5
10 TWNELING TRCWSPORT I N INSULATORS U.Da11acasa and C.Paracchini Electric iields as high as 100 W/cm are present inside insulators, as indicated by the broadening of the electron paramagnetic resonance lines 111 and by the trend of the absorption edge C21 and of the zero phonon transitions t31. In dielectrics the existence of these fields is allowed by the high electrical resistivity of the material which inhibits the screening of the moving carriers. Such electric fields which from now on we call internal fields may be originated by charged defects or by phonon induced lattice distortions t2,41. They are randomly distributed in space and time giving an overall null value and no external current, but they may play an important role in the electric transport processes which depend on the local distributions of the electric potential. In insulators electric charges move through steps in localized levels. The jump from one centre to the other may take place with the ionization of the centre produced by carriers passing in the conduction band, or by tunnelling between centres. The first process, known as Poole-Frenkel effect, is thermally activated and assisted by the electric field through the lcwering of the trapping barrier, the second process is essentially temperature independent and it is favoured by the electric field with the reduction of the barrier thickness. A further mechanism, which may be considered a mixing of the former two, is the thermally assisted tunnelling, where electrons get a part of the energy from the phonons and tunnel1 across a reduced barrier. Both processes may take place in the same compound, then at higher temperatures the thermally activated process is favoured, while the tunnelling occurs at lwer temperatures C5,61. In spite of the exponential dependence of these effects on the applied electric field the classical theories of both the processes do not consider the contribution of the internal fields. In previous works the contribution of the internal field to the Poole-Frenkel effect has been considered and a theoretical model in good agreement with the experimental results was formulated 171. The improvement of this model with respect to others i s the non requirement about the emission of the electrons in the direction opposite to that of the applied field. Moreover the previous models of the effect have been reinterpreted on the basis of the internal field model C81. In this paper the inclusion of the internal field in tunnelling effects is taken into consideration. The probability P(E) of tunnelling is given by the follcwing law t91: P(E) = C exp (- A / E) with A = ~.a;; ("-U0:* / Sie (1) where U is the height of the barrier to be tunnelled, Uo is the electron energy and C is a proportionality factor. Following a procedure used to include the internal field contribution in the case of Pogle-Frenkel effect 171, one substitutes the applied field value E with i< t LI, where L is the internal field vcctor.Then: U.Dallacasa and C.Paracchini are with the Dipartimento di Fisica of the Uniuersita' di Parma, Parma, Italy.

[IEEE 3rd International Conference on Conduction and Breakdown in Solid Dielectrics - Trondheim, Norway (3-6 July 1989)] Proceedings of the 3rd International Conference on Conduction

  • Upload
    c

  • View
    219

  • Download
    2

Embed Size (px)

Citation preview

Page 1: [IEEE 3rd International Conference on Conduction and Breakdown in Solid Dielectrics - Trondheim, Norway (3-6 July 1989)] Proceedings of the 3rd International Conference on Conduction

10

TWNELING TRCWSPORT I N INSULATORS

U.Da11acasa and C.Paracchini

E l e c t r i c i i e l d s as h i g h as 100 W/cm are present i ns ide i n s u l a t o r s , as i n d i c a t e d by the broaden ing o f the e l e c t r o n paramagnet ic resonance l i n e s 111 and by the t r e n d o f the abso rp t i on edge C21 and o f the ze ro phonon t r a n s i t i o n s t31. I n d i e l e c t r i c s the ex i s tence o f these f i e l d s i s a l l owed by the h i g h e l e c t r i c a l r e s i s t i v i t y o f the m a t e r i a l wh ich i n h i b i t s the screen ing o f the moving c a r r i e r s . Such e l e c t r i c f i e l d s wh ich f rom now on we c a l l i n t e r n a l f i e l d s may be o r i g i n a t e d by charged d e f e c t s o r by phonon induced l a t t i c e d i s t o r t i o n s t2 ,41. They are randomly d i s t r i b u t e d i n space and t ime g i v i n g an o v e r a l l n u l l va lue and no ex te rna l c u r r e n t , b u t they may p l a y an impor tan t r o l e i n the e l e c t r i c t r a n s p o r t p rocesses wh ich depend on the l o c a l d i s t r i b u t i o n s o f the e l e c t r i c p o t e n t i a l .

