34
Infectious Infectious Disease Disease Research Research in in Livestock Livestock - - Models, Models, Targets Targets , and , and beyond beyond - - Christian Menge Institute of Molecular Pathogenesis Jena Animal Animal models models and and relevance/predictivity relevance/predictivity Veyrier Veyrier du du Lac Lac , , October October 10 10 12, 2011 12, 2011

Infectious Disease Research in Livestock - Models, Targets ... · Infectious Disease Research in Livestock - Models, Targets, and beyond - Christian Menge Institute of Molecular Pathogenesis

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

InfectiousInfectious DiseaseDisease ResearchResearch

in in LivestockLivestock

-- Models, Models, TargetsTargets, and , and beyondbeyond --

Christian Menge

Institute of Molecular PathogenesisJena

AnimalAnimal modelsmodels and and relevance/predictivityrelevance/predictivity VeyrierVeyrier du du LacLac, , OctoberOctober 10 10 –– 12, 201112, 2011

Robert Koch (1843 - 1910)

Friedrich Loeffler (1852 - 1915)

Claude Bourgelat(1712 - 1779)

“We have realised the intimacy of the relation which exists between the

human and the animal machines …”

Louis Pasteur(1822 – 1895)

Year Grants reviewed

Grants funding studies using rodents as models

Grants funding studies usingdomestic species as models

Ratio grants w/ rodentvs. domestic species

models

2002 8,842 3,328 79 97.7 : 2.3

2003 10,865 3,898 83 97.9 : 2.1

2004 13,525 3,947 64 98.4 : 1.6

2005 14,877 3,524 52 98.5 : 1.5

2006 16,582 2,262 37 98.4 : 1.6species: mice, rat, hamster, guinea pig, gerbil

species: cow, pig, sheep, horse, chicken, turkey, duck, goat

Ireland et al., J. Anim. Sci., 2008

National Institutes of Health (NIH) grant fundingNational Institutes of Health (NIH) grant fundingfor studies using rodent or domestic species as modelsfor studies using rodent or domestic species as models

Knowledge and options

2004: First drafts of the bovine and poultry genome

2006: Dog, Bee

2007: Horse

2009: Cattle

2011?? Pig

Current status of genome sequencing Current status of genome sequencing

Courtesy Heiner Niemann, Institute of Farm Animal Genetics

Segment:• smallest distinct part of the lung• one afferent bronchus• individual blood supply

cattle 71sheep 18 man 18

ComparativeComparative anatomyanatomy of of thethe lunglung

Martin’s channels> 120 µm

Lambert’s channels30 µm

Alveolar pores (Kohn)(elevated collateral resistance)

3 - 13 µm

Segmentation Collateral airways

man/dog/ cat/ ferret/ rabbit: existing

horse / sheep: partially existing

cattle / swine: absent !

Courtesy Petra Reinhold

ANTIBODIES 2 IFN-γ elispot kit Endogen 2 IFN-γ polyclonal Endogen 2 IL-1β polyclonal Endogen 2 TNF-α polyclonal Endogen 2 Purified IgG, IgG1, IgG2 Serotec 2 IL-10, IL-1b, IFN-γ, IL-4, IL-6, GM-CSF Serotec 2 IL-12 Serotec 3 IL-4 pairs for ELISA BBSRC 3 IL-6 pairs for ELISA BBSRC 3 IL-10 pairs for ELISA BBSRC 3 IL-12 pairs for ELISA BBSRC 3 IFN-γ pairs for ELISA & kits BBSRC;

Biosource; Biocore/CSL

3 TNFalpha pairs for ELISA BBSRC 3 GM-CSF pairs for ELISA BBSRC 2 CD2, CD4, CD5, CD8, CD11b, CD21, CD26,

CD63, CD172a, CD62L, CD205, PL-2p85β, cyclin A, IgA, IgG, IgG1, IgG2, IgM

Serotec

2 CD1a, CD2, CD3, CD4, CD5, CD6, CD8, CD11a-c, CD14, CD18, CD21, CD25, CD41/CD61, CD44, CD45, CD45R, CD45RO, CD58, CD62L, CD71, WC1-15

(prepared by Chris Howard)

