91
High Speed Downlink Packet Access (HSDPA) November 2006 1 High Speed Downlink Packet Access (HSDPA) Reiner Stuhlfauth Training Centre, Rohde & Schwarz

Hsdpa Technology Training Korea Nov2006

Embed Size (px)

Citation preview

Page 1: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 1

High Speed Downlink Packet Access(HSDPA)

Reiner StuhlfauthTraining Centre, Rohde & Schwarz

Page 2: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 2

Motivation:

Release 99 Capabilities for Downlink Packet DataFocus of HSDPA

Page 3: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 3

MotivationRelease 99 Capabilities for Downlink Packet Data

WCDMA release 99 supports:

� Quality of service

� Multimedia services

� Peak data rates of up to (theoretically) 2 Mbps

� 10 ms frame size

� Packet data transmission via� Dedicated channels

� RACH/FACH channels

� Downlink shared channel (DSCH) Notimplementedin products

Only for smallpackets

Limitedefficiency

Page 4: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 4

MotivationRelease 99 Functional Split

DriftRNC

ServingRNC

MSC

SGSN

RNC = Radio Network Controller

SGSN = Serving GPRS Support Node

MSC = Mobile Switching Center

Iub Iur Iu

•Fast power control•Overload control

• Admission control• Initial power and SIR setting• Radio resource reservation• Air interface scheduling for common channels• Downlink code allocation• Overload control

• Mapping RAB QoS parameters into air interface• Air interface scheduling for dedicated channels• Handover control• Outer loop power control and power balancing

Radio network topologyhidden to core network

Page 5: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 5

MotivationFocus of HSDPA

HSDPA is a 3GPP release 5 feature for UMTS FDD/TDD.

Main focus: Enhancements for downlink packet data

� Background Servicesemail delivery, file download, telematics

� Interactive Servicesweb browsing, data base retrieval, server access

� Streaming Servicesaudio/video streaming

Mobility: 0-30 km/h (pedestrian – low speed vehicular)

Page 6: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 6

MotivationReduced Costs and Higher Revenue

Attract new subscribersdue to new services

Decreased costs per bitfor the operator

Downlink peakdata rates

up to 14 Mbit/s

Increased cell anduser throughput

Reduced delay

Page 7: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 7

Technology Overview:

Key FeaturesImpact on Radio Access Network Architecture

PrincipleChannel Structure

Page 8: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 8

Technology OverviewKey Features of HSDPA (I)

Shared Channel transmission:• Channelization codes and transmission power in a cell

are dynamically shared between users.

• A new transport channel High Speed Downlink SharedChannel (HS-DSCH) is introduced.

Adaptive modulation and coding (AMC):• Adaptation of transmission parameters to radio

conditions and terminal capability

• Modulation schemes:– 16-QAM (Quadrature Amplitude Modulation): UE capability– QPSK (Quadrature Phase Shift Keying): mandatory for UE

Page 9: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 9

HSDPA modulation, QPSK + 16 QAMQuadratur Phase Shift Keying

Qt

I

Q

ϕ

Quadraturcomponent

Inphasecomponent

Q(t)

I(t)

It

Q

I

16-QAM

16 Quadratur Amplitude Modulation

1 modulation symbol = 2 bits 1 modulation symbol = 4 bits

Page 10: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 10

Technology OverviewKey Features of HSDPA (II)

Hybrid automatic-repeat-request (HARQ)• Improving robustness against link adaptation errors• UE rapidly requests retransmissions of erroneously receveived data• UE can combine information from the original transmission with that of

later retransmissions (Soft Combining)Fast scheduling in the Node B instead of RNC

• Moving scheduling and processing of retransmissions closer to airinterface

• New MAC-hs (Medium Access Control – high speed) protocol entity inthe Node B

Short transmission time interval of 2ms• Accelerating packet scheduling for transmission

Page 11: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 11

HSDPA: Capacity aspects

+⋅⋅=NSTBC 1log 2

Capacity aspects:

How does HSDPA increase the capacity per user?

1.) Possibility of code combination

2.) Introduction of 16-QAM modulation scheme

3.) Permission of link adaption -> dynamic channel coding

Page 12: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 12

Technology OverviewImpact on Radio Access Network Architecture

Core Network

Radio Network Controller (RNC)

Node B:Scheduling, Adaptive

modulation/coding, HARQ

Node B:Scheduling, Adaptive

modulation/coding, HARQ

UTRAN

UE

Page 13: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 13

Technology OverviewPrinciple Node B:

HS-DPCCH:

Channel Quality (CQ

I)

Packet ACK/NACK

HS-(P)DSCH User DataHS-SCCH Scheduling Information

Generation ofScheduling Information

for the User Databased on User Feedback

HS-D

PCCH

Chan

nel Q

ualit

y (CQ

I)

Pack

etAC

K/NAC

K

UE1 UE2

High SpeedShared Control

Channel

High Speed DedicatedPhysical Control Channel

High Speed(Physical) Downlink

Shared Channel

Page 14: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 14

Technology OverviewChannel Structure

• The HS-DSCH is associated with one downlink Dedicated Physical Channel (DPCH), and one or severalHigh Speed Shared Control Channels (HS-SCCH).

• The number of HS-SCCHs in a HS-SCCH set as seen from the UE can range from a minimum of 1 to amaximum of 4 HS-SCCHs.

Downlink DPCH (R99)Node B UE

HS-DPCCH

Shared Control Channel (HS-SCCH) #1

HS-DSCH

Uplink DPCH (R99)

ACK/NACKQuality indication

Data

Shared Control Channel (HS-SCCH) #2

Shared Control Channel (HS-SCCH) #3

Shared Control Channel (HS-SCCH) #4

Transport Format /Resource IndicatorHARQ Information

Page 15: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 15

New Physical and Transport Channels

HS-(P)DSCHHigh Speed (Physical) Downlink Shared Channel

Page 16: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 16

HSDPA: subframe structure

Radio Frame

10 ms38400 chips

at a chip rate of 3.84 MChips/s

....

666,6 µs2560 chips

at chip rate of 3.84 MChips/s

....

