepts for ensuring safety were conceived. 

Safety objectives were specified and safety regulations  were developed in parallel with the evolution of new  technology. 

2

17.12.2011   J.Laaksonen

Page 3: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Introduction ‐

2

Construction of “first generation”

of Nuclear Power  Plants (NPP) from the middle of 1950’s until 1964

– more than 30 nuclear power plant units in nine different  countries

– 13 of those plants had electrical power in the range from  108 MWe

to 277 Mwe

– many of the “first generation”

reactors operated for  about 25 years, and a few of them exceeded the age of 40 

years

None of the “first generation”

reactors suffered  a  serious accident during its lifetime.

3

17.12.2011   J.Laaksonen

Page 4: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Introduction ‐

3

General design criteria for NPP’s

were developed in  parallel with the design of the “first generation”

reactors.

The criteria were in a quite advanced stage when the  design and construction of currently operating “second 

generation”

nuclear power plants was started by  commercially operating vendor companies in mid  1960’s.

4

17.12.2011   J.Laaksonen

Page 5: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Introduction ‐

4

In the development of all new technologies, progress has  required learning from past mistakes and taking 

corrective actions to avoid repeating them.

Nuclear technology is no exception:

• many of the safety principles and approaches can be  traced back to specific accidents or near misses

• accidents and unexpected incidents have given new  insights and have led to enhanced level of safety. 

5

17.12.2011   J.Laaksonen

Page 6: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Introduction ‐

5

When seeking the answer to question ― is the risk of big  technology controllable, we have to:

– start with an overview of the current safety principles and  their development ,

– evaluate the immediate and root causes of major  accidents, in order to understand how the principles for 

assuring nuclear safety have evolved after each accident, 

– deliberate the maturity of nuclear safety approaches of  today: 

• have we already learned adequate lessons from the past?• have we accumulated enough knowledge to be confident on 

individuals’

and organisations’

ability to control any  conceivable hazards?

6

17.12.2011   J.Laaksonen

Page 7: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Prerequisites and concepts  for avoiding harmful  impacts of nuclear power ‐

1

Ensuring nuclear safety means preventing reactor core  damage and release of radioactive nuclides to the 

environment.

It requires fulfilment of three basic safety functions:

1.

Control of reactivity (chain reaction),

2.

Removal of decay heat to ultimate heat sink,

3.

Containment of radioactive materials.

7

17.12.2011   J.Laaksonen

Page 8: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Prerequisites and concepts  for avoiding harmful  impacts of nuclear power ‐

2

The inherent safety features of nuclear power plants   – combined with systems that carry out the basic 

functions  – have to be extremely reliable. 

In addition, the systems and structures providing the  basic safety functions have to be protected from 

hazards that may threaten their integrity and  intended function.

8

17.12.2011   J.Laaksonen

Page 9: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Prerequisites and concepts  for avoiding harmful  impacts of nuclear power ‐

3

The fundamental basis to ensure fulfilment of basic safety  functions is the concept of Defence‐in‐Depth:

– Defence‐in‐depth

concept has been developed since the  inception of nuclear power development and it is 

thoroughly explained in the International Safety Groups’ report INSAG‐10, Defence in Depth in Nuclear Safety

(google: “INSAG‐10”).  

9

17.12.2011   J.Laaksonen

Page 10: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Prerequisites and concepts  for avoiding harmful  impacts of nuclear power ‐

4

Defence‐in‐Depth is currently structured in five levels:

1.

The objective of the first level of protection is the prevention

of 

abnormal operation and system failures. 

2.

If the first level fails, abnormal operation is controlled or failures are 

detected by the second level of protection.

3.

Should the second level fail, the third level ensures that safety 

functions are further performed by activating specific safety systems 

and other safety features. 

4.

Should the third level fail, the fourth level limits accident 

progression through accident management, so as to prevent or 

mitigate severe accident conditions with external releases of 

radioactive materials. 

5.

The last objective (fifth level of protection) is the mitigation

of the 

radiological consequences of significant external releases through 

the off‐site emergency response.

