44
1 ECE 255: DC MOSFET Circuits (Sedra and Smith, 7 th Ed., Sec. 5.3) Mark Lundstrom School of ECE Purdue University West Lafayette, IN USA Lundstrom: Fall 2019 ECE 255: Fall 2019 Purdue University

L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

1

ECE 255:

DC MOSFET Circuits

(Sedra and Smith, 7th Ed., Sec. 5.3)

Mark Lundstrom School of ECE

Purdue University West Lafayette, IN USA

Lundstrom: Fall 2019

ECE 255: Fall 2019 Purdue University

Page 2: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Outline

2

1)  BJT Analysis is Easy 2)  DC N-MOSFET Circuit Analysis 3)  DC N-MOSFET Circuit Design 4)  P-MOSFET Design and Analysis 5)  Examples

Lundstrom: Fall 2019

Page 3: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

BJT circuit analysis

3 Lundstrom: Fall 2019

+V

CE= ? V

β = 100

+5 V

−5 V

RE = 4.3 kΩ

RC = 1kΩIC = ? mA Find IC and VCE

VBE on( ) = 0.7 V

Page 4: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Why is it so easy?

4 Lundstrom: Fall 2019

+V

CE= 4.71V

β = 100

+5 V

−5 V

RE = 4.3 kΩ

RC = 1kΩIC = 0.99 mA

VBE on( ) = 0.7 V

+V

BE

− Because we can guess this voltage

IC

VBE

IC = ISeVBE VT

VBE≈ 0.7 V

Page 5: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Why is MOSFET circuit analysis harder?

5 Lundstrom: Fall 2019

Because we cannot guess this voltage

ID

VGSV

tn

+VDS = ?−

+5 V

−5 V

RS = 4.3 kΩ

RD = 1kΩID = ?

+VGS−

ID =

kn

2VGS −Vtn( )2

Vtn > 0 V

Page 6: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Outline

6

1)  BJT Analysis is Easy 2)  DC N-MOSFET Circuit Analysis 3)  DC N-MOSFET Circuit Design 4)  P-MOSFET Design and Analysis 5)  Examples

Lundstrom: Fall 2019

Page 7: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

IV Summary (saturation region)

7 Lundstrom: Fall 2019

VDS

IC

act VGS −Vtn

VDSsat

ID =

kn

2VGS −Vtn( )2

IG = 0 kn =

WL

′kn =WLµnCox

Vtn > 0 V( )

VDSsat =VGS −Vtn

VDS >VDSsat

VGS >Vtn

ID = IS

Page 8: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

MOSFET circuit analysis

8

+VDS = ?−

+5 V

−5 V

RS = 4 kΩ

RD = 3.5 kΩID = ?

ID =

′kn

2WL

VGS −Vtn( )2

Transistor model:

′kn

2WL= 1mA/V2

Vtn = 1.0 V

Lundstrom: Fall 2019

ID = 1 VGS −1.0( )2 (device)

VGS = ? (circuit)

Page 9: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

MOSFET circuit analysis (ii)

9

+VDS = ?−

+5 V

−5 V

RS = 4 kΩ

RD = 3.5 kΩID = ? ID = 1 VGS −1.0( )2

VGS = ?

VGS =VG −VS

VS = −5+ ID RS

VGS = 5− ID RS

ID = 5− ID RS −1.0( )2

Lundstrom: Fall 2019

VG

VD

VS+IDRS−

Page 10: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

MOSFET circuit analysis (iii)

10

+VDS = ?−

+5 V

−5 V

RS = 4 kΩ

RD = 3.5 kΩID = ? ID = 5− ID RS −1.0( )2

ID2 − 2.06ID +1= 0

ID = 1.28 / 0.76

Lundstrom: Fall 2019

Page 11: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

MOSFET circuit analysis (iv)

11

+VDS = ?−

+5 V

−5 V

RS = 4 kΩ

RD = 3.5 kΩID = ? ID = 1.28 mA Does not work.