Slot #0 Slot #14

HSDPA subframe = 3 slots2 ms total time

HSDPA subframe versus Rel-99 frame structure

Page 17: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 17

New Physical and Transport ChannelsStructure of Downlink HS-PDSCH

• Spreading Factor 16• Assignment of multiple channelization codes to one UE possible

Slot #0 Slot#1 Slot #2

Tslot = 2560 chips

320 bits for QPSK, 640 bits for 16QAM

1 subframe of 3 slots: 2 ms

HS-DSCH transport channelwith user data

HS-DSCH:transport channel

HS-PDSCH:physical channel

Page 18: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 18

New Physical and Transport ChannelsHS-PDSCH Code Allocation

SF=1

SF=2

SF=4

SF=8

SF=16

SF=32

SF=64

SF=128

SF=256

2,0

2,1

4,08,0

16,032,0

64,0128,0

256,1

256,3256,4256,5256,6256,7256,8256,9

256,10

256,11256,12256,13256,14256,15

16,15

16,116,216,316,416,516,616,716,816,9

16,1016,1116,1216,1316,14

8,1

8,2

8,3

8,4

8,5

8,6

8,7

4,1

4,2

4,3 256,249256,250256,251256,252256,253256,254256,255

256,248

1,032,1

32,31

64,1

64,2

64,3

64,62

64,63128,126

128,127

256,2

128,125

128,124

128,1

128,2

128,3

128,4

128,5

128,6

128,7

32,30

::

256,0All possible HS-PDSCH codes

Possible HS-SCCH codes (example)

CPICHP-CCPCHblocked

Page 19: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 19

New Physical and Transport ChannelsHS-DSCH Coding Chain

CRC attachment toeach transport block

Code block segmentation

Channel Coding

Physical Layer Hybrid-ARQfunctionality

Bit Scrambling

PhCH#1 PhCH#P

Physical channel mapping

HS-DSCH Interleaving

Physical channelsegmentation

Constellation Re-arrangement for

16QAM

Data arrives to the coding unit in form of a maximum ofone transport block once every transmission time interval.

Turbo Coding Rate 1/3

Page 20: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 20

New Physical and Transport ChannelsConstellation Rearrangement

b=0 b=1

b=2 b=3

Page 21: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 21

New Physical and Transport ChannelsHS-DSCH Coding Chain: Example

Example: Coding rate for Fixed reference Channel H-Set 1 (QPSK)acc. to 3GPP TS 25.101:

Equivalent to nom. average information bit rateof 534 kbps (=3202 bits / 3 (Inter TTI) / 2ms)

CRC length = 24 bits for HS-DSCH

Code Rate = 0,67(= 3202 information bits / 4800 binary channel bits per TTI)5 HS-PDSCHs

Rate matching to number of SoftChannel Bits available for this

HARQ process (9600 bits)

Inf. Bit Payload

CRC Addition

Turbo-Encoding(R=1/3)

3202

Code BlockSegmentation

1st Rate Matching 9600

Tail Bits129678

3226

CRC243202

Redundancy VersionSelection

4800

Physical ChannelSegmentation 960

Page 22: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 22

New Physical and Transport Channels

HS-SCCHHigh Speed Shared Control Channel (Downlink)

Page 23: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 23

New Physical and Transport ChannelsHS-SCCH Usage

HS-DSCH

I would like to receive databut I don‘t know where my

HS-DSCH resources are andhow they look like. ?

HS-SCCH

Read the 1st HS-SCCH slotfor HS-DSCH channelization

codes and modulationscheme.

Then, the 2nd and 3rd HS-SCCHslot will tell you aboutTransport block size information,Hybrid-ARQ process information,Redundancy/constellation version,New data indicator.

Page 24: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 24

New Physical and Transport ChannelsStructure of Shared Control Channel (HS-SCCH)

• The HS-SCCH is a fixed rate (60 kbps, SF=128) downlink physical channelused to carry downlink signalling related to HS-DSCH transmission

Slot #0 Slot#1 Slot #2

Tslot = 2560 chips

Data = 40 bits

1 subframe = 2 ms

Page 25: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 25

New Physical and Transport ChannelsTiming Relation between HS-SCCH and HS-PDSCH

• Start of HS-SCCH subframe #0 is aligned with start of P-CCPCH frames.• The HS-PDSCH starts

τHS-PDSCH = 2×Tslot = 5120 chips

after the start of the HS-SCCH.

HHSS--SSCCCCHH

HHSS--PPDDSSCCHH

3×Tslot = 7680 chips

3×Tslot 7680 chips

HS-DSCH sub-frame

τHS-PDSCH (2*Tslot = 5120 chips)

Page 26: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 26

New Physical and Transport ChannelsHS-SCCH Contents

� Channelization Code Set information (7 bits)� Modulation scheme information (1 bit)� Transport block size information (6 bits)� Hybrid-ARQ process information (3 bits)� Redundancy and constellation version (3 bits)� New data indicator (1 bit)� UE identity (16 bits) = H-RNTI

Page 27: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 27

New Physical and Transport ChannelsHS-SCCH: Signalling of HS-PDSCH Code Allocation

C lus

t er c

ode

Indi

cato

r(3b

its)

Tree offset indicator (4 bits)

0 (1/15)

1 (2/14)

2 (3/13)

3 (4/12)

4 (5/11)

5 (6/10)

6 (7/9)

7 (8/8)

0 10 11 12 13 14 151 2 3 4 5 6 7 8 9

Decoding notation

Number ofmulti-codesOffset fromleft/right in codetree (SF=16)

11213141516171

12223242526272

13233343536373

14243444546474

15253545556575

16263646566676

17273747576777

18283848586878

7988

192939495969

6109787

110210310410510

5111069686

111211311411

4121151059585

112212312

3131241141049484

113213

2141331231131039383

114

1151421321221121029282

1511411311211111019181Redundant area

SF=16

Code ‘0’ isreserved forcommonchannels

Code offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P=5O=7

code group indicator:xccs,1, xccs,2, xccs,3 = min(P-1,15-P)code offset indicator:xccs,4, xccs,5, xccs,6, xccs,7 = |O-1-P/8 *15|

A cluster of codescan be allocated to a UE:C ch,16,O … C ch,16, O+P-1

Signalled on HS-SCCH ->

Page 28: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 28

New Physical and Transport ChannelsHS-SCCH: Signalling of Transport Block Size

............

