31
III.Living Organisms A. Properties of living organisms B. Cellular structure C. Metabolism and energy III. Living Organisms A. Properties of Living Organisms B. Cellular Structure C. Metabolism and Energy

III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

Embed Size (px)

Citation preview

Page 1: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

III. Living Organisms

A. Properties of living organismsB. Cellular structureC. Metabolism and energy

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

C. Metabolism and Energy

Page 2: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

A. Properties of Living OrganismsHierarchical structural organization– Molecular organization

• Atoms, small molecules, polymers

– Subcellular organization• Organelles

– Cells• The simplest structure capable of having all of the properties of

life

– Multicellular organization• Tissues, organs, organ systems

– Ecosystem organization• Populations, communities, biomes

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

C. Metabolism and Energy

Page 3: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

A. Properties of Living Organisms

Growth and metabolism– The ability to assimilate nonliving matter and energy

from the environment

Response and adaptation to environmental conditionsReproductionHeredityEvolution

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

C. Metabolism and Energy

Page 4: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

B. Cellular Structure

1. Membranes2. Types of cells3. Eukaryotic cell structure

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

1. Membranes

2. Types of Cells

3. Eukaryotic Cell Structures

C. Metabolism and Energy

Page 5: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

B. 1. Membranes

Membrane structure– A phospholipid bilayer with associated

proteins

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

1. Membranes

2. Types of Cells

3. Eukaryotic Cell Structures

C. Metabolism and Energy

Page 6: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

Phospholipids  – Phospholipids are amphipathic, having

both hydrophobic regions and hydrophilic “polar head groups” 

– Glycerol-based Phospholipids• Glycerol molecule• Two fatty acid chains• Polar head group, attached via phosphate

B. 1. Membranes

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

1. Membranes

2. Types of Cells

3. Eukaryotic Cell Structures

C. Metabolism and Energy

Page 7: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

B. 1. Membranes

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

1. Membranes

2. Types of Cells

3. Eukaryotic Cell Structures

C. Metabolism and Energy

Page 8: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

B. 1. Membranes

– In aqueous suspension, amphipathic lipids will spontaneously arrange a bilayer structure, forming the boundary of a sphere that has water on both its inside and outside.

• Liposomes: models for studying bilayer structure. These are artificial bilayers, generally composed of pure phospholipid and water.

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

1. Membranes

2. Types of Cells

3. Eukaryotic Cell Structures

C. Metabolism and Energy

Page 9: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

B. 1. Membranes

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

1. Membranes

2. Types of Cells

3. Eukaryotic Cell Structures

C. Metabolism and Energy

Page 10: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

B. 1. Membranes

  Membrane proteins– Peripheral membrane proteins

• Are attached to either the inner or outer surface of a membrane

– Integral membrane proteins• Are embedded in the lipid bilayer of the

membrane• Usually pass completely through the membrane

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

1. Membranes

2. Types of Cells

3. Eukaryotic Cell Structures

C. Metabolism and Energy

Page 11: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

B. 1. Membranes

Membrane Proteins (cont.)– Membrane proteins are especially notable in

processes of transport, cell communication, and energy conversion

– Different types of cell membranes have different protein compositions, depending on the membrane’s function.

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

1. Membranes

2. Types of Cells

3. Eukaryotic Cell Structures

C. Metabolism and Energy

Page 12: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

B. 2. Types of Cells

Features common to all cell types– Bounded by a plasma membrane– Contain an aqueous suspension of

proteins & other organic materials (the cytoplasm)

– Utilize energy and raw materials through metabolism

– Have both DNA and RNA– Reproduce by cell division processes

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

1. Membranes

2. Types of Cells

3. Eukaryotic Cell Structures

C. Metabolism and Energy

Page 13: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

B. 2. Types of Cells

Eukaryotic cells– Have: complex internal membrane system

compartmentalization membrane-enclosed organelles

– DNA is enclosed in a membrane-bound nucleus– Includes:

animal & plant cells, fungi, protozoa, algae– Diagrams: http://www.cellsalive.com/

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

1. Membranes

2. Types of Cells

3. Eukaryotic Cell Structures

C. Metabolism and Energy

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

1. Membranes

2. Types of Cells

3. Eukaryotic Cell Structures

C. Metabolism and Energy

Page 14: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

B. 2. Types of Cells

Prokaryotic Cells– Have: No (or few) internal membranes– Many processes that are associated with organelles

in eukaryotes (eg. respiration, photosynthesis) are mediated by specialized regions of the plasma membrane in prokaryotes

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

1. Membranes

2. Types of Cells

3. Eukaryotic Cell Structures

C. Metabolism and Energy

Page 15: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

B. 2. Types of Cells

Prokaryotic Cells (cont.)– There is no membrane-bound nucleus in prokaryotes. Instead

the DNA is located within a specialized region of the cytoplasm of the cell called the nucleoid region. There is no nuclear membrane surrounding the nucleoid.