10

17.12.2011   J.Laaksonen

Page 11: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Control of reactivity ‐

1

Reliable control of reactivity was the paramount issue  already in designing the first reactors. This involved:

– ensuring safe and predictable response of the reactor to  any kind of disturbances

– reliable means for fast reactor shutdown

11

17.12.2011   J.Laaksonen

Page 12: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Control of reactivity ‐

2

The very first reactor compiled at Chicago stadium in 1942 had two  alternative means for fast shutdown: 

1.

dropping cadmium rods to the core or 

2.

pouring cadmium salt solution on the core 

This principle of having two diverse means for implementing a safety  function has since then become one of the cornerstones of 

nuclear safety. 

Importance of the reactivity effect of various physical parameters  was understood already in the design of the first reactors.

The designers had a general target to ensure that inherent nuclear  feedback characteristics tend to compensate for any increase in  reactivity. 

12

17.12.2011   J.Laaksonen

Page 13: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Control of reactivity ‐

3

Lessons from reactivity accident at EBR‐I in 1955

• Fast breeder reactor EBR‐I (1,7MWe) started operation in 1951 on  test site in Idaho desert. 

– It was known to have a positive reactivity coefficient with respect to  coolant voids in some circumstances, and safety pre‐cautions were 

planned to avoid prompt criticality. 

– In a certain test of the reactivity properties in 1955 the operating staff  made an error causing a loss of criticality control and a partial core 

meltdown. 

• The accident  was actually a “Chernobyl accident in miniature  size”. 

– It gave an important lesson to US designers but due to the small

size 

and remote location of the reactor no serious consequences in the 

environment resulted.

13

17.12.2011   J.Laaksonen

Page 14: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Control of reactivity ‐

4

Lessons from reactivity accident at EBR‐I in 1955 (cont.)

• The EBR‐I accident raised a proposal on a mandatory reactor  design principle: always providing a negative power coefficient of 

reactivity when a reactor is producing power. 

• This principle was kept in mind in the design of all reactors in

the  USA

• In 1969 the principle was included in the very first General Design  Criteria for Nuclear Power Plants that were issued as formal 

regulations by the US. AEC. – these criteria are presented since then in 10 CFR 50, Appendix A, – in the latest revision of the Appendix A, the principle is written in a re‐

formulated form as Criterion 11, Reactor inherent protection (google: 

“Appendix A of 10 CFR 50). 

14

17.12.2011   J.Laaksonen

Page 15: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Control of reactivity ‐

5

Lessons from reactivity accident at Chernobyl‐4 in 1986

• All light water reactors (PWR, BWR) of the world have been  designed to meet the above mentioned Criterion 11 of Appendix A.

• Some other reactors such as Candu

reactors designed in Canada  and RBMK reactors designed in the former USSR, as well as some  sodium cooled fast breeder reactors do not meet it. 

– The importance of Criterion 11 was learned in April 1986 in connection 

with the Chernobyl‐4 accident. 

– The immediate cause of the Chernobyl‐4 accident was loss of reactivity 

control, and this led to an explosive increase of reactor power.

– The escaped chain reaction grew so powerful that it immediately 

destroyed the reactor, the cooling circuit and the reactor building. 

• No nuclear power plant in the world has containment, which would be strong enough to withstand such growth of reactivity as the one  seen in Chernobyl.

15

17.12.2011   J.Laaksonen

Page 16: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Control of reactivity ‐

6

Lessons from reactivity accident at Chernobyl‐4 in 1986 (cont.)

The reactivity accident in Chernobyl did not give direct lessons

to PWR  and BWR plants that had already been designed to avoid reactivity 

initiated explosions. 

However, in some countries (e.g., France, Finland) potential criticality  hazards were re‐assessed:

• Especially the risk of a sudden boron dilution of the PWR coolant  was evaluated.  

• It was found  that one could  take measures for further reduction  of  a risk of sudden reactor core criticality during shutdown conditions 

or in some accident sequences.

• Improved monitoring and control systems were installed and  changes were made in operating practices and operator instructions. 

16

17.12.2011   J.Laaksonen

Page 17: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Control of reactivity ‐

7

Lessons from reactivity accident at Chernobyl‐4 in 1986 (cont.)