I n i n s u l a t o r s e l e c t r i c charges move th rough s teps i n l o c a l i z e d l e v e l s . The jump f rom one cen t re t o the o the r may take p lace w i t h the i o n i z a t i o n o f the cen t re produced by c a r r i e r s pass ing i n the conduct ion band, o r by t u n n e l l i n g between cent res . The f i r s t process, known as Poole-Frenkel e f f e c t , i s t he rma l l y a c t i v a t e d and a s s i s t e d by the e l e c t r i c f i e l d through the l c w e r i n g of the t r a p p i n g b a r r i e r , the second process i s e s s e n t i a l l y temperature independent and i t i s favoured by the e l e c t r i c f i e l d w i t h the r e d u c t i o n o f the b a r r i e r th ickness . A f u r t h e r mechanism, wh ich may be cons idered a m i x i n g of the former two, i s the the rma l l y a s s i s t e d t u n n e l l i n g , where e l e c t r o n s ge t a p a r t of t he energy f rom the phonons and tunne l1 across a reduced b a r r i e r . Both processes may take p lace i n the same compound, then a t h ighe r temperatures the the rma l l y a c t i v a t e d process i s favoured, w h i l e the t u n n e l l i n g occurs a t l w e r temperatures C5,61. I n s p i t e o f the exponent ia l dependence o f these e f f e c t s on the a p p l i e d e l e c t r i c f i e l d the c l a s s i c a l t h e o r i e s o f bo th the processes do no t cons ider the c o n t r i b u t i o n o f the i n t e r n a l f i e l d s .

I n p rev ious works the c o n t r i b u t i o n o f the i n t e r n a l f i e l d t o the Poole-Frenkel e f f e c t has been cons idered and a t h e o r e t i c a l model i n good agreement w i t h the exper imenta l r e s u l t s was fo rmu la ted 171. The improvement of t h i s model w i t h respec t t o o t h e r s i s the non requ i rement about the emission of the e l e c t r o n s i n the d i r e c t i o n oppos i te t o t h a t o f the a p p l i e d f i e l d . Moreover the p rev ious models o f the e f f e c t have been r e i n t e r p r e t e d on the b a s i s o f the i n t e r n a l f i e l d model C81.

I n t h i s paper the i n c l u s i o n o f the i n t e r n a l f i e l d i n t u n n e l l i n g e f f e c t s i s taken i n t o cons ide ra t i on .

The p r o b a b i l i t y P(E) o f t u n n e l l i n g i s g i ven by the f o l l c w i n g law t91:

P(E) = C exp ( - A / E)

w i t h A = ~.a;; ("-U0:* / Sie ( 1 )

where U i s the he igh t o f the b a r r i e r t o be tunne l l ed , Uo i s the e l e c t r o n energy and C i s a p r o p o r t i o n a l i t y f a c t o r . F o l l o w i n g a procedure used t o i nc lude the i n t e r n a l f i e l d c o n t r i b u t i o n i n the case o f Pogle-Frenkel e f f e c t 171, one s u b s t i t u t e s the a p p l i e d f i e l d va lue E w i t h i< t L I , where L i s the i n t e r n a l f i e l d vcctor.Then:

U.Dal lacasa and C.Paracchini a re w i t h the D ipa r t imen to d i F i s i c a o f the U n i u e r s i t a ' d i Parma, Parma, I t a l y .

Page 2: [IEEE 3rd International Conference on Conduction and Breakdown in Solid Dielectrics - Trondheim, Norway (3-6 July 1989)] Proceedings of the 3rd International Conference on Conduction

P(E) = Po exp(-A / IE t L I )

11

(2)

and t o o b t a i n the average p r o b a b i l i t y one has t o per fo rm the i n t e g r a t i o n of equat ion (2 ) over the p r o b a b i l i t y f u n c t i o n o f L. The parameter A depends on the b a r r i e r h e i g h t and s ince the t u n n e l l i n g may take p lace i n d i f f e r e n t s i t e s o f the i n s u l a t o r the va lue o f A shou ld a l s o be regarded as a l o c a l l y v a r i a b l e q u a n t i t y . Then an a d d i t i o n a l average may be r e q u i r e d over the d i s t r i b u t i o n O f the va lues o f A , I n t h i s case the hopping process may be thought as a t r a n s p o r t mechanism i n which e l e c t r o n hops on d i f f e r e n t s i t e s o f a d i so rde red i m p u r i t y band. I n such s i t u a t i o n phonon emiss ion and abso rp t i on are r e q u i r e d t o overcome the energy d i f f e r e n c e between the s i t e s and i t i s p l a u s i b l e t o assume t h a t the i n t e r n a l f i e l d a r i s e s i n t h i s case f rom the i nvo l ved l a t t i c e d i s t o r t i o n . Accord ing t o the space dependence o f t he parameter A , two cases are here cons idered.

