95
Continuous-time Systems/Circuits Example: + - x(t) R C y(t) () () () () 1 1 () () dy t RC yt xt dt dy t yt xt dt RC RC Differential/Integral Equation + - Laplace Transform

Laplace Transform

  • Upload
    kac2872

  • View
    941

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Laplace Transform

Continuous-time Systems/Circuits

Example:

+

-x(t)

R

C y(t)

( )( ) ( )

( ) 1 1( ) ( )

dy tRC y t x t

dtdy t

y t x tdt RC RC

Differential/Integral Equation

+

-

Laplace Transform

Page 2: Laplace Transform

Continuous-time Systems/Circuits

Time Domain Analysis (Discussed in the last chapter) Zero-input Response

Zero-state Response

Impulse Response

Convolution

Page 3: Laplace Transform

Continuous-time Systems ...contd

Frequency Domain Analysis (This chapter) The Laplace Transform Using Laplace Transform to solve

problems Initial Value Theorem Final Value Theorem Transfer Function Relationship between Impulse response

and Transfer Function

Page 4: Laplace Transform

Laplace Transform

Gives us a systematic way for relating time domain behavior of a circuit to its frequency domain behavior

Converts integro-differential equations describing a circuit to a set of algebraic equations

Considers transient behavior of circuits with multiple nodes and meshes, with initial conditions

Page 5: Laplace Transform

Using Laplace Transform The idea of using a transform is

similar to using logarithms for multiplication

A = BCLog A = Log B + Log C

A = Antilog (Log B + Log C)

The use of Laplace Transform is universal – mechanical systems, electrical circuits and other systems – as long as the behavior is described by ordinary differential equations.

Page 6: Laplace Transform

Laplace Transform

The general definition of Laplace Transform i.e. the Two-sided Transform:

And Inverse Transform:

( ) ( ) stX s x t e dt

1( ) ( )

2

c jst

c j

x t X s e dsj

Page 7: Laplace Transform

Laplace Transform

But we shall consider a special case – One-Sided Transform:

We shall use the Table 4.1 (Lathi, page 344) to do inverse transform

0

( ) ( ) stX s x t e dt

Page 8: Laplace Transform

Laplace Transform: Definition

t represents time s has the units of 1/t since the exponent must be

dimensionless

This is a one-sided, unilateral Laplace Transform – i.e. it ignores negative values of t.

Again, the definition of Laplace Transform is:

0

( ) ( )

( ) ( )

stL x t x t e dt

X s L x t

0

( ) ( ) ( ) stX s L x t x t e dt

Page 9: Laplace Transform

Properties of Laplace Transform Linearity of Laplace Transform:

since

Uniqueness of Laplace Transform:

is a one-to-one relationship

1 2 1 2

( ) ( )

( ) ( ) ( ) ( )

L k x t k X s

L x t x t X s X s

1 2

0

1 2

0 0

1 2

( ) ( )

( ) ( )

( ) ( )

st

st st

x t x t e dt

x t e dt x t e dt

X s X s

( ) ( )x t X s

Page 10: Laplace Transform

Properties ...contd Question: Does the integral converge?

We avoid functions like The integral converges for all the cases we shall

consider!

Question: What happens if the function is discontinuous at t=0?We choose the lower limit as 0-.In fact, we shall define the Laplace Transform as:

2

, ,t tt e etc

0

( ) stx t e dt

Page 11: Laplace Transform

Properties ...contd

In taking Laplace Transform, it becomes important whether one chooses 0- or 0+

Our choice is always 0- for the lower limit!

0

, 0ate t 0, 0t

x(t)

t 0

ate

x(t)

t

Continuous at t=0 Discontinuous at t=0

Page 12: Laplace Transform

Laplace Transform of the Unit Step

0

0 0

( ) ( )

1.

