23
8/19/2019 Internal Flow BL http://slidepdf.com/reader/full/internal-flow-bl 1/23 Temperature field in duct flow pipe 2 2 1  x v  x u  p +  ⎠  ⎞ ⎝ ⎛  ⎠  ⎞ ⎝ ⎛ =  ⎠  ⎞ ⎝ ⎛ +  ρ  Neglect axial conduction 0 2 2 2 2 >>  x For fully developed laminar flow v=0 ) (  x u  x u  p =  ⎠  ⎞ ⎝ ⎛ = α  ρ 

Internal Flow BL

Embed Size (px)

Citation preview

Page 1: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 1/23

Temperature field in duct flow pipe

2

21

 x

T k 

T r 

r r k 

T v

 x

T uC  p

∂+⎟⎟

 ⎠

 ⎞⎜⎜

⎝ 

⎛ ⎟

 ⎠

 ⎞⎜⎝ 

⎛ 

∂=⎟

 ⎠

 ⎞⎜⎝ 

⎛ 

∂+

∂ ρ 

 Neglect axial conduction

02

2

2

2

→∂

∂>>

 x

For fully developed laminar flow v=0

)(r 

T r 

r r  x

T u

T r 

r r 

 x

T uC  p

∂=

 ⎠

 ⎞⎜

⎝ 

⎛ 

∂=

α 

 ρ 

Page 2: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 2/23

Define mixed mean temperature

mw

w

m

m

T T T T 

rudr  A

udA A

u

rdr r T r u AV 

T o

−−=

==

=

∫∫∫

θ 

π 

π 

211

2)()(1

0

Thermal layer is fully developed when θ is

independent of x for any set of B.C. θ is f(r)only

Laminar Duct Flow

Page 3: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 3/23

i.e

oo

mw

w

oomw

o

r r r 

k T T 

T T 

r r r 

T T 

 Aq

h

onlyr 

and  x

∂=

∂−=

=

=

=∂

θ 

θ θ 

θ 

)(

)(

0

 but θ ≠ θ(x) => h ≠ h(x) and h is defined at thewall r=r o => h =constant ( uniform for fully

developed flow)

Laminar Duct Flow

Page 4: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 4/23

( )

( )dx

dT 

dx

dT 

 x

dx

dT 

dx

dT 

T T 

T T 

dx

dT 

dx

dT T T dx

d T T 

dx

dT 

dx

dT 

T T 

T T 

T T 

 x

 x

mw

mw

mw

ww

mw

ww

mw

mw

w

θ θ 

θ 

+−=∂∂

⇒=⎟ ⎠

 ⎞⎜⎝ 

⎛ −⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ 

−−−

⇒=⎟⎟

 ⎠

 ⎞⎜⎜

⎝ 

⎛ 

−−+⎟

 ⎠

 ⎞⎜

⎝ 

⎛ −

⇒=⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ 

⇒=∂∂

1

0

011

0

0

Laminar Duct Flow

Page 5: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 5/23

Two cases:

A- Constant heat flux (qw/A)=constant

.

.

.

(2)

w

w m

w

w m oo

w m

w m

q A

h const  T T 

q A   k 

const r T T r 

T T const  

dT dT  or uniform

dx dx

θ 

⎛ ⎞⎜ ⎟⎝ ⎠ = =

⎛ ⎞⎜ ⎟ − ∂⎝ ⎠ = =∂−

⇒ − =

= =

Laminar Duct Flow

Page 6: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 6/23

But, from equation (2)

Then usedx

dT 

dx

 x

T  mw =∂

=

symmetry

T r 

 xT T r r 

u

T r 

r r  x

T u

wo

o

m

00

)(

12

1

2

=

∂=

==

⎥⎥

⎢⎢

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ −=

⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ ⎟ ⎠

 ⎞⎜⎝ 

⎛ 

∂=

∂α 

Laminar Duct Flow

Page 7: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 7/23

Case 2:

B- Constant temperature Tw =const.

⎟ ⎠

 ⎞⎜⎝ 

⎛ 

∂=

∂⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ 

−⇒

⎟ ⎠

 ⎞⎜⎝ 

⎛ 

∂=

∂⇒

∂=

=∂

+−=∂∂

T r 

r r  x

r T 

T T 

T T u

T r 

r r  x

T u

 x

 x

 x

dxdT 

dxdT 

 xT 

w

mw

w

m

m

w

mw

α 

α θ 

θ 

θ θ 

)(

)1(

0

)1(

L

Laminar Duct Flow

w

w m

T T 

T T θ 

  −=

Page 8: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 8/23

Iterate for solution, use θ(r) of qw= const, integrate

to get new θ(r) and so on.

 Nu =3.66

 xc

mm

m

m

mw

m

oo

mw

eT T dx

dT c

dx

dT const T T h

dx

dT r cvr 

 A

q

T T h A

q

10

)()(

2

)(

1

3

−≈⇒=−

=−

=

−=

π  ρ π 

Laminar Duct Flow

Page 9: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 9/23

Example

• The sketch shows a cast ironwater pipe running outdoors.The pipe is 50 mm I.D. In a 5

mm wall thickness, and carriesa constant water flow rate of0.65kg/sec. The water enters theoutdoor section of the pipe at

x=0 with a bulk temperatureTv=15oC. The ambient airsurrounding the pipe is at –20oCand the outside heat transfer

coefficient between the pipeand air is 250 W/m2C. Ice startsforming at the pipe wall at adistance of x1.