65541731430881613

64381721405871492

63241711380861371

TB SizeIndexTB SizeIndexTB SizeIndex

• The Transport Block Size used on HS-DSCH is not signalled explicitly on HS-SCCH• Instead, a Transport Block Size Index ki is signalled which indicates the transport block size:

……4

7943

6332

4021

11QPSK0

Number ofchannelizationcodes

Modulationscheme

Combination iik ,0

Table according to 3GPP TS 25.321, extract from QPSK section

First step:Modulation scheme and number ofchannelization codes as signalledon HS-SCCH determine value k0,i

Second step:Index kt = ki + k0,i determinesHS-DSCH transport block size

Table according to 3GPP TS 25.321, 254 entries in total

kt = ki + k0,i

Page 29: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 29

New Physical and Transport ChannelsHS-SCCH: Signalling of Transport Block Size

Transportation Block Size

Minimum137 bits

Maximum25558 bits

Possible transportation blockSizes complying with

the modulation scheme and number ofHS-PDSCH‘s

Begin depends onParameters: Modulation

scheme and number of HS-PDSCH‘s

Page 30: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 30

New Physical and Transport Channels

HS-DPCCHHigh Speed Dedicated Physical Control Channel (Uplink)

Page 31: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 31

New Physical and Transport ChannelsHS-DPCCH Usage – ACK/NACK

HS-DSCH

All the HS-DSCH data Ireceive is incorrect!

Send me a NACK, maybeI can do something foryou and send the same

packet again.

Maybe I will even send you anew redundancy version.This could increase theprobability that you can

decode the data.

HS-DPCCH:NACK

Page 32: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 32

New Physical and Transport ChannelsHS-DPCCH Usage – CQI

HS-DSCH

I have to deliver regularreports about the channelquality I experience but I

have to do a lot ofcalculations for this.

These reports really help mein deciding who gets the

next data packet and how Ihave to format it.

HS-DPCCH:CQI (Channel Quality Indication)

Page 33: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 33

New Physical and Transport ChannelsStructure of Uplink HS-DPCCH

Subframe #0 Subframe #i Subframe #4

HARQ-ACK CQI= Channel Quality Information

One radio frame Tf = 10 ms

One HS-DPCCH subframe (2 ms)

2×Tslot = 5120 chipsTslot = 2560 chips

• The spreading factor of the HS-DPCCH is 256 (10 bits per uplink slot)• The HS-DPCCH can only exist together with an UL DPCCH (Ded. Phys. Control Channel).• The DPDCH (Dedicated Physical Data Channel), the DPCCH and the HS-DPCCH are I/Q

code multiplexed.

Page 34: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 34

New Physical and Transport ChannelsSpreading for Uplink DPCCH, DPDCHs and HS-DPCCH

j

cd,1 β d

Sdpch,n

I+jQ

DPDCH1

Q

cd,3 β d

DPDCH3

cd,5 β d

DPDCH5

cd,2 β d

DPDCH2

cd,4 β d

cc β c

DPCCH

Σ

S

chs

HS-DPCCH

DPDCH4

chs

HS-DPCCHβ hs

β hs

cd,6 β d

DPDCH6

Scrambling

HS-DPCCH

maximum number ofDPDCH is even

maximum number ofDPDCH is odd

Page 35: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 35

5/1506/1518/1529/15312/15415/15519/15624/15730/158

Signalling values for∆ ACK,∆ΝACK and ∆CQI

New Physical and Transport ChannelsGain Factors for UL HS-DPCCH•Power offset ∆HS-DPCCH for each HS-DPCCH slot

•∆HS-DPCCH = ∆ACK for slots carrying ACK

•∆HS-DPCCH = ∆NACK for slots carrying NACK

•∆HS-DPCCH = ∆CQI for slots carrying CQI

•Gain factor βhs defined as

Signalled by higher layers(values 0…8)

∆ −

⋅= 2010DPCCHHS

chs ββ

Quantized amplituderatios for

∆ −

2010DPCCHHS

Page 36: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 36

New Physical and Transport ChannelsTiming Relations for UL HS-DPCCH

m = (TTX_diff /256 ) + 101

TTX_diff is the difference in chips (TTX_diff =0, 256, ....., 38144) between the transmit timing of thestart of the related HS-PDSCH and the transmit timing of the start of the related downlink DPCH frame

m therefore takes one of a set of five possible values according to the 5 possible transmission timingsof HS-DSCH sub-frame relative to the DPCH frame boundary.

UplinkDPCH

HHSS--PPDDSSCCHHaatt UUEE

UUpplliinnkkHHSS--DDPPCCCCHH

Slot #0 Slot #1 Slot #2 Slot #3 Slot #4 Slot #5 Slot #6 Slot #7 Slot #8 Slot #9 Slot #10 Slot #11 Slot #12

τUEP ≈19200 chips = 7,5 slots

m*256 chips

Tslot = 2560 chips

3 * Tslot = 7680 chips

Page 37: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 37

New Physical and Transport ChannelsRound Trip Timing

HS-SCCH Retransmit

HS-PDSCH Retransmit

A/N CQI

18 slots = 12 ms

3 slots2 slots

2 slots

Minimum retransmission delay = 12 ms

2* Tprop + 15.5 slots A

A = Processing times in L1 and MAC-hs

Page 38: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 38

New Physical and Transport ChannelsMore Timing Relations

k:thS-CCPCH

AICH accessslots

SecondarySCH

PrimarySCH

τS-CCPCH,k

10 ms

τPICH

#0 #1 #2 #3 #14#13#12#11#10#9#8#7#6#5#4

Radio framewith (SFN modulo 2) = 0 Radio framewith (SFN modulo 2) = 1

τDPCH,n

P-CCPCH

Any CPICH

PICH for k:thS-CCPCH

n:th DPCH

10 ms

Subframe#0

HS-SCCHSubframes

Subframe#1

Subframe#2

Subframe#3

Subframe#4

Why this timing?