1

st

stst

L u t u t e dt

ee dt

s

s

0

0

( ) ( )

0 1

st

a stst

a aas

L u t a u t a e dt

edt e dt

se

s

t

1

0

( )u t

t

1

0

( )u t a

a

Page 13: Laplace Transform

Laplace Transform of the Unit Step

0

( )

0( )

0

( )

( )1

at at st

s a t

s a t

L e u t e e dt

e dt

e

s a

s a

0

( ) ( )

1

stL t t e dt

0

( )ate u t

x(t)

t

0

( )tx(t)

t

1

Page 14: Laplace Transform

Using Step Functions

Step functions can be used for writing analytical expressions for illustrated functions. Consider:

( ) ( ) ( )x t u t a u t b

t

( )x t

1

a b

Page 15: Laplace Transform

Using Step Functions ...contd

Subtracting, it is obvious that

( ) 0,1,

u t a t at a

( ) 0,1,

u t b t bt b

( ) ( ) ( )x t u t a u t b

t

1

a

( )u t a

0 t

1

b

( )u t b

0

t

( )x t

1

a b

Page 16: Laplace Transform

Using Step Functions ...contd

Consider:

( ) ( ) ( 1) ( 2) ( 1) ( 2)x t t u t u t t u t u t

( ) ( ) 2 2 ( 1) 2 ( 2)x t tu t t u t t u t

t

t

1

210

2

2t

t

1

210

( )x t

Page 17: Laplace Transform

Using Step Functions ...contd

Consider:

( ) ( ) ( ) 2 ( ) ( )

( ) ( ) 2 ( )

x t u t a u t b u t b u t c

u t a u t b u t c

Alternative way:

( ) ( ) ( ) ( ) ( )

( ) ( ) 2 ( )

x t u t a u t c u t b u t c

u t a u t b u t c

( ) 2as bs cse e e

sXs s s

t

( )x t

1

a b c

2

Page 18: Laplace Transform

A Reminder

cos sin jj e

cos sin jj e

sin2

j je e

j

cos2

j je e

Page 19: Laplace Transform

Laplace Transforms of Sinusoids

0

0( ) ( )

0

2 2

(sin ) ( ) sin

2

2

1 1 1

2

st

j t j tst

s j t s j t

L t u t t e dt

e ee dt

j

e edt

j

j s j s j

s

Page 20: Laplace Transform

Laplace Transforms of Sinusoids …contd

0

0( ) ( )

0

2 2

(cos ) ( ) cos

2

2

1 1 1

2

st

j t j tst

s j t s j t

L t u t t e dt

e ee dt

e edt

s j s js

s

Page 21: Laplace Transform

Laplace Transform of Ramp

t

2

210

( )x t

3

1

( )u tt

0

0 0

2

0

( )

1

1 1

st

st st

st

L t u t t e dt

e et dt

s s

e dts s

Laplace transform of tu(t) :

Page 22: Laplace Transform

Inverse Laplace Transform Most functions of interest to us are rational

functions – ratios of polynomials in s.

Roots of P0(s) are the zeros of X(s) Roots of Q0(s) are the poles of X(s)

Assume the degree of the numerator is less than that of the denominator – Otherwise, divide!

Expand into partial fractions and use the table

0

0

( )( )

( )

P sX s

Q s

0

( )( )

( )NewP s

X s PolynomialQ s

Watch out – I have put subscripts so that it does not conflict with later notation

Page 23: Laplace Transform

Roots: Real and Distinct

31 296 5 12

( )8 6 8 6

s s kk kX s

s s s s s s

Multiply both sides by s and let s=0

1

321

0 00

96 5 12

8 6 8

2

6

1 0

s ss

s s k sk sk

s s s s

k

Similarly, for k2 and k3 ,

1 32

8 88

2 72

96 5 12 8 8

6 6s ss

k

s s k s k sk

s s s s

Page 24: Laplace Transform

Roots: Real and Distinct ...contd

1 23

6 66

3

96 5

48

12 6 6

8 8s ss

s s k s k sk

s

k

s s s

Therefore,

96 5 12 120 72 48

6 8 8 6

s s

s s s s s s

Identify:

Substitute and the two sides become equal

5s

Inverse: 8 6( ) 120 72 48 ( )t tx t e e u t

Page 25: Laplace Transform

Laplace Transform

Linear Systems and Signals – Lectures 10Dr. J. K. AggarwalThe University of Texas at Austin

Page 26: Laplace Transform

Another Example

2 12( )