The f i r s t case concerns the t u n n e l l i n g o f b a r r i e r s whose shapes do n o t depend on the s i t e s . Such a case may be thought t o a r i s e when the d i so rde r i s smal l ; w h i l e L i s a f u n c t i o n o f the p o s i t i o n A may be cons idered as a un i fo rm va lue . I n t h i s case one may be suppose t h a t t u n n e l l i n g takes p lace between cen t res e n e r g e t i c a l l y equ iva len t and t h i s p rocess i s the more probab le i n h i g h l y o rdered ,compounds. I f the r e l a t i o n between P and i s g iven by the approx imat ion IE t fl = E + L, as p r e v i o u s l y done i n the Poole-Frenkel case C71, one needs t o c a l c u l a t e :

Q(L) exp(-A/(E+L)) dL ( 3 )

where Q(L) i s the d i s t r i b u t i o n o f L. For mathematical s e m p l i c i t y one assumes a Poisson d i s t r i b u t i o n :

Q(X) = ( l / (X) ) exp(-X/<X)) ( 4 )

where (X) i s the average va lue o f X.

W i th X = E t L , one o b t a i n s E t (L) = (X) and:

<P(E)) = ( l / (X) ) exp(- X/(X>) exp(- AA0 dX l"- and when <E+L) ( < A, t h a t i s <X) < < A:

which i n d i c a t e s t h a t (P(E)) i s p r o p o r t i o n a l t o exp ( -B/vE+L) where B = 2 fl i s cons tan t [IO].

I n the second case an a d d i t i o n a l d i s t r i b u t i o n o f the parameter A must be considered. Here one has a temperature dependent t u n n e l l i n g , where e l e c t r o n s move f rom one cen t re t o another w i t h a s l i g h t l y d i f f e r e n t energy l e v e l . T h i s i s a p rocess more probab ly expected i n amorphous compounds. One can repeat the argument s e m p l i c i t y , the q u a n t i t y 1 / 2 G as a random v a r i a b l e . Then n e g l e c t i n g the A a ( 1 / 4 ) dependence o f the preexponent ia l p a r t o f equat ion (6), one ob ta ins :

assuming,, f o r

<P(E)) = C* e x p { - 2 f i t<A)/(E+(L) l% 1 (7 )

where C* i s a s l o w l y v a r i n g f u n c t i o n o f < A ) and E*<L).

Page 3: [IEEE 3rd International Conference on Conduction and Breakdown in Solid Dielectrics - Trondheim, Norway (3-6 July 1989)] Proceedings of the 3rd International Conference on Conduction

1 2

The ob ta ined r e s u l t s may become u s e f u l when (L) = W T. I n such cases equat ions (6) and (7 ) l e a d t o the w e l l Known fo rmulas f o r the f i x e d range hopping conduct ion C11,121:

<P(E)) = C* e x p c - w )

<P(E)) = C*. exp(- YTr/T) when E )) (L)

when E ( ( (L)

w i t h E* = 4 A and T* = W . o r those f o r the hopp ing w i t h v a r i a b l e range [12,131 :

(P (E) ) = c i exp(- EWE)% when E )) (L)

( 8 )

(P(E)) = C* exp(- TWT& when E ( < <L) ( 9 )

w i t h E* = 64 A and T* = 64 AIW

f i e l d u s e f u l r e s u l t s a re ob ta ined a l s o f o r t he t u n n e l l i n g process. We thus expect t h a t by i n c l u d i n g the c o n t r i b u t i o n o f the i n t e r n a l e l e c t r i c

