17

Lab Responsible Budget Responsible Governing Board RESPONSIBLE Prof. Ing Umberto Desideri Ing. Matteo Dozzini Ing. Giovanni Cinti Dr. Gabriele Discepoli

  • View
    215

  • Download
    2

Embed Size (px)

Citation preview

Lab ResponsibleBudget Responsible

Governing Board RESPONSIBLEProf. Ing Umberto Desideri

Ing. Matteo Dozzini

Ing. Giovanni Cinti

Dr. Gabriele Discepoli

Ing. Daniele Penchini

Ing. Elena Sisani

BUDEGET RESPONSIBLEDott.ssa Vanessa Rossi

Project RESPONSIBLEIng. Stefania Proietti

Quality RESPONSIBLEIng. Antonio Biagetti

Research Team Advisory BoardIng. Angelo Moreno (ENEA)

Ing. Roberto Bove (ALSTOM)

CERSEISOS

FISRSCEI

EFESOEFESOCDS

SOFC Stack

SOFC Cell

Desulphurizer

SOFC Stack

MCFC Cell

MCFC Stack

Gas analysis unit TCD detector

GC with FPD detector(sulphur compounds)

Gas lines(Air, CO2, CO, H2, N2, CH4)

‣ Research activitiesSOFC/MCFC power productionFuel processingClean-upCell & Stack PerformancesSystem integrationCO2 concentrationPollutant effects assessment

‣ Research projectsExperimental testsModelingProjecting

Tlow

= 232.07 KT

high = 353.56 K

P = -18.55 kW

i = 62.5 %

m,el

= 84.57 %P = -1.28 kW

i = 70 %

m,el

= 90 %

p = 0.05 barp = 0.30 bar

P = -0.45 kW

i = 70 %

m,el

= 90 % H = 200.34 kW

P = -5.09 kW

i = 62.5 %

m,el

= 76.36 %

E

= 23.25 kW

E,in = 0.00 kW

E

= 437.15 kW

E,in = 0.00 kW

E,in

= 439.91 kW

E = 40.92 kW

= 4.10

H,reac = -110.38 kW

Tlow

= 360.51 KT

high = 59.91 K

Ex

= 33.15 kW

H,trans = 100.089 kW

Tlow

= 624.13 KT

high = 103.69 K

E

= 0.00 kW

H,trans = 16.0388 kW

xSF

= 3.00 kg/kg

Treac

= 600.00 °Cp

reac = 1.00 bar

H,trans

= 83.39 kWT

sec = -221.59 °C

Vfc = 0.7938 V

ifc = 1200.00 A/m

2

Afc = 290.00 m

2

Rfc = 7e-05 m

2

uF = 70.00 %

uO = 18.56 %

Tfc = 800.00 °C

Pel,DC

= 276.25 kWP

el,AC = 265.20 kW

DC/AC

= 96.00 %

1.070 925.28

-2048.78 0.272

1.070 925.28

-2048.78 0.272

2929

1.060 703.69

-2355.55 0.272

2828

1.000 15.00

-98.85 0.2352727

1.200 15.00

-15908.41 0.027

2626

1.500 15.00

-15908.38 0.0272525

2424

2323

1.020 40.00

-3519.74 0.272

2222

1.017 15.00

-4467.65 0.009

2121

1.200 35.77

-4423.29 0.009

2020

1919 1.040 375.51

-2782.75 0.272

1818 1.050 659.91

-2414.55 0.272

1717

1616

1515 1.120 613.86

-7591.63 0.037

1414

1.130 750.00

685.26 1.061

1313

1.090 850.00

-9965.82 0.0651212

1.090 850.00

800.80 0.206

1111

1.130 31.36

-82.33 0.235

1010

99

1.130 866.11

819.81 0.825

88

77

66

55

1.170 600.00

-12266.07 0.027

44

1.090 850.00

-9965.82 0.065

33

1.170 600.00

-2672.30 0.009

22

1.100 850.00

-9965.82 0.131

11

24

23

22

H

21

20

19

18

17

16

15

14

13

12

11109

8

7

5

4

H

3

H

2

1

A C

p T

h m

p = Pressure [bar]

T = Temperature [°C]

h = Enthalpy [kJ/kg]

m = Mass flow [kg/s]

Vfc = Cell voltage [V]

ifc = Current density [A/m

2]

Afc = Cell area [m

2]

Rfc = Cell resistance [ m

2]

uF = Fuel uti l isation [%]

uO = Oxidant util isation [%]

Tfc = Fuelcell temperature [°C]

Pel,DC

= DC Power [kW]

Pel,AC

= AC Power [kW]