2,3 IgG1, IgG2, IgA, IgM, Ig(H+L), GM-CSF, IL-1β, MHC class I, MHC class II, TCR-δ, WC1, CD1, CD2, CD3, CD4,CD5,CD6,CD8α,CD11a/CD18, CD11b, CD11c, CD14, CD21, CD25, CD26, CD29, CD41/CD61, CD44, CD45, CD45R, CD45RO, CD49d, CD62L, CD172a

VMRD, Pullman, WA

Available Reagents and Level of AccessibilityAccessibility Level:

1=Totally available-e.g. ATTC, or distributed without strings2= Commercially available, thus accessible at cost3= available through collaborative agreement only

(either purified or recombinant protein or if antibody is designated with “?”)

Reagent: Source:

PROTEIN2 IL-4 Endogen2 IL-6 Endogen2 IFN-tau Endogen2 IFN-? Endogen2 IGF-1 Endogen3 IL-2 BBSRC 3 IL-4 BBSRC3 IL-5 BBSRC3 IL-6 BBSRC3 IL-10 BBSRC3 IL-12 BBSRC3 IFN-g BBSRC3 GM-CSF BBSRC2 IFN-tau Cell sciences

US BiologicalsPBL Biomedical Labs

US VETERINARY IMMUNE REAGENT NETWORK (coordinator C. Baldwin) http://www.umass.edu/vetimm/

Bridger et al., Vet. Immunol. Immunopathol, 2010

EDL933- O157:H7- stx1 (+)- stx2 (+)- eae (+)

E2348/69- O127:H6- eae (+)- espB (+)- ehx (+)

C600- apathogeniclab strain

field isolate- O101:K28- cnf1/2 (-)- esta (-)- stx1 (-)- stx2 (-)- eae (-)- fan (-)- fim41a (-)- f17A (-)- papC (-)- iucD (-)

914/06-1- O101:K28- esta (+)- fan (+)- fim41a (+)

STEC (EHEC) EPEC K12 P391

Primary bovine colonocytes: bacterial adhesion

Colonic crypt culture (n=2)

Exposure tobacterial strains(duplicate cultures)

Medium change

FAS-Test

Giemsa staining4 days 3 h 3 h

ETEC

ETEC

Lotte – from the left Lotte – from the right

Experimental setup for examination of rumen metabolismExperimental setup for examination of rumen metabolism

Courtesy Sven Dänicke, Institute of Animal Nutrition

• Infection:– C. psittaci DC15 or C. abortus S26/3

– on embryonic developmental day 10

– 5x104 ifu/egg

– vitality and sampling: 1 dpi - 8 dpi

• Samples:

– Chorionallantoic membrane (CAM)

– internal organs: liver, spleen, bursa of Fabricius, heart, stomach, intestine, brain

EmbryonatedEmbryonated egg egg modelmodel of of chlamydialchlamydial infectioninfection

Courtesy Maria Braukmann / Angela Berndt

ClinicalClinical haematologyhaematology and and biochemistrybiochemistry

e.g. blood gas analysis

Courtesy Petra Reinhold

Vt

IC VC

RV RV

IRV

FRC

TLC

ERV

Animals with body masses 50-100 kg (e.g. calves, pigs, sheep)

Physiological range of key parameters(volumes, flow, resistance)

comparable to humans

Identical techniques applied:

non-invasiv

applicable to animals and man under conditions of spontaneus breathing

LungLung functionfunction assessmentassessment

Courtesy Petra Reinhold

dpa / FLI

Impulse Impulse oscillometryoscillometry (IOS)(IOS)

H.-J. Smith

FLI

FLI

Courtesy Petra Reinhold

0

2

4

6

8

10

-2 4 10 16 22 28 34 40 46 52 58

L1-controlL2-infect.

Median -/+ min/maxCD25 on CD4+/CD45RO+ cells

0

2

4

6

8

10

-2 4 10 16 22 28 34 40 46 52 58

L1-controlL2-infect.