Page 39: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 39

Timing TDPCH of each DPCH – usage

t

+1

-1T 2T

x1(t) = d1(t ) * c1(t)

t

+1

-1T 2T

x(t) = x1(t) + x2(t)

t

+1

-1T 2T

+2

-2

x2(t) = d2(t ) * c2(t)

Sum

0 -> +11 -> -1

Spreaded signals are added in a multi-user scenario,e.g. downlink signal from node B.This will engender an impact on the amplitude ofthe sum signal.

Problem:If the input signal from each user DPCH willhave the same content, like it is in the periodof e.g. the Pilot bits -> The Crest Factor willrise!

Solution:Node B will set a timing TDPCH for eachDownlink DPCH individually to „randomize“ the signal behaviour

Page 40: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 40

High Speed Downlink Packet AccessDL DPCH Timing Offset

P-CCPCH

DL-DPCH

HS-SCCH

HS-PDSCH

UE timing

2slots

T_dpch_offset

1 Radio Frame = 10 ms

Propagation Delay

DL-DPCH

T_txdiff

HS-PDSCH

UL-DPCH

HS-DPCCH

T_dl_ul_offset = 1024 chips

T_UlDpch-HsDpcch = (T_txdiff + 101)*256 chips

Propagation Delay

7.5 slots

DPCH offset 21�alignment ofUL DPCH andHS-DPCCH

Page 41: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 41

High Speed Downlink Packet AccessDL DPCH Timing Offset

P-CCPCH

DL-DPCH

HS-SCCH

HS-PDSCH

UE timing

2slots

T_dpch_offset

1 Radio Frame = 10 ms

Propagation Delay

DL-DPCH

T_txdiff

HS-PDSCH

UL-DPCH

HS-DPCCH

T_dl_ul_offset = 1024 chips

T_UlDpch-HsDpcch = (T_txdiff + 101)*256 chips

Propagation Delay

7.5 slots

DPCH offset 22�10% overlap ofUL DPCH andHS-DPCCH

Page 42: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 42

High Speed Downlink Packet AccessDL DPCH Timing Offset

P-CCPCH

DL-DPCH

HS-SCCH

HS-PDSCH

UE timing

2slots

T_dpch_offset

1 Radio Frame = 10 ms

Propagation Delay

DL-DPCH

T_txdiff

HS-PDSCH

UL-DPCH

HS-DPCCH

T_dl_ul_offset = 1024 chips

T_UlDpch-HsDpcch = (T_txdiff + 101)*256 chips

Propagation Delay

7.5 slots

DPCH offset 26�50% overlap ofUL DPCH andHS-DPCCH

Page 43: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 43

High Speed Downlink Packet AccessDL DPCH Timing Offset

� DL DPCH timing offset results in a propable„non slot alignment“ between HS-DPCCH and the DPCHslot

� 1 slot = 2560 chips = 10 symbols

50% overlap

slotalignment

Remark

1102938475665748392

0110

realtive timing difference DPCH vs. HS-DPCCH(symbols)

T_dpch_offset(symbols)

Page 44: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 44

Data Rates10 or 14 Mbps?

Page 45: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 45

Data RatesHow are 14.4 Mbps derived?

• 1 slot HS-PDSCH (equivalent to 10 ms / 15 = 666.7 us) using 16 QAM contains 640 bits

• Maximum 15 HS-PDSCH codes can be allocated to a UE

• 15 HS-PDSCHs therefore result in a gross bit rate of

15* 640 bits / 666.7 us = 14.4 Mbps This does not include any channelcoding and is therefore a rather

theoretical value

Slot #0 Slot#1 Slot #2

Tslot = 2560 chips

320 bits for QPSK, 640 bits for 16QAM

1 subframe of 3 slots: 2 ms

Page 46: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 46

Data RatesUser Equipment Classes

28800363015Category 12*

14400363025Category 11*

17280027952115Category 10

17280020251115Category 9

13440014411110Category 8

11520014411110Category 7

67200729815Category 6

57600729815Category 5

38400729825Category 4

28800729825Category 3

28800729835Category 2

19200729835Category 1

Total numberof soft channel

bits

Maximum number ofbits of an HS-DSCH

transport blockreceived within

an HS-DSCH TTI

Minimuminter-TTIinterval

Maximumnumber of HS-DSCH codes

received

HS-DSCH category

1.2 Mbps class

3.6 Mbps class

7 Mbps class

10 Mbps class

*QPSK only

3GPP

TS

25.3

06

Page 47: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 47

Adaptive Modulation and Coding

MotivationPrinciple

Channel Quality Reporting

Page 48: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 48

Adaptive Modulation and CodingPrinciple

� HS-DSCH data rate is adjusted bymodifying

� modulation scheme

� effective code rate

� number of HS-PDSCH codes

� Decision based on channel quality reportsfrom UE

HS-DSCH,e.g. 16QAM,code rate 3/4

HS-DSCH,e.g. QPSK,code rate 1/2

Page 49: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 49

Adaptive Modulation and CodingChannel Quality Reporting

HS-DSCH modulation /coding adapted acc. toproposed CQI

HS-DPCCH:proposed CQI(every 2ms…160ms)

……………

-216-QAM5716824

-116-QAM5716823

016-QAM5716822

016-QAM5655421

016-QAM5588720

016-QAM5528719

016-QAM5466418

016-QAM5418917

016-QAM5356516

0QPSK5331915

0QPSK4258314

0QPSK4227913

0QPSK3174212

09600……………

XRV

NIRReferencepower

adjustment ∆Modulati

on

Numberof

HS-PDSCH

TransportBlock Size

CQIvalue

UE proposes CQI value so thatHS-DSCH transport block errorprobability would not exceed 0.1

Table according to 3GPP TS 25.214

Page 50: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 50

Adaptive Modulation and CodingChannel Quality Reporting

……………

-216-QAM5716824

-116-QAM5716823

016-QAM5716822

016-QAM5655421

016-QAM5588720

016-QAM5528719

016-QAM5466418

016-QAM5418917

016-QAM5356516

0QPSK5331915

0QPSK4258314

0QPSK4227913

0QPSK3174212

09600……………

XRV

NIRReferencepower

adjustment ∆Modulati

on

Numberof

HS-PDSCH

TransportBlock Size

CQIvalue

3GPP TS 25.214 contains 5different tables for:

� Categories 1-6

� Categories 7-8

� Category 9

� Category 10

� Categories 11,12

Each table contains definitions forCQI values 0…30

Page 51: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 51

Adaptive modulation and coding (AMC)

Tests 1&2 2codesx4TS

0

200

400

600

800

1000

1200

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SIR (dB)

Thro

ughp

ut (b

its/s

ub-fr

ame)

QPSK 240 QPSK 253QPSK 267 QPSK 282QPSK 298 QPSK 315QPSK 332 QPSK 351QPSK 370 QPSK 391QPSK 413 QPSK 436QPSK 461 QPSK 487QPSK 514 QPSK 543QPSK 573 QPSK 605QPSK 639 QPSK 67516-QAM 675 16-QAM 71216-QAM 752 16-QAM 79416-QAM 839 16-QAM 88616-QAM 936 16-QAM 98816-QAM 1043 16-QAM 110216-QAM 1163

Page 52: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 52

CQI encoding with (20,5) code

SIR

Thr

ough

put

high

low

highlow

≡CQIn

≡CQIn-1

≡CQIn-2

≡CQIn+2

≡CQIn+1

Prevailing conditions of SIR

Optimumthroughput if the UE

reports CQIn

SIR changes, CQI reporting must follow!

If misunderstandingof CQI leeds to

usage of CQI closeto optimum, impact

is not too serious

If misunderstandingof CQI leeds to

usage of CQI remoteto optimum, impactis serious-> data rate

slumps down

CQI is using (20,5) code to reduce mean BER, like e.g. Gray encoding

Page 53: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 53

New Physical and Transport ChannelsChannel Coding for CQI

•Channel Coding for CQI is using a (20,5) code

•Code words of the (20,5) code are a linear combinationof the 5 basis sequences denoted Mi,n

•Channel quality information bits are converted to binaryrepresentation: a0, a1, a2, a3, a4

•Output bits bi are then given by:

i = 0…19

1000019100001810000171000016100001511111141111013111011211100111101110110109110018110007101116101105101014101003100112100101100010

Mi,4Mi,3Mi,2Mi,1Mi,0i

2mod)( ,

4

0Mab ni

nni ×=∑

=

Page 54: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 54

Adaptive Modulation and CodingChannel Quality Reporting

……………

-216-QAM5716824

-116-QAM5716823

016-QAM5716822

016-QAM5655421

016-QAM5588720

016-QAM5528719

016-QAM5466418

016-QAM5418917

016-QAM5356516

0QPSK5331915

0QPSK4258314

0QPSK4227913

0QPSK3174212

09600……………

XRV

NIRReferencepower

adjustment ∆Modulati

on

Numberof

HS-PDSCH

TransportBlock Size

CQIvalue

Example: UE proposes CQI value 19.

CQI value 19 corresponds to

�Transport Block Size 5287 bits

�5 HS-PDSCHs

�16QAM Modulation

UE assumes:

� HS-DSCH power [dB]:

�Γ signalled by higher layers

�Virtual IR buffer NIR

�Redundancy version XRV

∆+Γ+= CPICHHSPDSCH PP

Page 55: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 55

Hybrid ARQ

Protocol DefinitionMotivationPrinciple

HS-DSCH Coding ChainPhysical Layer HARQ Functionality

Redundancy Version CodingHARQ Processes

Page 56: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 56

Hybrid ARQProtocol Definition

• ARQ / Automatic Repeat Request:Receiver detects errors and requests retransmissions of erroneous packets

• HARQ / Hybrid-ARQ:• Coding is applied to transmission packets

• Receiver does not delete received symbols when decoding failsbut combines the new transmission with the old one in the buffer

• Two ways of operating:•Identical retransmission (Chase Combining)•Non-identical retransmission (Incremental Redundancy)

Data

NACK

Data

ACK

Page 57: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 57

Hybrid ARQChase Combining

Turbo Encoder output (36 bits)

Rate Matching to 16 bits (Puncturing)

Chase Combining at receiver

Systematic BitsParity 1Parity 2

Systematic BitsParity 1Parity 2

Systematic BitsParity 1Parity 2

Original Transmission Retransmission

Page 58: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 58

Hybrid ARQIncremental Redundancy

Turbo Encoder output (36 bits)

Rate Matching to 16 bits (Puncturing)

Incremental Redundancy Combining at receiver

Systematic BitsParity 1Parity 2

Systematic BitsParity 1Parity 2

Systematic BitsParity 1Parity 2

Original Transmission Retransmission

Page 59: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 59

Hybrid ARQMotivation

Limitations of Adaptive Modulation and Coding:- accuracy of CQI reporting- effect of delay

HARQ can be understood as an implicit link adaptation technique:- Does not rely on explicit C/I or similar measurements- Link layer acknowledgements are used for re-transmission decisions- Autonomously adapts to the instantaneous channel conditions- Insensitive to measurement error and delay

AMC provides the coarse data rate selection.

H-ARQ provides for fine data rate adjustment basedon channel conditions.

Combination ofAMC and HARQ

Page 60: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 60

Hybrid ARQHS-DSCH Coding Chain

CRC attachment toeach transport block

Code block segmentation

Channel Coding

Physical Layer Hybrid-ARQfunctionality

Bit Scrambling

PhCH#1 PhCH#P

Physical channel mapping

HS-DSCH Interleaving

Physical channelsegmentation

Constellation Re-arrangement for

16QAM

Data arrives to the coding unit in form of a maximum ofone transport block once every transmission time interval.