DC/AC = DC/AC conversion eff. [%]

xSF

= Steam-fuel ratio [kg/kg]

Treac

= Reaction temperature [°C]

preac

= Reaction pressure [bar]

H,trans = Transmitted heat flow [kW]

Tlow

= Low end temp. diff. [K]T

high = High end temp. diff. [K ]

E

= Energy loss [kW]

ex = Exergy loss [kW]

= Airfactor [-]

H,reac = Reaction heat [kW]

E,in

= Energy input [kW]

P = Power [kW]

i = Isentropic efficiency [%]

m,e

= Mechanical*Electrical eff. [%]

H = Heat output [kW]

p = Pressure drop [bar]T

sec = Temperature rise (secondary) [°C]

FC TEST NET

SP PROCEDURES

ACU PROCEDURES

TEST EFESO

TEST DEFINITION

MODEL DEVELOPMENT

TEST ACTIVITY

Environmentally Friendly Energy From Solid Oxide fuel Cell

STACK

SHORT STACK

SINGLE CELL

UPGRADE FClab

Environmentally Friendly Energy From Solid Oxide fuel Cell

Tlow

= 232.07 KT

high = 353.56 K

P = -18.55 kW

i = 62.5 %

m,el

= 84.57 %P = -1.28 kW

i = 70 %

m,el

= 90 %

p = 0.05 barp = 0.30 bar

P = -0.45 kW

i = 70 %

m,el

= 90 % H = 200.34 kW

P = -5.09 kW

i = 62.5 %

m,el

= 76.36 %

E

= 23.25 kW

E,in = 0.00 kW

E

= 437.15 kW

E,in = 0.00 kW

E,in

= 439.91 kW

E = 40.92 kW

= 4.10

H,reac = -110.38 kW

Tlow

= 360.51 KT

high = 59.91 K

Ex

= 33.15 kW

H,trans = 100.089 kW

Tlow

= 624.13 KT

high = 103.69 K

E

= 0.00 kW

H,trans = 16.0388 kW

xSF

= 3.00 kg/kg

Treac

= 600.00 °Cp

reac = 1.00 bar

H,trans

= 83.39 kWT

sec = -221.59 °C

Vfc = 0.7938 V

ifc = 1200.00 A/m

2

Afc = 290.00 m

2

Rfc = 7e-05 m

2

uF = 70.00 %

uO = 18.56 %

Tfc = 800.00 °C

Pel,DC

= 276.25 kWP

el,AC = 265.20 kW

DC/AC

= 96.00 %

1.070 925.28

-2048.78 0.272

1.070 925.28

-2048.78 0.272

2929

1.060 703.69

-2355.55 0.272

2828

1.000 15.00

-98.85 0.2352727

1.200 15.00

-15908.41 0.027

2626

1.500 15.00

-15908.38 0.0272525

2424

2323

1.020 40.00

-3519.74 0.272

2222

1.017 15.00

-4467.65 0.009

2121

1.200 35.77

-4423.29 0.009

2020

1919 1.040 375.51

-2782.75 0.272

1818 1.050 659.91

-2414.55 0.272

1717

1616

1515 1.120 613.86

-7591.63 0.037

1414

1.130 750.00

685.26 1.061

1313

1.090 850.00

-9965.82 0.0651212

1.090 850.00

800.80 0.206

1111

1.130 31.36

-82.33 0.235

1010

99

1.130 866.11

819.81 0.825

88

77

66

55

1.170 600.00

-12266.07 0.027

44

1.090 850.00

-9965.82 0.065

33

1.170 600.00

-2672.30 0.009

22

1.100 850.00

-9965.82 0.131

11

24

23

22

H

21

20

19

18

17

16

15

14

13

12

11109

8

7

5

4

H

3

H

2

1

A C

p T

h m

p = Pressure [bar]

T = Temperature [°C]

h = Enthalpy [kJ/kg]

m = Mass flow [kg/s]

Vfc = Cell voltage [V]

ifc = Current density [A/m

2]

Afc = Cell area [m

2]

Rfc = Cell resistance [ m

2]

uF = Fuel uti l isation [%]

uO = Oxidant util isation [%]

Tfc = Fuelcell temperature [°C]

Pel,DC

= DC Power [kW]

Pel,AC

= AC Power [kW]

DC/AC = DC/AC conversion eff. [%]

xSF

= Steam-fuel ratio [kg/kg]

Treac

= Reaction temperature [°C]

preac

= Reaction pressure [bar]

H,trans = Transmitted heat flow [kW]

Tlow

= Low end temp. diff. [K]T

high = High end temp. diff. [K ]

E

= Energy loss [kW]

ex = Exergy loss [kW]