1 2 3

1 2 3

sX s

s s sA B C

s s s

Multiply both sides by (s+1), evaluate at s= -1

1

2 12 105

2 3 (1)(2)s

sA

s s

Multiply both sides by (s+2), evaluate at s= -2

2

2 12 88

1 3 ( 1)(1)s

sB

s s

Page 27: Laplace Transform

Another Example ...contd

Multiply both sides by (s+3), evaluate at s= -3

3

2 12 63

1 2 ( 2)( 1)s

sC

s s

5 8 3( )

1 2 3X s

s s s

Therefore,

Inverse:

2 3( ) 5 8 3 ( )t t tx t e e e u t

Page 28: Laplace Transform

Still Another Example

2

2

2

2

6 7( )

1 2

6 7

3 23 5

13 2

3 51

1 2

s sX s

s s

s s

s ss

s ss

s s

3 5

1 2 1 2

s A B

s s s s

Page 29: Laplace Transform

Still Another Example ...contd

1

2

3 5 22

2 1

3 5 11

1 1

s

s

sA

s

sB

s

2 1( ) 1

1 2X s

s s

Therefore,

Inverse: 2( ) ( ) 2 ( )t tx t t e e u t

Page 30: Laplace Transform

Roots: Complex and Distinct

2 6 25 3 4 3 4s s s j s j

2

100 3( )

6 6 25

sX s

s s s

31 22

100 3

6 3 4 3 46 6 25

s kk k

s s j s js s s

1

2

3 4

3

12

100 3

6 3 4

100 46 8

3 4 8

6 8

s j

k

sk

s s j

jj

j j

k j

Page 31: Laplace Transform

Roots: Complex and Distinct …contd

2

100 3 12 6 8 6 8

6 3 4 3 46 6 25

12 10 53.13 10 53.13

6 3 4 3 4

o o

s j j

s s j s js s s

s s j s j

Substituting k1, k2, k3 :

Inverse: 3 46 53.13 53.13 (3 4)( ) 12 10 10 ( )

o oj tt j j j tx t e e e e e u t

Simplifying,

6 3( ) 12 20 cos 4 53.13 ( )t t ox t e e t u t

Page 32: Laplace Transform

Generalization

1

( ) ( )

( ) ( )

2cos ( )

*

( )j j t j j t

t j t t

t t u t

k kL

s j s j

k e e k e e u t

k e e e

k e

For complex root pairs,

jwhere k k e

1 *2 cos ( )tk k

L k e t u ts j s j

Page 33: Laplace Transform

Another Example

2

2

6 100 4150( )

14 625

s sX s

s s

2

1

16 400( ) 6

14 625*

67 24 7 24

*( )

7 24 7 24

sX s

s sk k

s j s j

k kLet F s

s j s j

Complete the problem!

7 24 7 24

16 400 16 400*

7 24 7 24s j s j

s sk k

s j s j

Page 34: Laplace Transform

Repeated Roots

31 2 42 2

180 30

5 35 3 3

s kk k k

s s ss s s s

1

2

120

225

k

k

...as before

For k3, multiply by (s+3)2 and evaluate at s=-3

2 2

1 23 4 3

3 3 3

3

180 30 3 33

5 5

810

ss s s

s k s k sk k s

s s s s

k

Page 35: Laplace Transform

Repeated Roots ...contd

Multiply by (s+3)2, differentiate with respect to s and evaluate at s=-3

4

3

422

3

180 30

5

5 1 30 2 5180 105

5

s

s

sdk

ds s s

s s s sk

s s

Now, for k4 :

Therefore, 2 2

180 30 120 225 810 105

5 35 3 3

s

s s ss s s s

1 5 3 32

180 30120 225 810 105 ( )

5 3t t ts

L e te e u ts s s

Page 36: Laplace Transform

Repeated Roots ...contd

Another method:

31 2 4

2 2

180 30

5 35 3 3

s kk k k

s s ss s s s

4

4

4

4

4

1 0, 5, 3

180 31 120 225 810

1 6 16 1 6 16 4

5580 120 96 225 16 810 6 6 4

5580 11520 3600 4860 24

2520 24

105

Let s

k

k

k

k

k

Page 37: Laplace Transform

Laplace Transform

Linear Systems and Signals – Lectures 11Dr. J. K. AggarwalThe University of Texas at Austin