The root cause behind the reactivity accident at Chernobyl was lack of  safety culture

– not paying due attention to inherent reactor safety– designers were aware of the possibility of explosive reactivity increase, 

and signs of this had been seen in precursory events

– operators were not clearly warned of the danger; thus they did not  understand the importance of following the instructions written by 

reactor designers

– operators neglected their operating rules and took orders from the grid 

control centre

The expression ”safety culture”

was created after the Chernobyl  accident and the emphasis on safety culture has since then 

contributed significantly to the safety of nuclear operations  throughout the world.

17

17.12.2011   J.Laaksonen

Page 18: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Control of reactivity ‐

8

18

17.12.2011   J.Laaksonen

Current state‐of‐the‐art in providing reactivity control

• Reactivity control and shutdown systems have achieved a  mature state. 

– Inherent characteristics of the core ensure safe feedback on  disturbances and prevent an uncontrolled fast power increase.

– All reactors designed since the very first one have had fast  shutdown systems based on potential energy and a system that 

starts the shutdown function with high reliability. 

• The shutdown systems have been found satisfactory since  the early years of nuclear reactors and no significant 

changes in the basic principles have been suggested.

Page 19: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Control of reactivity ‐

9

19

17.12.2011   J.Laaksonen

Current state‐of‐the‐art in providing reactivity control (cont.)• Adding of boron to the coolant is generally used as diverse means to 

shutdown the reactor

• In the PWR reactors:

– adding boron to the coolant is necessary to ensure maintaining the  reactor subcritical

when it is cooled below its normal operating 

temperature. 

– in some of the new PWR reactors the control/shutdown rods are not  able to provide subcritical

conditions for an unlimited time and thus 

boron addition to the coolant is needed already a few hours after  shutdown, even in hot shutdown state.

– Therefore, a reliable system to add boron to the coolant is needed  for all PWR reactors.

Page 20: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Control of reactivity ‐

10

20

17.12.2011   J.Laaksonen

Current state‐of‐the‐art in providing reactivity control (cont.)

• In the BWR reactors 

– the control/shutdown rods insert enough “negative reactivity”

when  they are functioning as designed, and can thus maintain the 

shutdown state in all possible temperatures. 

– however, it is necessary to insert the control rods always fast –if fast  insertion does not succeed, the diverse system for slow insertion of 

rods, e.g. with electrical motors, would deform strongly the power  distribution and cause fuel failures in the top part of the reactor 

core. 

– Therefore, a reliable system to add boron to the coolant is needed  also for BWR reactors.

Page 21: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Removal of decay heat ‐

1

21

17.12.2011   J.Laaksonen

Removal of decay heat from the reactor core is more  difficult to assure than assuring reactivity control

– Removal of decay heat requires reliable function of the  safety systems for a long time. 

– The main risks of a severe accident are thus resulting  from a loss of the decay heat removal. 

Page 22: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Removal of decay heat ‐

2

22

17.12.2011   J.Laaksonen

• Decay heat removal was not explicitly mentioned in the first set

of criteria 

incorporated in Appendix A of 10 CFR 50 in 1969.

• This shortcoming was corrected in 1971 when the major revision of Appendix A 

incorporated – Criterion 34 concerning reliability of the front line residual heat removal system

– Criterion 44, concerning the reliability of cooling circuits that transfer the heat further 

to the ultimate heat sink.

• Another noteworthy criterion included for the first time in 1971 revision of 

Appendix A is Criterion 2 that gives design bases for protection

of safety 

systems against natural phenomena and even highlights tsunami among the 

hazards to be considered. 

• In spite of the retrospective issuance of general design criteria, the “second 

generation”

reactors meet, with possibly a few exceptions, the criteria that are 

currently in force in the USA and are almost unchanged since 1971(for current 

requirements, google: “Appendix A to 10 CFR 50”).

Page 23: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Removal of decay heat ‐

3

23

17.12.2011   J.Laaksonen

Throughout the 1970’s, little attention was given in design, in  nuclear safety research, and in nuclear regulation to risks of  losing the decay heat removal in a sequence of events that could

be initiated from relatively frequent and as such quite minor  equipment failures.

Instead, most of the nuclear safety research and safety assessment  was just aiming to demonstrate that:

• the reactor vessel rupture can be practically eliminated,

• the large break loss of coolant accident (LOCA) (break of largest reactor  coolant system line) can be adequately managed with engineered 

safety features

The research programs focusing on these topics were very large  but did not bring many new insights for assuring nuclear safety.