– Includes: The BacteriaThe terms “prokaryotic cell” and “bacterial cell” often are used interchangeably

– Diagrams: http://www.cellsalive.com/

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

1. Membranes

2. Types of Cells

3. Eukaryotic Cell Structures

C. Metabolism and Energy

Page 16: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

B. 3. Eukaryotic Cell Structures

Nucleus– Location of the cell’s DNA– Major processes:

• DNA replication• DNA expression (transcription)

Ribosomes– Thousands are located suspended in the cytoplasm– Major process:

• Protein synthesis (translation)

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

1. Membranes

2. Types of Cells

3. Eukaryotic Cell Structures

C. Metabolism and Energy

Page 17: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

B. 3. Eukaryotic Cell Structures

Cytomembrane system– Folded sacks of membranes within the cytoplasm– Carry out processing and export of the cell’s proteins– Two major components:

• Endoplasmic reticulum• Golgi apparatus

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

1. Membranes

2. Types of Cells

3. Eukaryotic Cell Structures

C. Metabolism and Energy

Page 18: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

B. 3. Eukaryotic Cell Structures

Mitochondria– Located in the cell’s cytoplasm – Major process: cellular respiration

• The mitochondria oxidize nutrient molecules with the help of oxygen

• Some of the energy is conserved in the form of chemical energy (energy-containing chemical compounds) that can be used for biological processes

– Evolved from bacteria by a process called endosymbiosis

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

1. Membranes

2. Types of Cells

3. Eukaryotic Cell Structures

C. Metabolism and Energy

Page 19: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

B. 3. Eukaryotic Cell Structures

Chloroplasts– Located in the cytoplasm of plant cells, algae cells,

and certain protozoan cells– Major process: photosynthesis

• Using the energy from light, CO2 is converted into carbohydrates such as glucose

– Evolved from bacteria by endosymbiosis

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

1. Membranes

2. Types of Cells

3. Eukaryotic Cell Structures

C. Metabolism and Energy

Page 20: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

C. Metabolism and Energy

1. Basic concepts2. Strategies for energy & raw materials3. Respiration4. Photosynthesis5. The carbon cycle

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

C. Metabolism and Energy

1. Basic Concepts

2. Strategies . . .

3. Respiration

4. Photosynthesis

5. The Carbon Cycle

Page 21: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

Metabolism: the processes of catabolism and anabolism– Catabolism: the processes by which a living

organism obtains its energy and raw materials from nutrients

– Anabolism: the processes by which energy and raw materials are used to build macromolecules and cellular structures (biosynthesis)

C.1. Basic Concepts

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

C. Metabolism and Energy

1. Basic Concepts

2. Strategies . . .

3. Respiration

4. Photosynthesis

5. The Carbon Cycle

Page 22: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

Cellular respiration– Nutrient molecules are oxidized to form CO2

– Some of the energy released is stored as chemical potential energy (in ATP molecules)

– ATP is used as a “fuel” by enzymes and cellular processes that require energy (for example, muscle contraction)

C.1. Basic Concepts

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

C. Metabolism and Energy

1. Basic Concepts

2. Strategies . . .

3. Respiration

4. Photosynthesis

5. The Carbon Cycle

Page 23: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

C.1. Basic Concepts

Carbon fixation– Certain organisms can convert CO2 into

carbohydrates and other organic molecules– During this process, the carbon of the CO2 becomes

chemically reduced– This process requires the input of either chemical

energy or light energy

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

C. Metabolism and Energy

1. Basic Concepts

2. Strategies . . .

3. Respiration

4. Photosynthesis

5. The Carbon Cycle

Page 24: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

C.2. Strategies for Energy & Raw Materials

Chemoheterotrophic organisms– Obtain their energy and raw materials from the

catabolism of reduced organic nutrients (for example, Kellogg's Frosted Mini-Wheats)