Page 38: Laplace Transform

Properties of Laplace Transform

Again, Definition:

Uniqueness:

Linearity :

0

( ) ( ) stX s x t e dt

( ) ( )x t X s

1 1

2 2

1 2 1 2

( ) ( )

( ) ( )

( ) ( ) ( ) ( )where X s x t

X s x t

X s X s L x t x t

Page 39: Laplace Transform

Shifting in Time We have already noticed

In general,

t

1

0

( )u t

t

1

a

( )u t a

0

1s

1 ases

00( ) ( )

( ) ( )stx t t

x t X s

X s e

Page 40: Laplace Transform

Shifting in Time …contd

It is better to carry u(t)

00 0

( ) ( ) ( )

( ) ( ) ( ) st

x t u t X s

x t t u t t X s e

0

0

0

0

0

0 0 0 0

0

0

;

( ) ( )

( )

st

s t

t

st s

st

Let t t dt d

L x t t u t t x t t u t t e dt

x u e d

e u x e d

e X s

Page 41: Laplace Transform

Example 1 Exercise E 4.3, Lathi, page 363

slope = -2( ) 2

0 66

x t t cc

c

( ) ( ) ( 2) 2 6 ( 2) ( 3)

( ) ( ) ( 2) 2 ( 2) 6 ( 2)

2 ( 3) 6 ( 3)

x t t u t u t t u t u t

x t t u t t u t t u t u t

t u t u t

t

2

210

( )x t

3

Expanding the expression,

Page 42: Laplace Transform

Example 1 ...contd

2 32 2 2

1 3 2( ) s sX s e e

s s s

( ) ( ) ( 2) 2 ( 2) 6 ( 2)

2 ( 3) 6 ( 3)

x t t u t t u t t u t u t

t u t u t

= t u(t) - (t-2) u(t-2) -2 u(t-2)

- 2 (t - 2) u (t - 2) + 2 u (t - 2)

+ 2 (t - 3) u (t - 3)

= t u(t) – 3(t-2) u (t - 2)+ 2 (t - 3) u (t - 3)

Page 43: Laplace Transform

Example 2

Linear segments with breakpoints at 1,3 and 4 seconds Slope of line at t=0 is 2; (0,0) Slope of line at t=1 is -2; (2,0) Slope of line at t=3 is 2; (4,0)

t

2

210

( )x t

3 4

22 42 8

ttt

( )x t

Page 44: Laplace Transform

Example 2 ...contd

( ) 2 ( ) ( 1)2 4 ( 1) ( 3)

2 8 ( 3) ( 4)

x t t u t u tt u t u t

t u t u t

2 ( ) 4 1 1 4 3 32 4 4

t u t t u t t u tt u t

3 4

2 2 2 2

1( ) 2 4 4 2

s s se e eX s

s s s s

Laplace Transform:

Collecting terms

Page 45: Laplace Transform

Example 2 ...contd

Another way of looking at the expression for x(t):

t

2

210

( )x t

3 4

2 ( )t u t 4 3 3t u t

4 1 1t u t 2 4 4t u t

Page 46: Laplace Transform

Example 3

( ) 10sin ( ) ( 2)

10sin ( ) 10sin ( 2)

10sin ( ) 10sin ( 2) ( 2)

x t t u t u t

t u t t u t

t u t t u t

10

0 1 2 t

( )x t

22 2 2 2

( ) 10 10 sX s es s

Laplace Transform:

Page 47: Laplace Transform

Frequency Shifting

Proof:

Examples:

00

( ) ( )

( ) ( )s t

x t X s

x t e X s s

0 0

0

0

0

0

( ) ( )

( )

( )

s t s t st

s s t

L x t e x t e e dt

x t e dt

X s s

2 2

2 2

cos ( )

cos ( )( )

at

sbt u t

s bs a

e bt u ts a b

Page 48: Laplace Transform

Time Differentiation Property

( ) ( )