Page 24: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Removal of decay heat ‐

4

24

17.12.2011   J.Laaksonen

Insights from the reactor safety study• Reactor Safety Study was the first Probabilistic Risk Assessment

(PRA) of a 

nuclear power plant as a whole. The report issued in 1975 and is

generally 

known as WASH‐1400 or “Rasmussen report”. 

• The study combined the available knowledge and data with a meticulous best 

estimate analysis and gave quite new insights on importance of different 

factors for ensuring nuclear safety. 

• Main conclusion of the WASH‐1400 was that the highest contribution to the 

severe core damage probability is caused by the initiating events that are not 

so infrequent but could lead to unexpected accident scenarios and finally the 

loss of decay heat removal.

• Although the WASH‐1400 got much attention, it found initially very little 

practical application in nuclear power plant design or in nuclear regulation.

• The value of WASH‐1400 was recognized only after the accident at Three Mile 

Island (TMI‐2) plant in 1979.

Page 25: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Removal of decay heat ‐

5

25

17.12.2011   J.Laaksonen

Lessons learned from TMI‐2 accident in 1979• The TMI‐2 accident was initiated by a relatively frequent event: 

stopping of normal feedwater

pumps. – Loss of normal feedwater

caused opening of the pressurizer

relief 

valve as anticipated at Babcock&Wilcox

designed plants.

– However, the event took an unexpected path when the relief valve failed to close. 

– This started continuous loss of reactor coolant through the  pressurizer. 

• The immediate cause of the accident was that operators were  not able to handle right this relatively simple incident scenario. 

Page 26: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Removal of decay heat ‐

6

26

17.12.2011   J.Laaksonen

Lessons learned from TMI‐2 accident in 1979 (cont.)

The root cause of the TMI‐2 accident was a general lack of  knowledge on PWR behaviour in 1979 ! How can we 

explain this? 

My explanation is that until 1979 the safety research had  been mostly focused on large break LOCA and its 

prevention, while the behaviour of a PWR primary circuit in  less interesting transients had not been systematically 

studied and therefore was not understood. 

It seems evident that operators at no PWR had emergency  instructions applicable for the TMI 2 scenario.

Page 27: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Removal of decay heat ‐

7

27

17.12.2011   J.Laaksonen

Lessons learned from TMI‐2 accident in 1979 (cont.)After TMI‐2, many changes took place for enhancing nuclear safety:

• Nuclear safety research was diverted to a large variety of topics.

• Plant specific full‐scope control room simulators were installed for operator 

training.

• Plant specific PRA models were developed and used for finding and eliminating 

risks that had not been recognized before.

• Emergency operating instructions were thoroughly revised for all

reactor types: 

instructions were no more based on managing of specific postulated events 

but instead the focus was in maintaining the three basic safety functions in any 

scenarios.

• With advanced analytical models it was noted that reactor internals of many 

PWR plants could actually not withstand dynamic forces caused by

a sudden 

guillotine break of a main line of the

reactor coolant system. This led to 

development of the “leak before break”

approach that was aimed to eliminate 

very fast break of the main coolant line.

Page 28: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Removal of decay heat ‐

8

28

17.12.2011   J.Laaksonen

Practical experience from reliability of decay heat removal

• The nuclear power plants being operated today have  significant differences in the decree of redundancy and 

diversity of their safety systems. There are also major  differences in the implementation of “physical separation”.

• In spite of the differences in the predicted reliability of  safety systems, even the

nuclear power plants with 

weakest systems have turned out to provide the decay  heat removal with high reliability.

Page 29: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Removal of decay heat ‐

29

17.12.2011   J.Laaksonen

Practical experience from reliability of decay heat removal  (cont.)

As to the accidents that have caused major core damage in large  power reactors, we can make the following observations:

– At TMI‐2 accident in 1979, the loss of decay heat removal was not a  consequence of bad design but it was caused by operating errors.

– At Chernobyl‐4 the accident scenario in 1986 had nothing to do with  the decay heat removal. 