Lundstrom: Fall 2019

Vtn = 1.0 V

Page 12: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

MOSFET circuit analysis (iv)

12

+VDS = ?−

+5 V

−5 V

RS = 4 kΩ

RD = 3.5 kΩID = ? ID = 0.76 mA

VD = 5− ID RD = 2.3 V

VGS = −VS = 1.96 V >Vtn

VDS =VD −VS = 4.26 V

VDSsat =VGS −Vtn = 0.96 V

VS = −5+ ID RS = −1.96 V

VDS >VDSsat

Lundstrom: Fall 2019

Vtn = 1.0 V

Page 13: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

MOSFET circuit analysis (summary)

13

+VDS = ?−

+5 V

−5 V

RS = 4 kΩ

RD = 3.5 kΩID = ?

Vtn = 1.0 V

ID =

′kn

2WL

VGS −Vtn( )2

1) Write the device equation:

VGS =

2) Write the circuit equation:

3) Solve the equations

4) Check solution

Page 14: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Outline

14

1)  BJT Analysis is Easy 2)  DC N-MOSFET Circuit Analysis 3)  DC N-MOSFET Circuit Design 4)  P-MOSFET Design and Analysis 5)  Examples

Lundstrom: Fall 2019

Page 15: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

MOSFET circuit design

15

+VDS = 3.0 V−

+5 V

−5 V

RS = ? kΩ

RD = ? kΩID = 0.5 mA

ID =

′kn

2WL

VGS −Vtn( )2

Transistor model:

′kn

2WL= 1mA/V2

Vtn = 1.0 V

ID = 1 VGS −1.0( )2= 0.5

VGS = 1.71

Now design the circuit

Page 16: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

MOSFET circuit design (ii)

16

+VDS = 3.0 V−

+5 V

−5 V

RS = ? kΩ

RD = ? kΩID = 0.5 mA VGS = 1.71

VGS =VG −VS = 1.71

VS = −1.71

RS = 6.6 kΩ

VD =VS +VDS

RD = 7.4 kΩ

Lundstrom: Fall 2019

VG

VD = 1.29

Page 17: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

MOSFET circuit design (summary)

17

+VDS = y.yymA−

+5 V

−5 V

RS = ? kΩ

RD = ? kΩID = x.x mA

ID =

′kn

2WL

VGS −Vtn( )2

1) Write the device equation:

2) Solve for VGS:

3) Design the circuit to give that VGS

4) Design the circuit to give the desired VDS

Page 18: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Outline

18

1)  BJT Analysis is Easy 2)  DC N-MOSFET Circuit Analysis 3)  DC N-MOSFET Circuit Design 4)  P-MOSFET Design and Analysis 5)  Examples

Lundstrom: Fall 2019

Page 19: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

IV Summary (NMOS saturation region)

19 Lundstrom: Fall 2019

VDS

IC

act VGS −Vtn

VDSsat

ID =

kn

2VGS −Vtn( )2

kn =

WL

′kn =WLµnCox

Vtn > 0 V( )

VDSsat =VGS −Vtn

VDS >VDSsat

VGS >Vtn

Page 20: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

IV Summary (PMOS saturation region)

20 Lundstrom: Fall 2019

VSD

IC

act VSG − Vtp

VSDsat

ID =

kp

2VSG − Vtp( )2

kp =

WL

′kp =WLµ pCox

Vtp < 0 V( )

VSDsat =VSG − Vtp

VSD >VSDsat

VSG > Vtp

Page 21: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

P-MOSFET circuit design

21

+VSD = 3.0 V−

+5 V

−5 V

RD = ? kΩ

RS = ? kΩ

ID = 0.5 mA

ID =

′kp

2WL

VSG − Vtp( )2

Transistor model:

′kp

2WL= 1mA/V2

Vtp = −1.0 V

Lundstrom: Fall 2019

ID = 1 VSG −1.0( )2= 0.5

VSG = 1.71

Page 22: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

P-MOSFET circuit design (ii)

22

+VSD = 3.0 V−

+5 V

−5 V

RD = ? kΩ

RS = ? kΩ

ID = 0.5 mA

VSG = 1.71

VS = 1.71 RS = 6.6 kΩ

VD =VS −VSD

VD = −1.29

RD = 7.4 kΩ

Lundstrom: Fall 2019

Page 23: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

P-MOSFET circuit analysis

23

+VSD = ?−

+5 V

−5 V

RD = 3.5 kΩ

RS = 4 kΩ

ID = ?