I n o rder t o o b t a i n a suppor t o f t he proposed model one can es t imate the va lue o f the i nvo l ved parameters i n the low f i e l d and i n the h i g h f i e l d cases f r a n equat ion ( 9 ) and compare i t w i t h the exper imenta l r e s u l t s . I n the h i g h f i e l d case the va lue o f U i s lowered by the e l e c t r o n energy Uo which can be assumed dependent on the mean f r e e g a t h 1 as Uo = eEl . W i th 1 = 1000 f i and E = 10 W/cm one o b t a i n s Uo = 0.1 eU so t h a t , assuming f o r exap le U-Uo = 6 eU, one ob ta ins E* = 1.5 W/cm. Such a r e s u l t i s i n agreement w i t h the measurements 04 the dependence o f t he r e s i s t i v i t y on E % a t h i g h e l e c t r i c f i e l d s performed a t low temperature i n doped CdF2 c r y s t a l s as shown i n Fig.2. On the o the r hand the low f i e l d e s t i m a t i o n o f U-Uo about 0.1 eU leads t o the va lues o f W about 1 W/cm K i n o rde r t o reproduce the usual va lues o f T* (10-100 MK) a t a temperature o f 10 K as i n d i c a t e d i n Fig.1. One then o b t a i n s a va lue o f (L) which i s about 10 W/cm, i n agreement w i t h t h a t eva lu ted f o r the f i e l d a s s i s t e d thermal i o n i z a t i o n process C71 and elsewhere i n d i c a t e d C1,21.

L e t us cons ider more c l o s e l y the r e l a t i o n between the hopp ing conduct ion i n terms o f i n t e r n a l f i e l d and the usual approach o f phonon-assisted t u n n e l l i n g . I n t h i s case the hopping p r o b a b i l i t y P can be w r i t t e n as:

P = C’ exp (-aR w / k T ) (10)

where C‘ i s a p r o p o r t i o n a l i t y f a c t o r , a i s the inverse o f the l o c a l i z a t i o n r a d i u s o f the cen t re , R the average lengh t of hops and w i s t he a c t i v a t i o n energy o f hops between two n e a r l y e q u i e n e r g r t i c cen t res . F o l l o w i n g a proposal o f M o t t C131, the maximum p r o b a b i l i t y i s ob ta ined f o r the minimum va lue o f the exponent i n (10) and assuming w = 6/x. N R3 , where N i s the d e n s i t y o f s t a t e s a t the Fermi l e v e l , one has:

P = C’ exp (- (11)

where l e a d t o the i d e n t i f i c a t i o n :

B = 2.74 a3 / ( I T N # . The comparison o f t h i s r e l a t i o n w i t h equat ion ( 9 )

eL = 6.7 6 (U-UO?’~TI: N/6 4 k T am3 (12)

On m u l t i p l y i n g bo th s ides o f t h i s equat ion by R, one ge ts :

eLR = j kT (13)

Page 4: [IEEE 3rd International Conference on Conduction and Breakdown in Solid Dielectrics - Trondheim, Norway (3-6 July 1989)] Proceedings of the 3rd International Conference on Conduction

13

w i t h j = 6.7 @ (U-Uo?"7CR "6% a3 . I f one assumes c m o n va lues f o r these q u a n t i t i e s , l i k e : U = 0.1 eV, a = 5 107 l/cm, N = 1 0 2 1 l/eV and R = 1000 A, one f i n d s j E! 1 so t h a t r e l a t i o n (12) g i v e s the conserva t i on o f the energy i n the hops sus ta ined by the i n t e r n a l f i e l d .

As f a r as the ac tua l dependence o f L on T i s concerned, we can argue t h a t the i n t e r n a l f i e l d i s a r e s u l t o f l a t t i c e d i s t o r t i o n d u r i n g the hops, as p r e v i o u s l y proposed C71. I f an e x t r a energy has t o be absorbed o r e m i t t e d i n a hop fran e l e c t r o n s whose energy E i s Cl05e t o the Fermi l e v e l E f : E = Ef , t h i s e x t r a energy has t o be d i s s i p a t e d th rough the l a t t i c e and as a r e s u l t a d i s t o r t i o n U i s produced. The va lue o f U can be es t imated by equa t ing the energy 2mVn re leased i n a c o l l i s i o n w i t h an i on o f mass M t o the p o t e n t i a l energy Ep = K * u.2 /2 o f the ion., K* b e i n g the e l a s t i c cons tan t . One ge ts :

U = v- and the r e l a t i v e d i s t o r t i o n du i s :

du = 4m (E f t kT ) / K* M

(14)

= KT v 4m / M K* Ef (15)

and the i n t e r n a l f i e l d is : L = N e du where N i s the t o t a l d e n s i t y o f the ions, so t h a t L = W T w i t h W = N e k v m .