– At Tepco’s

Fukushima Dai‐ichi

plant, there was a failure to meet the  Criterion 2 concerning external hazards, and this was a common 

cause for loss of all decay heat removal possibilities. The decay heat  removal systems as such would not have failed without the external  impact.

Page 30: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Removal of decay heat ‐

10 

30

17.12.2011   J.Laaksonen

Current state‐of‐the‐art in decay heat removalThe lessons learned from past accidents and from extensive analysis and 

testing have provided significant amount of knowledge on means to  prevent accidents caused by loss of the decay heat removal.

At the “third generation”

plants currently in operation or under  construction, it has been considered adequate to provide the following 

means for the decay heat removal:– High decree of redundancy and diversity of systems that can remove heat 

from the reactor core, both in a state with intact reactor coolant system and 

in a state with leaking coolant circuit. 

– Availability of two alternative ultimate heat sinks: open air and large water 

reservoir (sea, lake or river).

– High decree of redundancy and diversity in electrical power sources that  supply power to cooling circuits and control systems in all conceivable 

operating and accident conditions. 

Page 31: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Removal of decay heat ‐

11 

31

17.12.2011   J.Laaksonen

Current state‐of‐the‐art in decay heat removal (cont.)

It can be expected that the training of operators with full‐ scope simulators and the availability of proven emergency 

operating procedures permit the operators to use the  available means in an optimum manner and to avoid 

similar failures that led to the accident at TMI‐2.

Page 32: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Removal of decay heat ‐

12 

32

17.12.2011   J.Laaksonen

Current state‐of‐the‐art in decay heat removal (cont.)Based on the lessons from the TEPCO’s

Fukushima Dai‐ichi

accident, there 

is now serious consideration on additional means to provide decay  heat removal for a reasonable time without any electrical power.

For instance, in Finland a draft for a new rule is formulated as

follows: “The nuclear power plant shall have arrangements to enable the decay heat 

removal from the reactor and from the containment for at least eight hours in 

the event of loss of all those power sources and equipment that can be 

connected to plant’s AC power distribution systems. These arrangements shall 

be able to function without any material replenishments or recharging DC 

batteries, and the vital equipment needed for these arrangements

shall be 

protected from external and internal hazards as practicable. In addition, 

sufficient inventory of water and fuel and capability to recharge DC batteries 

shall exist on site to enable functioning of vital equipment for

the duration of 72 

hours.”

Page 33: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Containment of radioactive materials ‐

33

17.12.2011   J.Laaksonen

In the early days of nuclear era, containment of radioactive fission  products was not properly addressed:

– The designers of the first reactors thought that a remote location  provided an adequate protection of the general public. 

– The first military reactors used for plutonium production were  cooled directly with river or lake water.

– The respective gas cooled reactors were cooled directly by outside  air. 

The “first generation”

reactors were already built in quite densely  population areas, and their size was so large that the release of  significant part of radioactive fission products was not 

acceptable.

Page 34: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Containment of radioactive materials ‐

34

17.12.2011   J.Laaksonen

Lessons from Windscale

accident in 1957

Windscale

was graphite moderated and gas cooled plutonium production  reactor. 

In October 1957, a sudden release of potential energy accumulating in  crystal lattice under neutron bombardment took place in the graphite 

moderator of the reactor. It caused many failures in fuel cladding and  ignited a fire in graphite.

– Radioactive nuclides were released from the failed fuel directly

to the air. 

Estimated releases of iodine‐131 and cesium‐137 were about 3000 times 

less than respective releases from the Chernobyl accident. 

– No evacuation of the public was considered necessary but milk produced in 

an area of about 500 km2

was destroyed for a time of one month.

The Windscale

accident was an important contributor to establishing a  general concept of multiple barriers for preventing radioactive releases.

Page 35: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Containment of radioactive materials ‐

35

17.12.2011   J.Laaksonen

Insights from the study known as WASH‐740

In order to have some basis for the reactor site criteria, a study was made  on radiological consequences of “worst conceivable accident”

in a 500 

MWth

reactor. – Results were published in1957 in the report known as WASH‐740. 

– Due to a lack of experimental evidence, the study involved much 

engineering judgment and used pessimistic assumptions. For instance, it 

was postulated that air born release would be 50% of all fission

products 

and wind would blow directly to a city of 1 million people at 50

km distance.