( ) (0 )

x t X s

dxsX s x

dt

0

00

( )

( ) ( )

(0 ) ( ) ( ) 0

st

st st

s

dx dx tL e dt

dt dt

x t e s x t e dt

x sX s x e

Page 49: Laplace Transform

Example: Time Differentiation Property

2H

+-3u(t)

i(t)4

( )2 4 ( ) 3 ( )

32 ( ) (0 ) 4 ( )

di ti t u t

dt

sI s i I s s

Taking LT:

(0 ) 5i A Initial conditions:

32 ( ) 10 4 ( )

3( ) 2 4 10

s I s I ss

I s s s

Solving,

Page 50: Laplace Transform

Example ...contd1.5 5 1.5 1 1 5

( )2( 2) 2 2 2

0.75 4.25( )

2

I ssss s s s

I ss s

Inverse:

Supposing the input was ,3 ( ) ( )u t t

( )2 4 ( ) 3 ( ) ( )

32 ( ) (0 ) 4 ( ) 1

3 3 11( ) 2 4 10

1.5 5.5( )

( 2) 2

di ti t u t t

dt

s I s i I ss

s sI s s

s s

I ss s s

2( ) 0.75 ( ) 4.25 ( )ti t u t e u t

…Complete the problem!

Page 51: Laplace Transform

Higher Order Derivatives

Similarly for nth order derivative

( )( )

( ) ( ) (0 )

dx tg t

dt

G s s X s x

2

2

( ) ( )dg t d x t

dt dt

2

( )( ) (0 )

( ) (0 ) '(0 )

dg tL sG s g

dt

s X s s x x

Page 52: Laplace Transform

Properties: Integration

0 0 0

0 00

( ) ( )

( ) ( )

( )

t tst

tst st

L x d x d e dt

e e

X s

s

x d x t dts s

uv v du

Page 53: Laplace Transform

Scale Change

1( )

( ) ( )s

x a

x t X

t

s

Xa a

for a>0

0

0

0

( ) (

1

)

( )

1( )

st

s

a

s

a

L x at x at e dt

de x

a

e x da

sX

a a

Page 54: Laplace Transform

Convolution

Time Convolution:

Frequency Convolution:

1 2 1 2

1 1 2 2( ) ( ) , ( ) ( )

( )* ( ) ( ) ( )

x t X s x t X s

x t x t X s X s

If

then

convolution product

1 2 1 2

1( ) ( ) ( )* ( )

2x t x t X s X s

j

convolutionproduct

Page 55: Laplace Transform

Review

Definition:

Step function:

Delta function:

Exponential function:

0

( ) ( ) stL x t x t e dt

1( )L u t

s

( ) 1L t

1( )atL e u t

s a

Page 56: Laplace Transform

Review ...contd

Differentiation:

Integration:

Time Shifting:

Frequency Shifting:

( )( ) (0 )

d x tL s X s x

dt

0

( )( )

t X sL x t dt

s

( ) ( ) ( )asL x t a u t a e X s

( ) ( )atL e x t X s a

Page 57: Laplace Transform

Zero-Input/Zero-State Response Consider the system

2H

+-3u(t)

i(t)4

( )2 4 ( ) 3 ( )

( ) 32 ( ) ( )

23 1

( ) (0 ) 2 ( )2

(0 ) 3 1( )

2 2 ( 2)

di ti t u t

dtdi t

or i t u tdt

s I s i I ss

iI s

s s s

Taking LT:

Part due to initial conditions : Zero-Input Response

Part due to input : Zero-State Response

Page 58: Laplace Transform

Laplace Transform

Linear Systems and Signals – Lectures 12-??Dr. J. K. AggarwalThe University of Texas at Austin

Page 59: Laplace Transform

Transfer Functions Consider the system

If the initial conditions are zero,

i.e.

and x(t) is causal so that

and

Then,

11 1

10 1 1

( ) ( ) ( ) ( )

( )

( )

N NN N

N NN N

Q D y t P D x t

D a D a D a y t

b D b D b D b x t

1(0 ) (0 ) (0 ) 0Ny yy

1(0 ) (0 ) (0 ) 0Nx xx ( ) ( ) ( ) ( )y t Y s x t X s

( )( ) ( )

