38
Introduction to microfabrication, chapter 1 [email protected]

Introduction to microfabrication, chapter 1 [email protected]

Embed Size (px)

Citation preview

Page 1: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Introduction to microfabrication,

chapter 1

[email protected]

Page 2: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Dimension in microworld

Fig. 1.12

Page 3: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Materials

substrate

thin film 2

surface

interface 2

interface 1

Substrate: thick piece of materials (0.5 mm = 500 µm)

Thin films: 10-1000 nm;SiO2 (insulator)Al (conductor)

Silicon most often

Page 4: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Fig. 1.3: Electron beam lithographydefined gold-palladium nanobridge

Microfabrication vs. Nanofabrication ?

Fig. 24.4: Focussed ion beam patterned Aalto vase

Page 5: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Fig. 1.1: Microtechnology subfield evolution from 1960’s onwards.

Page 6: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Silicon microelectronics

0.5 µm CMOS in SEM micrograph 65 nm CMOS in TEM micrograph

Page 7: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Fig. 1.18: Schematic of a MOS transistor: gate, source (S) and drain (D) in an active area defined by thick isolation oxide.

MOS transistor

Page 8: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Patterning process: optical lithography and etching

Fig. 9.1

Page 9: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Photoresist application

Resist dispensing Acceleration Final spinning 5000 rpm(a few milliliters) (resist expelled) (partial drying via evaporation)

Surface preparation for adhesion improvement

Spin coating

Page 10: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Photoresist exposure

Positive resist: exposed parts become soluble

Negative resist: exposed parts cross-linked and insoluble

Positive AZ resist:

Page 11: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Lithography test structures

Page 12: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Contact/proximity lithography

gap

2

dglinewidth

λ = 436 nmd = 1 µm (standard resist)

Linewidth min ≈ 0.5 µm g = 0 (contact)

Linewidth min ≈2 µm g = 10 µm (proximity)

Page 13: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Contact/proximity resolution

Vacuum contact

Hard contact

Soft contact

20 µm proximity gap

Page 14: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Linewidth and pitch

The goal of lithography is to make lines and spaces small (only this will increase device packing density).

Linewidth on previous slide was actually half-pitch: the resolving power of optical systems was divided half and half for line and space.

In making microprocessor gates, line is smaller than space, e.g. 100 nm pitch results in 30 nm gate and 70 nm space.

Page 15: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

After lithography

a b

c

de

f

a) ion implantation (Ch 15) b) wet etching (Ch 11) c) moulding (Ch 18)d) plasma etching (Ch 11) e) electroplating (Ch 29)f) lift-off (Ch 23)

Page 16: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Imprinting/embossing

• Press 3D master into softened polymer

• Remove after cooling below Tg

Apply photofilm Press together Stamp release Residue clearing

Page 17: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Nanoimprinted Photonic Crystal Devices

Silicon stamp:

High lateral resolutionProtrusion height ~ 100 nm

Anders Kristensen

Page 18: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

UV nanoimprinting

• Use light to harden the polymer

Apply polymer Stamp+UV Stamp release Residue clearing

Page 19: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Superhydrophobic biomimetic surfaces by UV-NIL

Nanotech 2006, Boston

Page 20: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

AlignmentMicrodevices are build layer-by-layer.Alignment is needed to make those structures coincide.

Wafer with first level structures

Mask with second level structrures

Mask and wafer are aligned before exposure

Page 21: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Resistor alignment

#1 resistor

#2 contactsholes

#3 metallization

Resistor material patterned

Insulation deposited

Contach hole lithography & etching

Metal deposition

Page 22: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Silicon wafersscribe lines for chip dicing

wafer flat for orientation checking

alignment marks for lithography

edge exclusion

Fig. 1.20 Real estate allocation on a wafer

Fig. 1.4: 100 mm diameter silicon wafer

Page 23: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Silicon strengths

• silicon is a good mechanical material• silicon is good thermal conductor• silicon is transparent in infrared• silicon is a semiconductor• silicon is optically smooth and flat• silicon is known inside out

consider silicon first, alternatives then

Page 24: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Single crystalline silicon(a.k.a. monocrystalline)

<100> silicon

Page 25: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Polycrystalline and amorphous materials

Fig. 1.6

Page 26: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Other substratesGlass amorphous SiO2 + Na2O + CaO +…Quartz amorphous or crystalline SiO2

Sapphire crystalline Al2O3 Alumina amorphous Al2O3 klkGaAs crystallineGaN crystallineSiC crystallineSteel multicrystallineNickel multicrystallineAlN multicrystallineZnO amorphous (“glass”)PCB polymerLTCC ceramic

Page 27: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

High temperature processes

T > ~ 900oC

Thermal oxidation Si + O2 SiO2

Diffusion

Page 28: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Arrhenius processes

3.5eV

2.2 eV

kT

Ea

eTzrate )(

Page 29: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Optoelectronics

Fig. 1.14: Silicon solar cell

Fig. 6.2: GaAs multiple quantum well solar cell

Page 30: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

MOEMS (Micro Opto Electro Mechanical Systems)

Fig. 1.2: Micromirror made of silicon, 1 mm diameter, is supported by 1.2 µm wide, 4 µm thick torsion bars (detail figure), from ref. Greywall.

Fig. 21.4: variable optical attenator

Page 31: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Micro-optics

Fig. 1.7: Aluminum oxide and titanium oxide thin films deposited over silicon waveguide ridges, courtesy Tapani Alasaarela.

Fig. 7.13: Refractive index SiO2/SiOxNy/SiO2 waveguide: nf 1.46/1.52/1.46. From ref. Hilleringmann.

Page 32: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

MEMS: Micro Electro Mechanical Systems

Fig. 29.21: Microgears, courtsey Sandia National Labs.

Fig. 21.3: comb-drive actuator

Page 33: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Power MEMS

Fig. 1.17: Microturbine

Fabricated by bonding together 5 silicon wafers.

Page 34: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Microfluidics and BioMEMS

Fig. 1.13: silicon microneedle Fig. 1.11: Oxy-hydrogen burner flame ionization detector

Page 35: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Cleanroom

Page 36: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Yield

nYY 0 Yield of a total process is a product of yield of individual process steps

50 step MEMS processY0 = 0.999 95%

500 step DRAM process, Y0 = 0.999 61%

Page 37: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Yield (2)

DAeY Yield depends on chip area (A) and defect density (D)

D = 0.01 mm-2 (= 1/cm2)

A= 10 mm2 Y = 90%

A= 100 mm2 Y = 37%

Page 38: Introduction to microfabrication, chapter 1 sami.franssila@aalto.fi

Industries

Integrated circuits $300 BOther semiconductors $30 BFlat panels displays $100 BHard disks $30 BSolar cells $30 BMEMS $10 B

Equipment $30 BMaterials $10 B