– WASH 740 predicted up to 3400 death, up to 47000 injuries and a 

significant property contamination. 

– After issuing of WASH‐740 it was evident that a reactor containment for 

preventing large releases had to be made mandatory. 

First plant with a containment, Shippingport, was commissioned in  December 1957. A leak tight containment has been required in the

USA 

in all nuclear power plants built since then.

Page 36: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Containment of radioactive materials ‐

36

17.12.2011   J.Laaksonen

Containing radioactive releases from core meltdown accident

The TMI‐2 accident demonstrated that it is possible to maintain  containment integrity and to prevent practically any significant

releases after a partial core meltdown. 

At TMI‐2, the decay heat removal was lost only for a quite short  time and thus the loads to the containment were not extreme. 

The accident gave a strong boost to research of severe accident  phenomena. The goal was 

– to explore and understand the conditions to be expected after a full  core melt down accident and 

– to develop means for maintaining the containment integrity even  under the worst conceivable conditions.

Page 37: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Containment of radioactive materials ‐

37

17.12.2011   J.Laaksonen

Containing radioactive releases from core meltdown accident  (cont.)

Based on the encouraging results of the severe accident  research, some countries such as Sweden and Finland  issued rules in early 1980’s requiring that 

– all physical phenomena threatening the integrity of the  containment after a core meltdown accident had to be  considered and dedicated protective measures had to be 

provided to ensure the containment integrity. 

The requirement was intended to concern in the first instance  the design of new plants.

Page 38: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Containment of radioactive materials ‐

38

17.12.2011   J.Laaksonen

Containing radioactive releases from core meltdown accident  (cont.)

The Chernobyl‐4 accident was of such a nature that evidently no  containment had helped to avoid large releases.

Nevertheless, the serious consequences and great public concern gave a reason to study possibilities to contain a core meltdown  accident even at operating plants.

Page 39: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Containment of radioactive materials ‐

39

17.12.2011   J.Laaksonen

Containing radioactive releases from core meltdown accident  (cont.)

Today all nuclear power plants in Sweden and in Finland are back‐ fitted with new dedicated systems that are designed to take into

account all conceivable physical phenomena occurring after a  core meltdown, and to protect the containment integrity against 

each of them. 

For some systems the implementation took about 15 year of work,  including planning, experimental research, safety analysis, design, 

and installation.

Page 40: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Containment of radioactive materials ‐

40

17.12.2011   J.Laaksonen

Containing radioactive releases from core meltdown accident  (cont.)

In Europe, the Western European Nuclear Regulators’

Association  (WENRA) has agreed on safety objectives for new reactors to be built in 

Europe, and one of the objectives states: – “For accidents with core melt, design provisions have to be taken

so that 

only limited protective measures in area and time are needed for

the public 

(no permanent relocation, no need for emergency evacuation outside the 

immediate vicinity of the plant, limited sheltering, no long term restrictions 

in food consumption) and that sufficient time is available to implement 

these measures.”

The new IAEA Safety Standard SSR‐2, approved in September 2011, Safety  of Nuclear Power Plants: Design, provides essentially the same 

requirement for new plants.

Page 41: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Containment of radioactive materials ‐

41

17.12.2011   J.Laaksonen

Current state‐of‐the‐art in providing containment of  radioactive materials

Provision of leaktight

reactor containment has been one of the  basic requirements for nuclear power plants in most countries 

since 1957. – It has been proven in practice that containments with adequate 

strength and leaktightness

can be built. 

– The strength requirement for ensuring the reactor containment  integrity was initially based on the highest pressure that can be  expected after a large break LOCA. 

– Leaktightness

requirement for containments was already in 1962  specified on the basis of very high postulated release of radioactive 

materials inside the reactor containment.

Page 42: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Containment of radioactive materials ‐

42

17.12.2011   J.Laaksonen

Current state‐of‐the‐art in providing containment of  radioactive materials (cont.)

Research has demonstrated that meeting the LOCA peak pressure  requirement provides adequate strength for a containment to 

maintain its integrity even in connection with a severe accident when the containment is equipped with dedicated systems that  protect it from physical phenomena expected core meltdown, 

such as extensive hydrogen generation, gradual build‐up of high  pressure and temperature, and interaction of structures with 

molten core. 

