23
1 Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout David Harris Harvey Mudd College Spring 2004 1: Circuits & Layout Slide 2 CMOS VLSI Design Outline A Brief History CMOS Gate Design Pass Transistors CMOS Latches & Flip-Flops Standard Cell Layouts Stick Diagrams

Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

Embed Size (px)

Citation preview

Page 1: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

1

Introduction toCMOS VLSI

Design

Lecture 1: Circuits & Layout

David Harris

Harvey Mudd CollegeSpring 2004

1: Circuits & Layout Slide 2CMOS VLSI Design

OutlineA Brief HistoryCMOS Gate DesignPass TransistorsCMOS Latches & Flip-FlopsStandard Cell LayoutsStick Diagrams

Page 2: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

2

1: Circuits & Layout Slide 3CMOS VLSI Design

A Brief History1958: First integrated circuit– Flip-flop using two transistors– Built by Jack Kilby at Texas Instruments

2003– Intel Pentium 4 µprocessor (55 million transistors)– 512 Mbit DRAM (> 0.5 billion transistors)

53% compound annual growth rate over 45 years– No other technology has grown so fast so long

Driven by miniaturization of transistors– Smaller is cheaper, faster, lower in power!– Revolutionary effects on society

1: Circuits & Layout Slide 4CMOS VLSI Design

Annual Sales1018 transistors manufactured in 2003– 100 million for every human on the planet

0

50

100

150

200

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002

Year

Global S

emiconductor B

illings(B

illions of US

$)

Page 3: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

3

1: Circuits & Layout Slide 5CMOS VLSI Design

Invention of the TransistorVacuum tubes ruled in first half of 20th century Large, expensive, power-hungry, unreliable1947: first point contact transistor– John Bardeen and Walter Brattain at Bell Labs– Read Crystal Fire

by Riordan, Hoddeson

1: Circuits & Layout Slide 6CMOS VLSI Design

Transistor TypesBipolar transistors– npn or pnp silicon structure– Small current into very thin base layer controls

large currents between emitter and collector– Base currents limit integration density

Metal Oxide Semiconductor Field Effect Transistors– nMOS and pMOS MOSFETS– Voltage applied to insulated gate controls current

between source and drain– Low power allows very high integration

Page 4: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

4

1: Circuits & Layout Slide 7CMOS VLSI Design

1970’s processes usually had only nMOS transistors– Inexpensive, but consume power while idle

1980s-present: CMOS processes for low idle power

MOS Integrated Circuits

Intel 1101 256-bit SRAM Intel 4004 4-bit µProc

1: Circuits & Layout Slide 8CMOS VLSI Design

Moore’s Law1965: Gordon Moore plotted transistor on each chip– Fit straight line on semilog scale– Transistor counts have doubled every 26 months

Year

Transistors

40048008

8080

8086

80286Intel386

Intel486Pentium

Pentium ProPentium II

Pentium IIIPentium 4

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

1970 1975 1980 1985 1990 1995 2000

Integration Levels

SSI: 10 gates

MSI: 1000 gates

LSI: 10,000 gates

VLSI: > 10k gates

Page 5: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

5

1: Circuits & Layout Slide 9CMOS VLSI Design

CorollariesMany other factors grow exponentially – Ex: clock frequency, processor performance

Year

1

10

100

1,000

10,000

1970 1975 1980 1985 1990 1995 2000 2005

4004

8008

8080

8086

80286

Intel386

Intel486

Pentium

Pentium Pro/II/III

Pentium 4

Clock S

peed (MH

z)

1: Circuits & Layout Slide 10CMOS VLSI Design

CMOS Gate DesignActivity:– Sketch a 4-input CMOS NAND gate

Page 6: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

6

1: Circuits & Layout Slide 11CMOS VLSI Design

CMOS Gate DesignActivity:– Sketch a 4-input CMOS NOR gate

A

B

C

DY

1: Circuits & Layout Slide 12CMOS VLSI Design

Complementary CMOSComplementary CMOS logic gates– nMOS pull-down network– pMOS pull-up network– a.k.a. static CMOS

pMOSpull-upnetwork

outputinputs

nMOSpull-downnetwork

X (crowbar)0Pull-down ON

1Z (float)Pull-down OFFPull-up ONPull-up OFF

Page 7: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

7

1: Circuits & Layout Slide 13CMOS VLSI Design

Series and ParallelnMOS: 1 = ONpMOS: 0 = ONSeries: both must be ONParallel: either can be ON