( )

P sY s X s

Q s

Page 60: Laplace Transform

Transfer Functions ...contd

A Transfer Function is a ratio of Laplace Transform of to the Laplace Transform of

( ) ( )y t Y s( ) ( )x t X s

( )LT of Output

H sLT of Input

When the initial conditions are all zero

Page 61: Laplace Transform

Transfer Functions: An Example

2

( )2 4 ( ) ( )

( ) 12 ( ) ( )

21

( ) 2 ( ) ( )

1( ) 2( )( )

2

1( ) ( )

2

2

t

di ti t x t

dtdi t

P sH s

Q s

i t x tdt

s I s I s X s

h t e u

s

t

Taking LT:

Transfer function:

In time-domain:

Page 62: Laplace Transform

Transfer Functions ...contd If x(t) is the input and y(t) is the output

(assuming zero initial conditions)then,

Also, if the input isthen the output is

( ) ( ) ( )( )

( )( )

Y s H s X sP s

H sQ s

( ) 1t ( ) ( )y t h t

0

( ) ( )

( ) ( ) st

L h t H s

H s h t e dt

1 1 ( )

( ) ( )( )

P sh t L H s L

Q s

Page 63: Laplace Transform

Laplace Transform & Circuit Analysis

The Laplace Transform provides a systematic method for analyzing circuits.

It converts integro-differential equations into algebraic equations.

In addition, it takes into account the initial conditions.

One may write differential equations or go directly to the algebraic equations. The latter is the desirable route.

Page 64: Laplace Transform

Circuit Elements in s-Domain

Resistorv R i

R is constant

Taking Laplace Transform,

( )( )

( ) ( )

where V L v tI L i t

V s R I sor V R I

I(s)R

+

-

V(s)

iR

+

-

v

( ) ( )v and i are really v t and i t

Page 65: Laplace Transform

Circuit Elements in s-Domain ..contd

Inductordi

v Ldt

Taking Laplace Transform,

0

( ) ( ) (0 )V s sL I s L i

or V sLI LI

-

I

+

V-+

sL

LI0

i

+

-

I0

Lv

0

0IVI

s I V L I

s

L

s L

Rewriting,

i

+

-

Lv

When initial condition I0 is zeroI

sL 0Is

I0: initial current

Page 66: Laplace Transform

Circuit Elements in s-Domain ..contd

Capacitordv

i Cdt

Taking Laplace Transform,

0

( ) ( ) (0 )I s s CV s CV

or I sCV CV

0

0VIV

s V I CV

s

C

s C

Rewriting,

i+

-CV0

+

-

V

I

+-

1sC

0Vs

0CV1sC

+

-V

When initial condition V0 is zero

I+

-

V 1sC

V0: initial voltage

Page 67: Laplace Transform

Ohm’s Law for s-Domain

If no “initial” energy is stored in a capacitor or inductor,

Kirchoff’s Laws

where V is voltage transformI is current transform

V Z I

Z is the s domain impedance1, ,R s L sC -All rules as before for combining, etc

0 0I V

Page 68: Laplace Transform

Ohm’s Law for s-Domain ...contd

I(s)R

+

-

V(s)

iR

+

-

v

i

+

-

I0

Lv

I

sL 0Is

( ) ( )

v R i

V s R I s

0

0

( )

( ) ( )( )

( )

di tv L

dtV s s L I s L I

IV sI s

s L s

I

+

V-+

sL

LI0

-I0: initial current

Page 69: Laplace Transform

Ohm’s Law for s-Domain ...contd

i+

-

CV0

+

-

V

I

+-

1sC

0Vs

V0: initial voltage

0

0

( ) ( )