The original LOCA leaktightness

requirement from 1962 gives  assurance on small releases also in connection with severe  accidents.

Page 43: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Protection of safety functions from hazards ‐

1

43

17.12.2011   J.Laaksonen

In the early years of nuclear power plant development,  protection against internal and external hazards received 

very little attention. 

The first version of 10 CFR 50, Appendix A, issued in 1969,  included a very general criterion on fire protection but no 

other hazards were explicitly mentioned.

Page 44: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Protection of safety functions from hazards ‐

2

44

17.12.2011   J.Laaksonen

The revision of Appendix A issued in 1971 took an important  step towards improved protection of safety systems 

against hazards. It contained three well formulated criteria:– Criterion 2—Design bases for protection against natural 

phenomena. 

– Criterion 3—Fire protection.

– Criterion 4—Environmental and dynamic effects design bases.

These criteria gave a good starting point for the designers and  regulators but certain events after issuing the criteria have 

shown the need for more stringent application than what  was initially thought.

Page 45: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Protection of safety functions from hazards ‐

3

45

17.12.2011   J.Laaksonen

Lessons learned from protection against extreme natural  phenomena

The criterion 2 of Appendix A states following: “Structures, systems, and components important to safety shall be

designed to withstand the effects of natural phenomena such as  earthquakes, tornadoes, hurricanes, floods, tsunami, and seiches without loss of capability to perform their safety functions. The 

design bases for these structures, systems, and components shall reflect: 

(1) Appropriate consideration of the most severe of the natural  phenomena that have been historically reported for the site and  surrounding area, with sufficient margin for the limited accuracy, 

quantity, and period of time in which the historical data have been  accumulated,

(2) appropriate combinations of the effects of normal 

and accident conditions with the effects of the natural phenomena  and (3) the importance of the safety functions to be performed.”

Page 46: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Protection of safety functions from hazards ‐

4

46

17.12.2011   J.Laaksonen

Lessons learned from protection against extreme natural  phenomena (cont.)

The natural hazards that have received most attention in the nuclear  safety research and in design are the earthquakes.

As concerns protection against seismic hazards we have a good reason  to state that experiences from Japan are most encouraging:

– Plants designed by competent engineers to withstand postulated seismic 

hazards have not suffered damages in the safety related parts although 

they have been hit by much larger earthquakes than the design bases 

earthquake. 

– Especially one should mention the Niigata Earthquake of July 2007 near 

Kashiwazaki‐Kariwa

and the Great Eastern Japan Earthquake of March 11, 

2011. 

– Similar positive experiences have been recorded in other countries, most 

recently in the USA at North Anna plant. 

Page 47: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Protection of safety functions from hazards ‐

5

47

17.12.2011   J.Laaksonen

Lessons learned from protection against extreme natural  phenomena (cont.)

• Unfortunately the tsunamis have not been considered in the design  in a manner that could be said to be in compliance with before 

mentioned Criterion 2 in 10 CFR 50, Appendix A.

• According to the statistics that I have found from the internet on  tsunamis having caused destruction on Japanese coasts have 

indicated that a high tsunami has been experienced several times

in  the 20th

century.

Page 48: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Protection of safety functions from hazards ‐

6

48

17.12.2011   J.Laaksonen

Lessons learned from the Browns Ferry fire in 1975In March 1975, a fire was experienced in the cable spreading 

room below the main control room of the Browns Ferry‐1  plant in the USA. It caused 

– a loss of control of many of the engineered safety features

– disturbances also at Browns Ferry‐2An NRC team set up to investigate the event found 

– lack of definitive criteria, codes, or standards related to fire prevention or fire protection in NPP’s

– need for revision of the criteria covering separation of redundant  control circuits and power cables

The findings started major revision of fire safety criteria and  guidance and research on fire safety was intensified. 

Page 49: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Protection of safety functions from hazards ‐

7

49

17.12.2011   J.Laaksonen

Lessons learned from the Browns Ferry fire in 1975 (cont.)The NRC team also recommended that the regulatory guidance 

regarding the proper balancing of the three factors identified  as defence‐in‐depth principles for fires be augmented:

1.