(a)

a

b

a

b

g1

g2

0

0

a

b

0

1

a

b

1

0

a

b

1

1

OFF OFF OFF ON

(b)

a

b

a

b

g1

g2

0

0

a

b

0

1

a

b

1

0

a

b

1

1

ON OFF OFF OFF

(c)

a

b

a

b

g1 g2 0 0

OFF ON ON ON

(d) ON ON ON OFF

a

b

0

a

b

1

a

b

11 0 1

a

b

0 0

a

b

0

a

b

1

a

b

11 0 1

a

b

g1 g2

1: Circuits & Layout Slide 14CMOS VLSI Design

Conduction ComplementComplementary CMOS gates always produce 0 or 1Ex: NAND gate– Series nMOS: Y=0 when both inputs are 1– Thus Y=1 when either input is 0– Requires parallel pMOS

Rule of Conduction Complements– Pull-up network is dual of pull-down– Parallel -> series, series -> parallel

A

B

Y

Page 8: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

8

1: Circuits & Layout Slide 15CMOS VLSI Design

Compound GatesCompound gates can do any inverting functionEx: (AND-AND-OR-INVERT, AOI22)Y A B C D= +

A

B

C

D

A

B

C

D

A B C DA B

C D

B

D

YA

CA

C

A

B

C

D

B

D

Y

(a)

(c)

(e)

(b)

(d)

(f)

1: Circuits & Layout Slide 16CMOS VLSI Design

Example: O3AI( )Y A B C D= + +

Page 9: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

9

1: Circuits & Layout Slide 17CMOS VLSI Design

Example: O3AI ( )Y A B C D= + +

A B

Y

C

D

DC

B

A

1: Circuits & Layout Slide 18CMOS VLSI Design

Signal StrengthStrength of signal– How close it approximates ideal voltage source

VDD and GND rails are strongest 1 and 0nMOS pass strong 0– But degraded or weak 1

pMOS pass strong 1– But degraded or weak 0

Thus nMOS are best for pull-down network

Page 10: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

10

1: Circuits & Layout Slide 19CMOS VLSI Design

Pass TransistorsTransistors can be used as switches

g

s d

g

s d

1: Circuits & Layout Slide 20CMOS VLSI Design

Pass TransistorsTransistors can be used as switches

g

s d

g = 0s d

g = 1s d

0 strong 0Input Output

1 degraded 1

g

s d

g = 0s d

g = 1s d

0 degraded 0Input Output

strong 1

g = 1

g = 1

g = 0

g = 0

Page 11: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

11

1: Circuits & Layout Slide 21CMOS VLSI Design

Transmission GatesPass transistors produce degraded outputsTransmission gates pass both 0 and 1 well

1: Circuits & Layout Slide 22CMOS VLSI Design

Transmission GatesPass transistors produce degraded outputsTransmission gates pass both 0 and 1 well

g = 0, gb = 1a b

g = 1, gb = 0a b

0 strong 0

Input Output

1 strong 1

g

gb

a b

a bg

gb

a bg

gb

a bg

gb

g = 1, gb = 0

g = 1, gb = 0

Page 12: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

12

1: Circuits & Layout Slide 23CMOS VLSI Design

TristatesTristate buffer produces Z when not enabled

11011000

YAEN

A Y

EN

A Y

EN

EN

1: Circuits & Layout Slide 24CMOS VLSI Design

TristatesTristate buffer produces Z when not enabled

111001Z10Z00YAEN

A Y

EN

A Y

EN

EN

Page 13: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

13

1: Circuits & Layout Slide 25CMOS VLSI Design

Nonrestoring TristateTransmission gate acts as tristate buffer– Only two transistors– But nonrestoring

• Noise on A is passed on to Y

A Y

EN

EN

1: Circuits & Layout Slide 26CMOS VLSI Design

Tristate InverterTristate inverter produces restored output– Violates conduction complement rule– Because we want a Z output

A

YEN

EN

Page 14: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

14

1: Circuits & Layout Slide 27CMOS VLSI Design

Tristate InverterTristate inverter produces restored output– Violates conduction complement rule– Because we want a Z output

A

YEN

A

Y

EN = 0Y = 'Z'