ID =

′kp

2WL

VSG − Vtp( )2

Transistor model:

′kp

2WL= 1mA/V2

Vtp = −1.0 V

ID = 1 VSG −1.0( )2

VSG = 5− ID RS

Lundstrom: Fall 2019

Page 24: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

P-MOSFET circuit analysis

24

ID = 1 VSG −1.0( )2

VSG = 5− ID RS

ID = 5− ID RS −1.0( )2

ID2 − 2.06ID +1= 0

ID = 1.28 or 0.76

ID = 0.76

ID = 5−VSG( ) RS = 5−VSG( ) 4

4VSG2 − 7VSG −1= 0

VSG = 1.88 or − 0.13

VSG = 1.88

ID = 0.77

Option1: Option2: 1

2

Page 25: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Outline

25

1)  BJT Analysis is Easy 2)  DC N-MOSFET Circuit Analysis 3)  DC N-MOSFET Circuit Design 4)  P-MOSFET Design and Analysis 5)  Examples

Lundstrom: Fall 2019

Page 26: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Example 1: Analysis

26

VDD = +5 V

RD = 4.3kΩ

1) Operating region?

+VGS

Lundstrom: Fall 2019

ID = 0.1 VGS −1( )2

Page 27: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Example 1: Analysis

27

VDD = +5 V

RD = 4.3kΩ

1) Operating region?

VGS =VD

VDS =VD

VDS >VGS −Vtn

+VGS

−Saturation

Lundstrom: Fall 2019

ID = 0.1 VGS −1( )2

Page 28: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Example 1: Analysis

28

VDD = +5 V

RD = 4.3kΩ

ID = 0.1 VGS −1( )2

ID = 0.1 VGS −1( )2

+VGS

Lundstrom: Fall 2019

VD

Page 29: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Example 1: Analysis

29

VDD = +5 V

RD = 4.3kΩ

ID = 0.1 VGS −1( )2

ID = 0.1 VGS −1( )2

VGS = 5− ID RD = 5− 4.3ID

ID2 − 2.86ID +1.35= 0

+VGS

ID = 2.26 or 0.60

ID = 0.60

Lundstrom: Fall 2019

VD

Page 30: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Example 2: Design

30

VDD = +5 V

RD = ?kΩ

ID =

′kn

2WL

VGS −Vtn( )2

ID = 0.1 VGS −1( )2

Design for: ID = 0.9 mA

Lundstrom: Fall 2019

VD

Page 31: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Example 2: Design

31

VDD = +5 V

RD = ?kΩ

ID =

′kn

2WL

VGS −Vtn( )2

ID = 0.1 VGS −1( )2

ID = 0.1 VGS −1( )2= 0.9

Design for: ID = 0.9 mA

VGS = 4.0 V

VGS =VD = 4.0 V

RD = 5− 4

0.9= 1.11kΩ

Lundstrom: Fall 2019

VD

Page 32: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Example 3: Design (i)

32

VDD = +5 V

RS = ? kΩ

ID = 0.1 VSG −1( )2

Design for: ID = 0.9 mA

1) Operating region?

Lundstrom: Fall 2019

VDS >VGS −Vtn ?VS

Page 33: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Example 3: Design (i)

33

VDD = +5 V

RS = ? kΩ

ID = 0.1 VSG −1( )2

Design for: ID = 0.9 mA

1) Operating region?