Redundancy Versiondetermined byparameters r and s

Constellationdetermined byparameter b

Signalled to UEon HS-SCCH

Signalled to UEon HS-SCCH

Turbo Coding Rate 1/3

Page 61: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 61

Hybrid ARQPhysical Layer HARQ Functionality (I)

RM P1_1

RM P2_1

RM S

RM P1_2

RM P2_2

Nsys

Np1

Np2

Nt,sys

Nt,p1

Nt,p2

First RateMatching

VirtualIR Buffer

Second RateMatching

Systematic bits

Parity 1 bits

Parity 2 bits

RV Parameterss and r

Fromturbocoder

matches the number of bits to thenumber of soft channel bits available inthe virtual IR buffer (puncturing)

To P

hysi

calC

hann

elS

egm

enta

tion

IR buffer size canbe configured

matches the number of bits to the number ofphysical channel bits in the HS-PDSCH set;generates different redundancy versionswhich mainly influences HARQ performance

Turbo Coder outputs Systematic bitsand two streams of parity bitsSystematic bits are identical to the inputbits to the turbo coder

Page 62: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 62

Hybrid ARQPhysical Layer HARQ Functionality (II)

RM P1_1

RM P2_1

RM S

RM P1_2

RM P2_2

Nsys

Np1

Np2

Nt,sys

Nt,p1

Nt,p2

First RateMatching

VirtualIR Buffer

Second RateMatching

Systematic bits

Parity 1 bits

Parity 2 bits

From

turb

oco

der

3* 7

20 b

its=

2160

bits

are

arriv

ing

To P

hysi

calC

hann

elS

egm

enta

tion,

96

0 bi

tsav

aila

ble

on H

S-P

DS

CH

Example assumptions:

• 1 HS-PDSCH code with QPSK available (960 bits)

• 720 bits input to turbo coder -> (720 * 3) bits output of turbo coder

• Virtual IR buffer size = 1920 bits

Virtual IRbuffer size= 1920 bits

720 bits

720 bits

720 bits

2160 bits have to be matched to1920 bits by puncturing (-11%)

1920 bits have to be matched to960 bits by puncturing (-50%),

Page 63: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 63

Hybrid ARQSignalling of Redundancy Version (QPSK) on HS-SCCH

Redundancy Version Coding Sequences are signalled on HS-SCCH, example:-{0,2,5,6}: one initial transmission + 3 retransmissions with different r and s parameters

307

316

205

214

103

112

001

010

rsXrv(value)

Initial transmission

1st retransmission

2nd retransmission

3rd retransmission

s=1: systematic bits are prioritizeds=0: non systematic bits are prioritized

r (range 0 to 3 for QPSK) influences:• input parameter of puncturing or

(together with s) of repetitionalgorithm defined in TS 25.212

• selection of parity bits

Page 64: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 64

Hybrid ARQSignalling of Redundancy Version (16QAM) on HS-SCCH

0117

3016

2015

1014

1103

1112

0001

0010

brsXrv (value)

Redundancy Version Coding Sequences are signalled on HS-SCCH, example:-{6,4,0,5}: Chase combining (no change in s and r parameters, i.e. same redundancyversion) with 4 possible constellations

Initial transm.

3rd retransm.1st retransm.

2nd retransm.

Definition ofparameter s asfor QPSK

r (range 0 to 1 for 16QAM) influences inputparameter of puncturing or (together with s) ofrepetition algorithm defined in TS25.212 and thusselection of parity bits

b (range 0 to 3) describesconstellation rearrangementto average reliability of bits

Page 65: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 65

HARQ principle: Multitasking

t

BS, Tx

UE, Tx

Data Data

∆t

Demodulate, decode, descramble,despread, check CRC, etc.

ACK/NACK

Minimum processing time for UEreceiver

Data Data

UE, Tx Demodulate, decode, descramble,despread, check CRC, etc.

Remark, for being able to receive an Inter-TTI of 1 it is required tohandle 6 parallel HARQ processes

ACK/NACK

Page 66: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 66

Hybrid ARQHARQ Processes

asynchronous DL - synchronous UL

Number of H-ARQ processes = 1..8 per UE

Page 67: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 67

MAC-hs Protocol Entity

Overall Protocol ArchitectureFunctions and Architecture UTRAN and UE Side

MAC-d Flows and Priority Queue HandlingMAC-hs Protocol Data Unit

MAC-hs Reset

Page 68: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 68

MAC-hs Protocol EntityProtocol Architecture with New MAC-hs Protocol

L2

L1

HS-DSCH

FP

RLC

L2

L1

HS-DSCH

FP

Iub/ Iur

PHY

MAC

PHY

RLC

Uu

MAC-hs

MAC-d

New protocol entity in Node BOne entity for each cell supporting HSDPA

UE

Node B

RNC

MAC = Medium Access ControlRLC= Radio Link ControlFP = Frame Protocol

Page 69: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 69

MAC-hs Protocol EntityUE Side MAC Architecture

MAC-d

FACH RACH

DCCH DTCHDTCH

DSCH DCH DCH

MAC Control

USCH( TDD only )

CPCH( FDD only )

CTCHBCCH CCCH SHCCH( TDD only )

PCCH

PCH FACH

MAC-c/sh

USCH( TDD only )

DSCH

MAC-hs

HS-DSCH

Associated UplinkSignalling

Associated DownlinkSignalling

Page 70: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 70

MAC-hs Protocol EntityUE Side MAC-hs Architecture

MAC-hs

MAC – Control

Associated Uplink Signalling

To MAC-d

Associated Downlink Signalling

HS-DSCH

HARQ

Reordering Reordering

Re-ordering queue distribution

Disassembly Disassembly

Page 71: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 71

NBAP: HS-DSCH Information to Modify (Extract)

9.2.1.52BM>>>RLC Mode

9.2.1.38AM>>>>MAC-d PDU Size9.2.1.53IM>>>>SID

1..<maxnoofMACdPDUindexes>

>>>MAC-d PDU Size Index9.2.1.38AaO>>>MAC-hs Guaranteed Bit Rate9.2.1.38BM>>>MAC-hs Window Size9.2.1.24EO>>>Discard Timer9.2.1.56aM>>>T19.2.1.53HM>>>Scheduling Priority Indicator

Shall only refer to an HS-DSCHMAC-d flow already existing in theold configuration.Multiple Priority Queues can beassociated with the same HS-DSCH MAC-d Flow ID.

HS-DSCHMAC-d FlowID 9.2.1.31I

M>>>Associated HS-DSCH MAC-dFlow

9.2.1.49CM>>>Priority Queue ID>>Add Priority Queue

M>CHOICE Priority Queue0..<maxnoofPrioQueues>Priority Queue Information

….