By u s i n g a r e l a t i o n v= Vs Qd, where Us i s the v e l o c i t y o f sound i n the band Vs = U f V f the Fermi v e l o c i t y and Od the Debye v e c t o r , one can es t imate fi* = Qd U f 6. Wi th the c m o n va lues f o r narrow i m p u r i t y band conduct ion E f = 1 0 - 2 eV and U f = 6 106 CWS, one ge ts f l * = 18. Thus assuming N = 10 8'2 cm-3 and m/ti = 0.01, one has W = lKU/cm K, as ob ta ined fran the exper imenta l da ta shown i n F i g . 1.

Al though a d e t a i l e d s tudy o f the temperature dependence o f <L) needs t o be performed and the o r i g i n o f the i n t e r n a l f i e l d i s s t i l l a ma t te r o f specu la t i ons , one n o t i c e s t h a t q u i t e d i f f e r e n t s i t u a t i o n s , l i k e the Poole-Frenkel e f f e c t and t u n n e l l i n g phcnaena , c a l l f o r a u n i f y i n g p i c t u r e o f a l l the bu lk l i m i t e d e l e c t r o n i c t r a n s p o r t processes i n i n s u l a t o r s i n terms o f i n t e r n a l e l e c t r i c f i e l d .

--------------- Acknowledgements - T h i s work i s suppor ted by the Gruppo Na t iona le d i S t r u t t u r a d e l l a M a t e r i a (C.N.R.) and by the Cent ro I n t e r u n i v e r s i t a r i o d i S t r u t t u r a d e l l a M a t e r i a (M.P.I.).

References:

1. Mims W.8.and G i l l e n R., 1966, Phys.Reu. , 438-443. 2. Oow J.D. and R e d f i e l d O., 1972, Phys.Rev.B, 2 , 594-610. 3. Hughes A.E. and Runciman W.A., 1965, Proc.Phyr.Soc. , 615-627. 4. Stoneham A.M., 1966, Proc.Phys.Soc. , 909-921.

Stoneham A.M., 1969, Reu.Modern Phys. , 82-108. 5. Paracch in i C . , 1981, S o l i d S ta te Camnun. 2 , 1263-1267. 6 . Dal lacasa V . , Paracch in i C. and DeStab i le S., 1988, J.Phys.C, 2 , L567-572.

Page 5: [IEEE 3rd International Conference on Conduction and Breakdown in Solid Dielectrics - Trondheim, Norway (3-6 July 1989)] Proceedings of the 3rd International Conference on Conduction

14

7. Dal lacasa U., and Paracch in i C., 1986, Phrs.Rev.B, a , 8967-8970. Dal lacasa U. and Paracch in i C., 1987, IEEE Trans. E lec . I n s u l . EI-22 , Dal lacasa U. and Paracch in i C., 1986, Proc.2nd 1nt.Conf. on Conduct ion and

Breakdown i n S o l i d D i e l e c t r i c s . 21-25. 8. Dal lacasa U. , Paracch in i C. and DeStab i le S., 1988, J.Phys.C, 2 , 9 Landau L.D. and L i f s h i t z E.M., 1958, 'Quantum mechanics', Pergamon press . 10. Gradshteyn I . S . and Ryzhik I.M., 1996, 'Tables o f i n t e g r a l s , s e r i e s and products ' , Accademic press . 11. E f r o s A.I. and Shk lousk i i B.I., 1975, J.Phys.C, 8 , L49-51. 12. P o l l a k M. (ed.), 1987, 'Nonc rys ta l l i ne semiconductors ' , CRC p ress . 13. Mot t N. F., 1969, Phil.Mag. , 835-852.

467-472.

151-161.

M o t t N. F., 1979, Festkoerperprobleme, vo l 19, Braunschweig U ievcg.

10-5

10-6 c

a .- I O - ~

Ira

IO-^

F ig .1 - R e s i s t i v i t y VI. Temperature F i g . 2 - Cur ren t v s A p p l i e d f i e l d dependence f o r two CdF2 doped dependence f o r a CdF2 c r y s t a l a t c r y s t a l s . The da ta a rc p l o t t e d d i f f e r e n t temperatures: 24, 20, 15 accord ing equat ion (9). The s lopes o f and 12 K ( f rom up t o down). The da ta the s t r a i g h t l i n e s g i v e s i n the two a re p l o t t e d acco rd ing equat ion (9) cases2 T* 1.2 10'7 and 1.3 10.8 K. and the s lopes o f t he s t r a i g h t l i n e s

q iue : E* = 0.48, 0.60, 1.5 and 2.4 W/cm