Preventing fires from getting started.

2.

Detecting and extinguishing quickly such fires that do get started  and limiting their damage.

3.

Designing the plant to minimize the effect of fires on essential functions.

Respective criteria have been adopted and implemented in other  countries.

Page 50: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Protection of safety functions from hazards ‐

8

50

17.12.2011   J.Laaksonen

Consideration of air plane crashesInitially the design basis air plane crash was selected on the basis 

of statistical data and its probabilistic analysis:– Main factors influencing the choice were the air routes and 

airports close to the plant site. 

– Also the frequency of military flights and statistics on military  plane crashes was considered. 

Depending on the plant, the design basis could be a crash of a  small four seat aircraft, a mid size passenger aircraft, or a 

military air craft used in the respective country. 

The protection was often provided by the outer shell of a double containment or an strengthened single containment.

Page 51: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Protection of safety functions from hazards ‐

9

51

17.12.2011   J.Laaksonen

Consideration of air plane crashes (cont.)After the malevolent plane crashes in New York on September 

11th

2001, there was a new public concern that led to more  stringent requirements. 

In the case of malevolent act the probabilistic considerations  were no more meaningful. Therefore the design basis required 

for new plants is crash of a large passenger plane. 

The new requirement has resulted in– significant strengthening of the reactor containments and safety

systems buildings

– in eliminating the risks from fires and vibrations inside the  buildings.

Experiments and analytical calculations have given confidence on adequate protection against largest plane crashes.

Page 52: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Protection of safety functions from hazards ‐

10

52

17.12.2011   J.Laaksonen

Current state‐of‐the‐art in protecting safety functions from  internal and external hazards

Physical protection of safety functions from external hazards has  received much attention in the design of “third generation”

nuclear power plants.

Protection against most hazards, including earthquakes, fires and  air plane crashes has achieved a state that gives good 

confidence on adequate protection. 

Many other hazards are being assessed in the ongoing safety re‐ evaluations that were started after the accident at TEPCO’s

Fukushima Dai‐ichi

plant.

A hazard that evidently needs more attention and improved  protection is tsunami.

Page 53: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Conclusions ‐

1

53

17.12.2011   J.Laaksonen

Controlling of all conceivable risks related to the operation  of nuclear power plants has been the main target in 

harnessing nuclear energy for electrical power generation. 

Specific concepts and criteria for assuring nuclear safety  have been created, and regulations and guidance have  been developed for designers. 

Formal systems have been established for quality assurance,  and licensing and regulatory framework has been 

implemented in all countries operating nuclear power  plants.

Page 54: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Conclusions ‐

2

54

17.12.2011   J.Laaksonen

Three severe accidents and a large number of unexpected  incidents with elevated accident risk have occurred in the 

history of nuclear power. 

These accidents and incidents have been investigated and  lessons have been learned for enhancing nuclear safety.

Re‐evaluation of certain hazards is underway in countries  operating nuclear power plants, and evidently will lead to 

further increase of safety margins against hazards.

Page 55: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Conclusions ‐

3

55

17.12.2011   J.Laaksonen

The experience has shown that nuclear safety can be  assured by providing three basic safety functions and by 

protecting the systems designed to implement those  functions against all conceivable hazards. 

Provision of the safety functions also requires high level of  skills from individuals dealing with nuclear power and 

good management of organizations in the nuclear field.

Safety culture in all of its forms needs to be emphasized  among individuals and organizations.

Page 56: “How can we assure nuclear safety?” - IAE · “How can we assure nuclear safety? ... Concepts for ensuring safety were conceived. ... • All light water reactors

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALENRADIATION AND NUCLEAR SAFETY AUTHORITY

Conclusions ‐

4

56

17.12.2011   J.Laaksonen

Judging from the past experience, including the accidents  and incidents, I am confident that it is possible to control 

nuclear power plants in a way that makes risk of future  accidents extremely small.

However, as a nuclear regulator I can never conclude that  the nuclear power plants under my responsibility are safe 

enough. At all times I have to ask “how can we make our  plants safer?”

And even if I would believe that perfection has been  achieved  in eliminating the risks of large radioactive 

releases, it is prudent to be prepared for accidents that  no one has been able to imagine in advance.