= Airfactor [-]

H,reac = Reaction heat [kW]

E,in

= Energy input [kW]

P = Power [kW]

i = Isentropic efficiency [%]

m,e

= Mechanical*Electrical eff. [%]

H = Heat output [kW]

p = Pressure drop [bar]T

sec = Temperature rise (secondary) [°C]

Develop and analysis of system model:

Sofc McfcReformerBalnce Of PlantAnodic/Cathodic Recirculation

REFORMER PERFORMANCE

ASR = 0,603 Ω/cm2OCV = 1061,205333 mV

Single CEll Investigation

0,00

5,00

10,00

15,00

20,00

25,00

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0,00 100,00 200,00 300,00 400,00 500,00 600,00 700,00

Pow

er (W

)

Volt

age

(V)

J mA/cm2

AcceptanceP1 Voltage (V)

P12 Voltage (V)

P1 Power (W)

P12 Power (W)

H2 = 48 Nl/hAir = 113 Nl/hTcell = 792 °CH2O = 4%

TEST STANDARDIZATION

TEST DEFINITION

Investigation on Solid Oxide Fuel Cell Stack

H M LFG BIO

Uf 0,4-0,9 0,4-0,9 0,4-0,9 0,4-0,9Cf 0 0,2 0,298 0,274Hf 0,05-0,10 0,168 0,208 0,199

CO2f 0 0,044 0,096 0,0815Df 0 0 0,0063 0,0028

Uox 0.6 0.6 0.6 0.6Dox 0 0 0 0

280 W

Complete Reforming T=800°C, P=1atm , (S/C=2,5)

Average compositions from literature

Fuel factor characterization

for J = 0 ÷ 150 mA/cm2

TEST DEFINITIONTEST FACILITY

LAYOUT TEST FACILITY

Clean up Development System

Characterization of sorbent materials for desulphurization: breakthrough testing under ambient conditions to determine sulfur sorption capacity

• feedstok: N2+H2S; natural gas• sulphur concentration: 10-20 ppm (H2S; TBM) • flow: 24 nl/h

0 10 20 30 40 50 60 70 80 90 100 110 120 13002468

101214

Activated carbon RB1: breakthrough curve

Time (h)

C ou

t (pp

m)

• fixed bed flow reactor• using of Teflon to prevent sulfur compounds from being adsorbed on the working surfaces of the system • sorbent materials: activated carbons, zeolites, activated alumina and new acquisition materials, like perlite and vermiculite.

TEST RIG

EXPERIMENTAL

Aim of this projects, lead by Ansaldo Fuel Cells, ENEA and University of Perugia, is the development and optimization of new processes and technologies for cogeneration systems fuel cell based, with competitive costs, performance and endurance, characterized by:

‣ ‘energy saving’‣ Low poisoning emissions‣ High efficiency‣ Alternative fuels (from sludge, waste, biomass,

depuration plant, etc.)

‣ Partners

‣ University of Perugia role

The main target of the Fuel Cell Laboratory is to study‣ the influence of poisoning components of such a gas

(like biogas, exhaust gas from industrial plant), in particular sulphur compound, and produce data to better understand the poisoning mechanisms on the fuel cells.

‣ the regeneration methods

‣ Partners

‣ Partners

1111

88

77

66

55

44

33

22

11

11

8

7

6

5

4

32

1

A C

CHP System

Clean - up

Concentrated carbon

CO2 Capture and Storage:difficult, expensive but may be used in large new and existing power plants, guaranteeing security of large scale

energy production

INNOVATIVE FUELS:•Biogas•Landfill gas•Syngas (gasification and pyrolisys)•Ammonia•Methanol

CLEAN UP OF POLLUTANT ELEMENTS• Organic sulphur compounds (Mercaptans, THT)• Siloxanes• Halides

CO2 SEPARATIONS WITH MCFC:• effect of pollutant NOx, SOx in the cathod side• study of MCFC feeding with real gas composition of ICE cogenerator

STEAM METHANE REFORMING:• effect of pollutant NOx, SOx in the cathod side• study of MCFC feeding with real gas composition of ICE cogenerator

UNI EN ISO 17025: 2005

EUROPEAN FUEL CELL CONFERENCE 2007-2009-

2011

LOTUS

RE-DEOS

H2FC

FC02 CAPGEN

MCFC INNOVA

JTI

RESEARCH FOR SME

INFRASTUTTURE RICERCA

7 FP

Development of a Clean up system of Natural Gas for CHP systems based on

SOFC for residential application (1-2,5 kW)PRIN 2009

MIUR

RESEARCH EXCHANGE ITALY-KOREA