CD25 on CD2-/γδT+ cells

Weeks post inoculation

Rea

ctio

ntit

er[x

-fold

vers

usM

. phl

ei]

Antigen-induced CD25 expression by bovine lymphocyte subsetsex vivo

Rea

ctio

ntit

er[x

-fold

vers

usM

. phl

ei]

Antigen-induced CD25 expression by bovine lymphocyte subsetsex vivo

0

2

4

6

8

10

12

-2 4 10 16 22 28 34 40 46 52

controlcalvesMAP-inf.calves

0

2

4

6

8

10

-2 4 10 16 22 28 34 40 46 52 58

L1-controlL2-infect.

Median -/+ min/maxCD25 on CD4+/CD45RO+ cells

Weeks post inoculation

Models

Knowledge and options

18 hpi, distal jejunum

Otto et al., J. Virol., 2011

Pathohistologyand distribution of Jena virus antigen

Detection ofJena virus particles

in fecal samples

Experimental Experimental NorovirusNorovirus infection of newborn calvesinfection of newborn calves

Diarrhoea(14 – 16 hpi until 69 – 83 hpi)

Infection: oro-nasal (secretions, aerogenic)

Neuroinvasion of Neuroinvasion of PseudorabiesPseudorabies virusvirus ((PrVPrV))

Courtesy Thomas C. Mettenleiter, Institute of Molecular Biology

Ekstrand et al., Trends Mol. Med., 2008

AlphaAlpha--herpesvirusesherpesviruses::molecularmolecular pathfinderspathfinders in in nervousnervous systemsystem circuitscircuits

Livestock disease modelsLivestock disease modelsInfection / Disease Host(s) Human disease Examples of aspects studied

Influenza Swine, horses Influenza Pathogenesis of clinical illnessRotavirus Cattle, swine viral diarrhoea Pathogenesis of clinical illnessNorovirus Cattle Norovirus infection Pathogenesis and vaccine developmentRespiratory syncytial virus (BRSV) Cattle RSV infection Vaccine developmentCaprine arthritis encephalitis virus Goats, sheep HIV Genetic susceptibility andand Visna/maedi virus lentivirus–host adaptationBovine leukemia virus Cattle, sheep human T-cell leukaemia Oncogenesis

virus (HTLV) infectionBovine papilloma viruses Cattle Human papilloma viruses Latency mechanismsAujeszky´s disease Swine Human herpes virus infections Latency mechanismsMarek´s disease virus Chickens virus-induced lymphoma Oncogenesis

Hepatitis E Swine Hepatitis E Pathogenesis and vaccine development

Scrapie Sheep transmissible spongiform Neurogenerative disordersencephalopathy (TSE)

Bovine spongiform encephalopathy Cattle variant Creutzfeld-Jakob disease Neurogenerative disorders

Mycoplasma bovis / hyopneumoniae Cattle / swine Mycoplasma pneumoniae Pathogenesis of clinical illness

Chlamydia psittaci Cattle Psittacosis Mechanisms of acute disease and persistence

Tuberculosis (M. bovis) Cattle, deer Tuberculosis (MTC) Latency mechanismsJohne´s Disease Cattle, sheep, Inflammatory bowel diseases Genesis of chronic immunopathological

goats, deer (e.g. Crohn´s disease) disorders (chronic inflammation)MRSA Swine pulmonary MRSA infections Therapeutic treatment

Cryptosporidium parvum Cattle, swine Cryptosporidium parvum Therapeutic treatment testing andclinical responses to diverse strains

Asthma Sheep Asthma Genesis of chronic immunopathological(Ascaris antigen-induced) disorders

ModelsTargets

Knowledge and options

Esse

ntia

lN

on-e

ssen

tial

gB

gC

gD

gH/L

gK

gE/I

gG

gM/N

Antibodies

+

+

+++

+++

+

+

+

++

+

+++

+

+

+

+

-

Courtesy Thomas C. Mettenleiter, Institute of Molecular Biology

DIVA DIVA ((ddifferentiating ifferentiating iinfected from nfected from vvaccinated accinated aanimals)nimals) vaccinesvaccines

Pseudorabies virus

SecondSecond--generation licensed veterinary viral vaccinesgeneration licensed veterinary viral vaccines

Meeusen et al., Clin. Microbiol. Rev., 2003

ZoonosesZoonoses

Bauerfeind mod. from Woolhouse & Gowtage-Sequeria, 2005

Total number of known human pathogens: 1.407

Zoonotic pathogens

Pathogens specific for humans

„Emerging /“Re-emerging Diseases“:

177 pathogens816 (58 %)

591 (42 %)of thesezoonotic pathogens: 130

of these pathogensspecific for humans: 47

ModelsTargets

beyond

Knowledge and options

Lanzas et al., Nature Rev. Microbiol., 2010

Farm animal populationsFarm animal populationsas models for infectious diseases of humansas models for infectious diseases of humans

27 / 27 calves (min. tested until 9th week of life)

stx1 stx2

p. n. 24 h 1 2 3 4 5 6 7 8 9 10 1211 17/18 21/2213/14 15/16 19/20 23/24 dama. p.

damp. p.

Week of life

123456789

101112131415161718192021222324252627

Calf no.

Fröhlich et al., 2009, Appl. Environ. Microbiol.

STEC (EHEC) shedding in calves STEC (EHEC) shedding in calves ((stxstx detection in detection in faecalfaecal samples)samples)

eine wirksame Bekämpfung von

0

500

1000

1500

2000

2500

3000

34 36 38 40 42 44 46 48 50 52 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

Calendar week

Num

ber o

f cas

es/o

utbr

eaks

Goats

Sheep

Cattle

Source: TSN, 2010-03-16

20072006 2008 2009

Start vaccination21 calendar week 2008

Vaccination campaign

2008

Vaccination campaign

2009

BluetongueBluetongue DiseaseDisease (BTV) in Germany(BTV) in Germany

Courtesy Thomas C. Mettenleiter, Institute of Molecular Biology

2007: 20.813 cases/outbreaks

Wolfe et al., Nature Reviews, 2007

Origins of major human infectious diseasesOrigins of major human infectious diseases

Evolution of EHEC O157:H7Evolution of EHEC O157:H7

Leopold et al., PNAS, 2009; modified

chemokineinduction

STEC

CD8αβ+

CD21

CD21+

CD77dim

CD8αβ+

CD77dim

CD14+

CD8αβ+ CD8αβ+

IL-4

chemokineinductionIL-10

NOchemokinemodulationX

(mucosal) macrophage

X

XCD80/CD86

IL-4IL-6

TNF-α

phagocytosis, oxidative burst

Stx

ShigatoxinsShigatoxins modulate the modulate the immune response in cattleimmune response in cattle

Models• Long-lived

Chronic diseases• Diagnostic approaches

comparable to human medicineTranslational medicine

• Parallel assessment of a plethora of parameters (individually and over time)

Systems biology• Traditional models

Multitude of archiveddata available togenerate hypotheses

• Biologically more relevant,less animals needed

economic,more ethical

Infectious Disease Research in LivestockInfectious Disease Research in Livestock

Targets• Natural host species for the

causative agents of animal epidemics and zoonoses

Prototypic strains“out of the field”Specific host-pathogeninteractionsVaccine developmentEpidemiologicalmodeling

• Diagnostic approaches identical to routine diagnostics

Eradication programs

• Biologically more relevant,less animals needed

economic,more ethical

beyond• Defined and traceable

populationsModels for transmissionof diseases(including wildlife-derived and vector-borne)

• Natural (intermediate) reservoir species of zoonotic pathogens

Evolution of novelpathogens

• Biologically more relevant,less animals needed

economic,more ethical

ThanksThanks to to ……Thomas Mettenleiter

Institute of Molecular BiologyMartin Groschup

Institute of Novel and Emerging Infectious DiseasesTim Harder, Martin Beer

Institute of Diagnostic VirologyHeinrich Niemann

Institute of Farm Animal GeneticsSven Dänicke

Institute of Animal NutritionPetra Reinhold, Elisabeth M. Liebler-Tenorio, Carola Ostermann, Maria Braukmann, Angela Berndt

Institute of Molecular Pathogenesis

Jürgen A. RichtCollege of Veterinary Medicine

Helge KarchInstitute for Hygiene

Rolf Bauerfeind, Georg Baljer, Philip S. BridgerInstitut for Hygiene and Infectious Diseases of Animals

Klaus Doll, Torsten SeegerClinics for Ruminants and Swine