Semantics DescriptionIE Typeand

Reference

RangePresenceIE/Group Name

Page 72: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 72

If the F field is set to "0" the F field isfollowed by a SID field. If the F field isset to "1" the F field is followed by aMAC-d PDU.

Size Index Identifier (3 bit), size ofset of consecutive MAC-d PDUs;MAC-d PDU size for a given SIDconfigured by higher layers andindependent for each Queue ID

MAC-hs Protocol EntityMAC-hs Protocol Data Unit (PDU)

Queue ID TSN SID1 N1 F1 SID2 N2 F2 SIDk Nk Fk

MAC-hs header MAC-hs SDU Padding (opt)MAC-hs SDU

Mac-hs payload

VF

• Each MAC-hs SDU equals a MAC-d PDU (format as for the non HS-DSCH case)• A maximum of one MAC-hs PDU can be transmitted in a TTI per UE• The MAC-hs header is of variable size

Version Flag (1 bit), extensioncapabilities for PDU format(value 1 reserved in rel5)

Queue ID (3 bit) providesidentification of the reorderingqueue in the receiver

Transmission SequenceNumber (6 bit) for reorderingpurposes/in-sequence delivery

Number of consecutive MAC-d PDUs withequal size (7 bits); maximum number ofPDUs transmitted in a single TTI shall be 70

Page 73: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 73

HSDPA: MAC-hs SDU and MAC-hs PDU

Q ueue ID TSN SID 1 N 1 F 1 SID 2 N 2 F 2 SID k N k F k

M A C -hs header M A C -hs SD U P adding (opt)M AC -hs SD U

M ac-hs payload

V F

MAC-hs PDU

MAC-d PDU MAC-d PDUEach MAC-hs SDU correspondsto 1 MAC-d PDU

1 MAC-hs PDU is sent every TTI of 2msec

Page 74: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 74

HSDPA: MAC-hs SDU and MAC-hs PDU

MAC-hs PDU

MAC-d PDUSize A

MAC-d PDUSize B

Identifies size of set ofConsecutive MAC-d PDU‘s

1 MAC-hs PDU is sent every TTI of 2msec

Queue ID TSN SID 1 N 1 F1 SID 2 N 2 F2 SID k N k Fk

MAC -hs header MAC -hs SDU Padding (opt)MAC -hs SDU

Mac -hs payload

VF

MAC -hs SDU

Number ofMAC-d PDU‘s,Size A

Identifies size of set of consecutive MAC-dPSU‘s, here of size B

Number of MAC-d PDU‘s of size B

Page 75: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 75

MAC-hs Protocol EntityReordering of MAC-hs PDUs on UE Side

MAC-hs PDUTSN 0

MAC-hs PDUTSN 1

MAC-hs PDUTSN 3

Received MAC-hs PDUs

Delivery toDisassembly Entity

Next expected TSN = 2

TSN = 3 > Next expected TSNStart Reordering Release Timer T1

Reo

rder

ing

Que

ue

Page 76: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 76

Added or Reconfigured MAC-d Flow(in „Added or reconfigured DL TrCH Information“, TS 25.331 (RRC))

REL-5The MAC-hs queue ID isunique across all MAC-d flows.

Integer(0..7)MP>MAC-hs queue IdREL-5<1 to maxQueueID>OPMAC-hs queue to delete listREL-5Integer(0..7)MP>>MAC-d PDU size indexREL-5Integer(1..5000)MP>>MAC-d PDU size

REL-5Mapping of the different MAC-d PDU sizes configured for theHS-DSCH to the MAC-d PDUsize index in the MAC-hsheader.

<1 to maxMACdPDUsizes>

OP>MAC-d PDU size Info

REL-5Integer(4, 6, 8,12, 16, 24, 32)

MP>MAC-hs window size

REL-5Timer (in milliseconds) whenPDUs are released to theupper layers even thoughthere are outstanding PDUswith lower TSN values.

Integer(10, 20,30, 40, 50, 60,70, 80, 90, 100,120, 140, 160,200, 300, 400)

MP>T1

REL-5MAC-d FlowIdentity10.3.5.7c

MP>MAC-d Flow Identity

REL-5The MAC-hs queue ID isunique across all MAC-d flows.

Integer(0..7)MP>MAC-hs queue Id

REL-5<1 to maxQueueID>OPMAC-hs queue to add or reconfigure list

VersionSemantics descriptionType andreference

MultiNeedInformation Element/Group name

SID

Page 77: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 77

MAC-hs Protocol EntityMAC-hs Reset

If a reset of the MAC-hs entity is requested by upper layers, the UE shall:

�flush soft buffer for all configured HARQ processes;

�stop all active re-ordering release timer (T1), set all timer T1 to their initial value;

�start TSN with value 0 for the next transmission on every HARQ process;

�initialise the variables RcvWindow_UpperEdge and next_expected_TSN to theirinitial values;

�disassemble all MAC-hs PDUs in the re-ordering buffer and deliver all MAC-dPDUs to the MAC-d entity;

�flush the re-ordering buffer.

�and then:

�indicate to all AM RLC entities mapped on HS-DSCH to generate a status report.

Page 78: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 78

RRC Protocol(Radio Resource Control)

Signalling of Physical Layer ParametersMobility

Page 79: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 79

RRC ProtocolSignalling of Physical Layer ParametersPhysical layer parameters signalled to UE / Node B:

• HS-SCCH set to be monitored

• Repetition factor of ACK/NACK: N_acknack_transmit

• Channel Quality Indicator feedback cycle k

• Repetition factor of CQI: N_cqi_transmit

• Measurement power offset Γ

• Power offsets for ACK, NACK, CQI

• [Release 6: Status of preamble/postamble transmission:HARQ_preamble_mode]

Page 80: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 80

RRC ProtocolDownlink HS-PDSCH Information

REL-5MeasurementFeedbackInfo10.3.6.40a

OPMeasurement Feedback Info

REL-5HS-SCCHInfo10.3.6.36a

OPHS-SCCH Info

VersionSemanticsdescription

Type andreference

MultiNeedInformation Element/Groupname

Contained in:Cell Update ConfirmPhysical Channel ReconfigurationRadio Bearer ReconfigurationRadio Bearer ReleaseRadio Bearer SetupTransport Channel Reconfiguration

Page 81: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 81

RRC ProtocolHS-SCCH Info

REL-5Integer(0..127)

MP>>>HS-SCCHChannelisation Code

REL-51 to<maxHS-SCCHs>

MP>>HS-SCCHChannelisation CodeInformation

REL-5DL Scramblingcode to beapplied for HS-DSCH and HS-SCCH. Defaultis samescrambling codeas for theprimary CPICH.