( )( )

dvi C

dtI s s CV s CV

VI sV s

s C s

0CV1sC

+

-V

I

Page 70: Laplace Transform

Example 1

Equivalent circuit:0

00

0

1( ) ( ) 0

( )11

( ) ( )tRC

VI s R I s

s s CV

CV RI ssRC s RC

Vi t e u t

R

C R

+

-

t=0+

-

V0 ˆ( )i t

ˆ( )I s

ˆ( )V sR

+

-

+

-0V

s

+-

1sC

0VIV

s C s

( )I s

( )V s

ˆ 0v v for t

Page 71: Laplace Transform

Example 1 ...contd

ˆ( )I s

ˆ( )V sR

+

-

+

-0V

s

+-

1sC

0VIV

s C s

( )I s

( )V s

0

1

0

0

0

0

1 ˆ ˆ( ) ( )

1ˆ( )

1

1

ˆ( ) ( )tRC

VI s R I s

s sCV

I s RsC sCV

s RCV R

s RC

Vi t e u t

R

Page 72: Laplace Transform

Example 1 ...contd

ˆ( )I s

ˆ( )V sR

+

-

+

-0V

s

+-

1sC

0VIV

s C s

( )I s

( )V s

0 0

0 0

0

0

1( )

1

1

1

1

( ) ( )tRC

V V RV s

s s C s RC

V V

s s s RC

V

s RC

v t V e u t

Notice ˆ( ) ( )I s I s

Page 73: Laplace Transform

Example 2 For the circuit below, switch is in position

‘a’ for a long time. At t=0, switch is changed to position ‘b’

1 2

1 1 2 2

1 2

1 2

60

0.5

2

V V

C V C V

V V

V V

60 V +-

t=0

a b10 k

3k1V

2V-+

-+

1C

2C1

2

0.51.0

C FC F

1

2

0

0

40

20

,Before the switchV V

V V

Page 74: Laplace Transform

Example 2 ...contdi

3k10 40V V

20 20V V-+

1C

2C

-+

1( )v t

2 ( )v t

1

2

1 21 2

1 1 0

2 2 0

,

( ) ( )

( ) ( )

dv dvC i C i

dt dtC sV s v I s

C sV s v I s

1 2( ) ( ) ( )V s V s R I s

1 2

1 2

0 0

1 21 2

0 0

1 2

1 1

V VI IV V

s C s s C s

V VI I R

s s s C s C

Page 75: Laplace Transform

Example 2 ...contd

6 3

63

3 3

3

60 11 10 3 10 ( )

0.560

3 103 10

60 1

3 10 100.02

10

II

s s

sI

s

s

s

1000( ) 0.02 ( )ti t e u t A

-+

-+

R

1

1s C

2

1s C

10Vs

20Vs

( )i t

Page 76: Laplace Transform

Example 2 ...contd

3

1

60

1 3

3

3

10

3

1

0.02 10

102

40 101

10

40

1

( ) 40

0

( )t

VV

ss s

s s

s

v t e u t

-+

-+

R

1

1s C

2

1s C

10Vs

20Vs

( )i t

Page 77: Laplace Transform

Example 3

i

+ -t=0

-+ 42

+

-

8.4 H

336 ( )V u t

336 ( )

3368.4 ( ) (0 ) 42 ( )

336( ) 42 8.4

diu t L i R

dt

s I s i I ss

I s ss

336 40

( )42 8.4 (5 )

I ss s s s

Let (0 ) 0,i

Page 78: Laplace Transform

Example 3 ...contd

40( )

( 5) 5

A BI s

s s s s

0

5

408

540

8

s

s

As

Bs

5

40 8 8

( 5) 5

( ) 8 ( ) 8 ( )t

s s s s

i t u t e u t A

Page 79: Laplace Transform

Example 3 ...contd

Suppose the current 0(0 )i I

0

0

0

5 50

3368.4 ( ) (0 ) 42 ( )

3368.4 ( ) 42 8.4

8.4336( )

(42 8.4 ) 42 8.4

40

( 5) 5

( ) 8 ( ) 8 ( ) ( )t t

s I s i I ss

I I s ss

II s

s s s

I

s s s

i t u t e u t I e u t

Notice initial current changes

Page 80: Laplace Transform

Example 4

1

2

(0 ) 0(0 ) 0

i Ampi Amp

Given:

1 2

1 2

336 (42 8.4 ) 42

0 42 (90 10 )

s I IsI s I

Solving for I1 and I2 :

i2i1

t=0

-+ 42

8.4 H

336 ( )V u t 48

10 H

1( )I s2 ( )I s

1 2

2 12 2 121 2

40 9 168

( 2)( 12) ( 2)( 12)

15 14 ( ) 7 8.4 1.4 ( )t t t t

sI I

s s s s s s

i e e u t i e e u t

Page 81: Laplace Transform

Example 4 ...contd Writing these equations

Are these the currents that should be there?