VSD >VSG − Vtp ?

saturation

Lundstrom: Fall 2019

VDS >VGS −Vtn ?VS

Page 34: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Example 3: Design (ii)

34

VDD = +5 V

RS = ? kΩ

ID =

′kp

2WL

VSG − Vtp( )2

ID = 0.1 VSG −1( )2

Design for: ID = 0.9 mA

Lundstrom: Fall 2019

Page 35: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Example 3: Design (ii)

35

VDD = +5 V

RS = ? kΩ

ID =

′kp

2WL

VSG − Vtp( )2

ID = 0.1 VSG −1( )2

ID = 0.1 VSG −1( )2

Design for: ID = 0.9 mA

0.9 = 0.1 VSG −1( )2

VSG = 4.0 V

VSG =VS = 4.0 V

RS =

5− 4.00.9

= 1.11kΩ

Lundstrom: Fall 2019

Page 36: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Example 4

36

+5 V

RD = 2 kΩ

ID = 0.1 VSG −1( )2

I = 1.0 mA

−5 V

VS = ?

VD = ?

Lundstrom: Fall 2019

Page 37: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Example 4

37

+5 V

RD = 2 kΩ

ID = 0.1 VSG −1( )2

I = 1.0 mA

−5 V

VS = ?

VD = −5+ ID RD

= −5+1× 2= −3 V

VD = ?

1= 0.1 VSG −1( )2

VSG =VS = 4.16 V

VS =VSG

Lundstrom: Fall 2019

Page 38: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Example 5

38

+5 V

ID = 0.1 VGSn −1( )2

1) Operating region?

VD = ?

ID = 0.1 VSGp −1( )2

+VGSp

+VSGn

− saturation

Lundstrom: Fall 2019

Page 39: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Example 5 (ii)

39

+5 V

ID = 0.1 VGSn −1( )2

VDSn =VD

1) Operating region?

VD = ?

VGSn =VD

VDSn > VGSn −Vtn( ) ID = 0.1 VSGp −1( )2

+VGSp

+VSGn

VSDp = 5−VD

VSGp = 5−VD

VSDp > VSGp − Vtp( )

saturation Lundstrom: Fall 2019

Page 40: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Example 5 (iii)

40

+5 V

ID = 0.1 VGSn −1( )2

VD = ?

ID = 0.1 VSGp −1( )2

+VGSn

+VSGp

− VGSn =VSGp Why?

Lundstrom: Fall 2019

Page 41: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Example 5 (iii)

41

+5 V

ID = 0.1 VGSn −1( )2

VD = ?

ID = 0.1 VSGp −1( )2

+VGSn

+VSGp

− VGSn =VSGp

VGSn +VSGp = 5

VD = 2.5

ID = 0.1 2.5−1( )2= 0.225 mA

Why?

Lundstrom: Fall 2019

Page 42: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Example 6: Analysis

42

VDD = 10 V

RD = 100 k

RG1

700 k

RG2

300 k

Transistor model:

kn = 25 µA/V2 Vtn = 1.0 V

ID =

kn

2VGS −Vtn( )2

ID = 0.025

2VGS −1( )2

mA VGS = 3

ID = 0.05 mA

VDS = 5 V >VGD -Vtn

Page 43: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

Summary

43

1)  DC MOSFET analysis often involves solving a quadratic equation and throwing away the unphysical solution.

2)  DC MOSFET analysis is often more difficult than DC BJT analysis

3)  DC MOSFET design is usually easier than design.

Lundstrom: Fall 2019

Page 44: L20 DC MOSFET Circuits V2 - nanoHUB.org · Outline 2 1) BJT Analysis is Easy 2) DC N-MOSFET Circuit Analysis 3) DC N-MOSFET Circuit Design 4) P-MOSFET Design and Analysis 5) Examples

DC MOSFET Circuits

Lundstrom: Fall 2019 44

1)  BJT Analysis is Easy 2)  DC N-MOSFET Circuit Analysis 3)  DC N-MOSFET Circuit Design 4)  P-MOSFET Design and Analysis 5)  Examples