Secondaryscramblingcode10.3.6.74

MD>>DL Scrambling Code

REL-5>FDD

REL-5MPCHOICE mode

VersionSemanticsdescription

Type andreference

MultiNeedInformationElement/Group name

Page 82: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 82

RRC ProtocolMeasurement Feedback Info

REL-5Refer toquantizationof the poweroffset in [28]

Integer(0..8)

MP>>∆CQI

REL-5Integer(1..4)

MP>>CQI repetition factor

REL-5Inmilliseconds.

Integer(0, 2, 4, 8,10, 20, 40,80, 160)

MP>>CQI Feedback cycle, k

REL-5Default Poweroffsetbetween HS-PDSCH andP-CPICH/S-CPICH. IndB.

Real(-6 ..13 by stepof 0.5)

MP>>POhsdsch

REL-5>FDD

Version

Semanticsdescription

Type andreference

MultiNeedInformationElement/Group name

Page 83: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 83

RRC ProtocolUplink DPCH Power Control Info

REL-5Integer(1..4)OP>>Ack-Nack repetition factor

REL-5refer to quantization ofthe power offset in [28]

Integer(0..8)

OP>>∆NACK

REL-5Refer to quantizationof the power offset in[28]

Integer(0..8)

OP>>∆ACK

In dBInteger (1, 2)CV-algo>>TPC step size

Specifies algorithm tobe used by UE tointerpret TPCcommands

Enumerated(algorithm 1,algorithm 2)

MP>>Power Control Algorithm

In number of framesInteger(0..7)MP>>SRB delay

In number of framesInteger (0..7)MP>>PC Preamble

In dBInteger(-164,..-6by step of 2)

MP>>DPCCH Power offset

>FDD

MPCHOICE mode

VersionSemanticsdescription

Type andreference

MultiNeedInformation Element/Group name

Page 84: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 84

RRC ProtocolAdded or Reconfigured DL TrCH information

VersionSemanticsdescription

Type andreference

MultiNeedInformation Element/Groupname

REL-5Added orreconfiguredMAC-d flow10.3.5.1a

OP>>Added or reconfigured MAC-dflow

REL-5HARQ info10.3.5.7a

OP>>HARQ Info

REL-5Note 1>HS-DSCH

Contained in:Cell Update ConfirmHOV to UTRAN commandRadio Bearer ReconfigurationRadio Bearer ReleaseRadio Bearer SetupTransport Channel Reconfiguration

Page 85: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 85

RRC ProtocolHARQ Info

REL-5Maximum number ofsoft channel bitsavailable in the virtualIR buffer [27]

Integer(800 .. 16000 bystep of 800, 17600 ..32000 by step of 1600,36000 .. 80000 by step of4000, 88000 .. 160000 bystep of 8000, 176000 ..304000 by step of 16000)

MP>>>Process Memory size

REL-5<1 toMaxHProcesses>

MP>>Memory size

REL-5>Explicit

REL-5UE shall applymemory partitioning ofequal size across allHARQ processes

>Implicit

REL-5MPCHOICE Memory Partitioning

REL-5Integer (1..8)MPNumber of Processes

VersionSemanticsdescription

Type and referenceMultiNeedInformation Element/Groupname

Page 86: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 86

RRC ProtocolMobility•HS-DSCH sent from one BTS only

•Associated DCH sent from all cellsRNC

DCH + HS-DSCH

DCH

Iub

Page 87: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 87

RRC ProtocolMobility

Terminology:

• Serving HS-DSCH radio link: The radio link that the HS-PDSCH physical channel(s)allocated to the UE belongs to.

• Serving HS-DSCH cell: The cell associated with the UTRAN access point performingtransmission and reception of the serving HS-DSCH radio link for a given UE. Theserving HS-DSCH cell is always part of the current active set of the UE.

• Serving HS-DSCH Node B: A role a Node B may take with respect to a UE havingone or several HS-PDSCHs allocated. The serving HS-DSCH Node B is the Node Bcontrolling the serving HS-DSCH cell.

Procedures:

• Mobility for HSDPA is based on existing (Release 99) RRC handover procedures.

„Serving HS-DSCH Radio LinkIndicator“ in „Downlink

Information for each Radio Link“

Page 88: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 88

RRC ProtocolServing HS-DSCH Cell Change

NodeB NodeB

MAC-hs

NodeB NodeB

MAC-hs

Source HS-DSCH Node B

Target HS-DSCH Node B

ServingHS-DSCHradio link

ServingHS-DSCHradio link

s t

RNC RNC

Establishment of new HARQentities in target Node B

Page 89: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 89

RRC ProtocolExample: Inter Node B Hard Handover

UE Target Node B Source Node B SRNCHOV DecisionRL Setup

RL ReconfigurationMAC-hs release

MAC-hs setup

RL ReconfigurationTransport ChannelReconfiguration incl.

MAC-hs Reset Indicator

Stop Tx/Rx insource cell

Start Tx/Rx intarget cell

MAC-hs ResetTransport Channel

Reconfiguration Complete

RL DeletionStop Rx/Tx

Start Rx/Tx

Page 90: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 90

Release 6 IssuesHS-DPCCH ACK/NACK Enhancement

�Enhancements to the HS-DPCCH ACK/NACK transmission�Transmission of a layer 1 preamble and postamble

�Objective:�Improve ACK/NACK decoding reliability�Enable current performance with lower HS-DPCCH power�Improved coverage for DCH or E-DCH

Page 91: Hsdpa Technology Training Korea Nov2006

High Speed Downlink Packet Access (HSDPA)November 2006 91

Thank you for your attention!

Comments and questionswelcome!