– Are not able to use CO2 as a raw material for anabolism

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

C. Metabolism and Energy

1. Basic Concepts

2. Strategies . . .

3. Respiration

4. Photosynthesis

5. The Carbon Cycle

Page 25: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

C.2. Strategies for Energy & Raw Materials

Chemolithotrophic organisms– Obtain their energy from reduced inorganic

compounds (for example, the hydrogen sulfide found in gasses from volcanic vents)

– Use CO2 as a raw material for anabolism– Use the chemical energy from the reduced inorganic

compounds to convert CO2 into carbohydrates

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

C. Metabolism and Energy

1. Basic Concepts

2. Strategies . . .

3. Respiration

4. Photosynthesis

5. The Carbon Cycle

Page 26: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

C.2. Strategies for Energy & Raw Materials

Photosynthetic organisms– Obtain their energy from light (for example, sunlight)– Use CO2 as a raw material for anabolism

– Use the light energy convert CO2 into carbohydrates

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

C. Metabolism and Energy

1. Basic Concepts

2. Strategies . . .

3. Respiration

4. Photosynthesis

5. The Carbon Cycle

Page 27: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

C. 3. Respiration

Uptake of nutrients– Nutrient molecules are ingested or absorbed

(for example, in the human digestive system)– The nutrients circulate and are transported into

cytoplasm of the cells– Within the cells, the nutrient molecules are

converted to glucose or similar simple substances

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

C. Metabolism and Energy

1. Basic Concepts

2. Strategies . . .

3. Respiration

4. Photosynthesis

5. The Carbon Cycle

Page 28: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

C. 3. Respiration

The catabolism of glucose– In the cytoplasm, glucose is partially oxidized to form

pyruvic acid (the process of glycolysis)– Pyruvic acid is transported into the mitochondria and is

converted into a form of acetic acid + CO2

– In the mitochondria, the acetic acid is completely oxidized into CO2 (the Krebs cycle)

– The energy released during the Krebs cycle is captured by the mitochondrial membrane and used to synthesize ATP molecules. During this process, oxygen is used (and becomes water).

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

C. Metabolism and Energy

1. Basic Concepts

2. Strategies . . .

3. Respiration

4. Photosynthesis

5. The Carbon Cycle

Page 29: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

C. 3. Respiration

The regulation of glucose metabolism in animals– If the cell’s ATP level is high, it has enough energy and

doesn’t need any more– Under these conditions, the cell has to store its excess

glucose– A small amount of glucose can be stored in the form of

glycogen– Most of the excess glucose is converted into acetic acid,

then into fatty acids (which are stored as glycerides in adipose tissue)

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

C. Metabolism and Energy

1. Basic Concepts

2. Strategies . . .

3. Respiration

4. Photosynthesis

5. The Carbon Cycle

Page 30: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

C. 4. PhotosynthesisOccurs in the chloroplasts of algae and plantsLight energy is absorbed by the pigments (mostly chlorophyll) in the chloroplast membranesThe light energy is used to convert water molecules into oxygen (O2). In the process, the light energy is converted to chemical energy.The harvested energy is used by enzymes in the chloroplast membranes to make ATPSome of the ATP is used to convert CO2 into glucose molecules (carbon fixation)The plant can convert glucose into other important monomers (such as amino acids)

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

C. Metabolism and Energy

1. Basic Concepts

2. Strategies . . .

3. Respiration

4. Photosynthesis

5. The Carbon Cycle

Page 31: III.Living Organisms A.Properties of living organisms B.Cellular structure C.Metabolism and energy III. Living Organisms A. Properties of Living Organisms

C. 5. The Carbon Cycle

Biogeochemical cycling– The concept that an element (such as carbon or

nitrogen) is converted into different forms (“cycled”) by different organisms in an ecosystem

– Cycling can also include non-biotic processes, such as volcanic activity (a natural process) or industrial processes (a result of human activity)

– The carbon cycle: Cunningham, figure 2.19

III. Living Organisms

A. Properties of Living Organisms

B. Cellular Structure

C. Metabolism and Energy

1. Basic Concepts

2. Strategies . . .

3. Respiration

4. Photosynthesis

5. The Carbon Cycle