Page 10: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 10/23

Example

Assuming steady state, fully developed conditions

and constant water properties:

a) Find the inside heat transfer coefficient betweenwater and pipe inner wall area for x<x1 (no ice).

 b) Find the overall heat transfer coefficient U based

on the pipe inner wall area x<x1.c) Sketch the temperature profile across the pipe for

x<x1. Show water, pipe wall, and air temperature.

d) Calculate the distance x1, and corresponding localwater bulk temperature T1 at the point where ice

 begins to form.

Page 11: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 11/23

Example

e) Sketch the ice thickness profile along the pipe wall

for x>x1.

f) At x2>x1, water bulk temperature is 3C. Estimatethe steady state ice thickness.

g) Sketch the temperature profile across the pipe at

 point x2. Show all temperatures.h) Sketch the bulk temperature distribution between

x=0 and x2. Clearly show that what happens at x1.

Page 12: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 12/23

Solution

a)

C mW h

 Nuk 

hk 

hd 

 Nu

 Nu

Turbulent  AV m

m

 D

d m

 A

d mVd 

 D

o

ooo

2

31

8.0

2

/6.1041

Pr Re023.0

11823Re

4

4

Re

=

=⇒=

=

=⇐=

====

 ρ 

µ π µ 

π µ µ 

 ρ 

 b) Overall heat transfer coefficient

∑==   th

i

 RUA

1

Page 13: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 13/23

Solution

K mW U 

d h

r r 

hU 

 Ld  A Ld  A

 Ah

 A

kL

r r  A

h A R

 AU 

 AhkL

r r 

 Ah R

i

oout 

ii

oi

ii

ooii

out out 

ii

oi

ii

th

ii

out out 

i

o

ii

th

2/02.198

0033.000009.000096.02

ln11

2

ln111

1

2

ln1

=⇒

++=⎥⎥⎥

⎢⎢⎢

++=⇒

==

⎥⎥⎥

⎢⎢⎢

⎡++==

++=

π 

π π 

π 

π 

Page 14: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 14/23

Solution

c)

Page 15: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 15/23

d) @ x=x1, Ti=0C

Solution

C  xT T  xT  R R

 R xT 

 R xT  xT  fluxheat 

 R RT  xT 

W K m R

W K m R

W K m R x x for 

o

iiwo

i

b

i

ib

wo

i

o

w

ii

6.5)())(()(

)()()(

/0033.0

/00009.0

/00096.0,

111

111

2

2

2

=+−+

=⇒

−==+

=

=

=<

 Now from energy balance,

Page 16: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 16/23

Solution

[ ]

( )

mU r 

C m x

C T  x xat 

eT T T  xT 

dxC m

U r T  xT T  xT d 

 xT cmdx

d T  xT U r  x

ii

 p

o

o

b

 x

C m

U r 

ob

 p

o

ii

b

b

b p

o

oii

 po

ii

45.272015206.5ln

2

6.5

)(

2)(

))((

)()(2

1

1

2

=++−=

⇒=⇒=

−=−⇒

−=−−⇒

∆−=−∆

∞∞

π 

π 

π 

π 

Page 17: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 17/23

e)

Solution

Page 18: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 18/23

Solution

f) Here Tm=0 oC and T b=3 Cq”Ai= heat flux based on inside area of cast iron

wall.

All resistances are also based on inside surface of

 pipe wall.

Page 19: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 19/23

Solution

)4(

1

2

)3()2(

4Pr 023.02

)2(

1

11.

2

)1(12

2ln

/00009.0

/0033.0

8.1

8.1

8.0

31

2

2

L

L

L

K

′+++

−=

′−

=″

⎟ ⎠

 ⎞⎜⎝ 

⎛ −

=⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ 

−=

⎟⎟ ⎠ ⎞⎜⎜

⎝ ⎛ 

−−=′

′⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ −

=−

=′

−=⇒⎟

 ⎠ ⎞

⎜⎝ ⎛ 

−=

=

=

iicewo

b

i

mb A

inin

i

i

i

o

i

in

ir 

i

ii

ii

k  R

iice

i

ii

ice

w

o

 R R R R

T T 

 R

T T q

n

hh

m

k h

hr 

r hd 

d  R

er K 

d d 

 R

W K m R

W K m R

i

i

iceice

δ δ 

δ π δ 

δ δ 

δ δ 

Page 20: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 20/23

Solution

Which gives the necessary equations to solve δ.Unfortunately, it is a transcendental equations. We

can now linearize the equations assuring δ<<di and

then we solve it, or we can solve by iteration. Here

we take second path which is more straight forward.

Page 21: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 21/23

Solution

Page 22: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 22/23

Solution

g)

Page 23: Internal Flow BL

8/19/2019 Internal Flow BL

http://slidepdf.com/reader/full/internal-flow-bl 23/23

h)

Solution