Y

EN = 1Y = A

A

EN

1: Circuits & Layout Slide 28CMOS VLSI Design

Multiplexers2:1 multiplexer chooses between two inputs

X11

X01

1X0

0X0

YD0D1S

0

1

S

D0

D1Y

Page 15: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

15

1: Circuits & Layout Slide 29CMOS VLSI Design

Multiplexers2:1 multiplexer chooses between two inputs

1X11

0X01

11X0

00X0

YD0D1S

0

1

S

D0

D1Y

1: Circuits & Layout Slide 30CMOS VLSI Design

Gate-Level Mux Design

How many transistors are needed?1 0 (too many transistors)Y SD SD= +

Page 16: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

16

1: Circuits & Layout Slide 31CMOS VLSI Design

Gate-Level Mux Design

How many transistors are needed? 1 0 (too many transistors)Y SD SD= +

44

D1

D0S Y

4

2

22 Y

2

D1

D0S

1: Circuits & Layout Slide 32CMOS VLSI Design

Gate-Level Mux Design

How many transistors are needed? 201 0 (too many transistors)Y SD SD= +

44

D1

D0S Y

4

2

22 Y

2

D1

D0S

Page 17: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

17

1: Circuits & Layout Slide 33CMOS VLSI Design

Transmission Gate MuxNonrestoring mux uses two transmission gates

1: Circuits & Layout Slide 34CMOS VLSI Design

Transmission Gate MuxNonrestoring mux uses two transmission gates– Only 4 transistors

S

S

D0

D1YS

Page 18: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

18

1: Circuits & Layout Slide 35CMOS VLSI Design

Inverting MuxInverting multiplexer– Use compound AOI22– Or pair of tristate inverters– Essentially the same thing

Noninverting multiplexer adds an inverter

S

D0 D1

Y

S

D0

D1Y

0

1S

Y

D0

D1

S

S

S

S

S

S

1: Circuits & Layout Slide 36CMOS VLSI Design

4:1 Multiplexer4:1 mux chooses one of 4 inputs using two selects

Page 19: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

19

1: Circuits & Layout Slide 37CMOS VLSI Design

4:1 Multiplexer4:1 mux chooses one of 4 inputs using two selects– Two levels of 2:1 muxes– Or four tristates

S0

D0

D1

0

1

0

1

0

1Y

S1

D2

D3

D0

D1

D2

D3

Y

S1S0 S1S0 S1S0 S1S0

1: Circuits & Layout Slide 38CMOS VLSI Design

D LatchWhen CLK = 1, latch is transparent– D flows through to Q like a buffer

When CLK = 0, the latch is opaque– Q holds its old value independent of D

a.k.a. transparent latch or level-sensitive latch

CLK

D Q

Latc

h D

CLK

Q

Page 20: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

20

1: Circuits & Layout Slide 39CMOS VLSI Design

D Latch DesignMultiplexer chooses D or old Q

1

0

D

CLK

QCLK

CLKCLK

CLK

DQ Q

Q

1: Circuits & Layout Slide 40CMOS VLSI Design

D Latch Operation

CLK = 1

D Q

Q

CLK = 0

D Q

Q

D

CLK

Q

Page 21: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

21

1: Circuits & Layout Slide 41CMOS VLSI Design

D Flip-flopWhen CLK rises, D is copied to QAt all other times, Q holds its valuea.k.a. positive edge-triggered flip-flop, master-slave flip-flop

Flop

CLK

D Q

D

CLK

Q

1: Circuits & Layout Slide 42CMOS VLSI Design

D Flip-flop DesignBuilt from master and slave D latches

QMCLK

CLKCLK

CLK

Q

CLK

CLK

CLK

CLK

D

Latc

h

Latc

h

D QQM

CLK

CLK

Page 22: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

22

1: Circuits & Layout Slide 43CMOS VLSI Design

D Flip-flop Operation

CLK = 1

D

CLK = 0

Q

D

QM

QMQ

D

CLK

Q

1: Circuits & Layout Slide 44CMOS VLSI Design

Race ConditionBack-to-back flops can malfunction from clock skew– Second flip-flop fires late– Sees first flip-flop change and captures its result– Called hold-time failure or race condition

CLK1

D Q1

Flop

Flop

CLK2

Q2

CLK1

CLK2

Q1

Q2

Page 23: Introduction to CMOS VLSI Designcs6710/slides/Harris-circuitsx2.pdf · CMOS VLSI Design Lecture 1: Circuits & Layout ... Circuits & Layout Slide 25CMOS VLSI Design ... Harris-circuits.ppt

23

1: Circuits & Layout Slide 45CMOS VLSI Design

Nonoverlapping ClocksNonoverlapping clocks can prevent races– As long as nonoverlap exceeds clock skew

You can use them if you like for safe design– Industry manages skew more carefully instead

φ1

φ1φ1

φ1

φ2

φ2φ2

φ2

φ2

φ1

QMQD