1 1 2

1 2 2 2

3368.4 42

0 42 10 48

I s I Is

I I s I I

1

2

1

2

(0 ) 0

(0 ) 0

( ) 15

( ) 7

i

i

i A

i A

Page 82: Laplace Transform

Example 4A

1

2

(0 ) 5(0 ) 3

i Ampi Amp

Given:

1 2

1 2

336 (42 8.4 ) 8.4(5) 42

0 42 (90 10 ) 10(3)

s I IsI s I

Solving for I1 and I2 :

i2i1

t=0

-+ 42

8.4 H

336 ( )V u t 48

10 H

1( )I s2 ( )I s

2 2

1 2

2 12 2 121 2

5 20 72 168 36 3

( 2)( 12) ( 2)( 12)

15 9 ( ) 7 5.4 1.4 ( )t t t t

s s s sI I

s s s s s s

i e e u t i e e u t

Page 83: Laplace Transform

Example 4A ...contd Writing these equations

Are these the currents that should be there?

1 1 2

1 2 2 2

3368.4 8.4(5) 42

0 42 10 10(3) 48

I s I Is

I I s I I

1

2

1

2

(0 ) 5

(0 ) 3

( ) 15

( ) 7

i

i

i A

i A

Page 84: Laplace Transform

Initial and Final Value Theorems

Again, the definition:

One can examine the limiting behavior of x(t) by observing the behavior of sX(s) at and at 0

These results are called Initial Value and Final Value Theorems

0

( ) ( ) ( ) stX s L x t x t e dt

Page 85: Laplace Transform

Initial Value Theorem

Taking limit

Since is independent of s, subtracting

0

( ) (0 ) stdx dxL s X s x e dt

dt dt

00

0

0 0

lim ( ) (0 )

lim

lim

(0 ) (0 )

s

st

s

st

s

sX s x

dxe dt

dt

dx dxe dt e dt

dt dt

x x

,s

(0 )x (0 ),x

0lim ( ) (0 ) lim ( )s t

s X s x x t

Page 86: Laplace Transform

Final Value Theorem

This is useful only if as exists

0 00

lim ( ) (0 ) lim st

s s

dxs X s x e dt

dt

00

0

lim

lim ( ) (0 )

st

s

t

dxRHS e dt

dt

dx

x t x

0

0

lim ( ) (0 ) lim ( ) (0 )

lim ( ) lim ( )s t

s t

sX s x x t x

sX s x t

Thus,

, ( )t x

Page 87: Laplace Transform

Initial and Final Value Theorems

Initial Value Theorem:

Final Value Theorem:

Example:

0lim ( ) lim ( )

stx t sX s

0lim ( ) lim ( )t s

x t sX s

0

0

1( )

1lim ( ) 1 lim 1

1lim ( ) 1 lim 1

st

t s

L u t s

x t s s

x t s s

Page 88: Laplace Transform

Initial & Final Value Theorems: Example

1 6 896 5 12

120 48 72 ( )8 6

t ts sL e e u t

s s s

5 1296 1 1

lim ( ) 968 6

1 1

0 , ( ) 120 48 72 96

s

s ssX s

s s

As t x t

0

96 5 12lim ( ) 120

8 6, ( ) 120

ssX s

As t x t

Page 89: Laplace Transform

In earlier example,

For steady state, is the current correct?

( ) 8

(0 ) 0

i A

i

0

40 40( )

( 5) 5

lim ( ) 8

lim ( ) 0s

s

s I s ss s s

s I s A

s I s

Page 90: Laplace Transform

Example 3A

+ -

-+ 42

+

-

8.4 H

336 ( )V u t

1 2

0

0

336 ( )

3368.4 ( ) (0 ) 8.4 ( ) 42 ( )

3368.4 ( ) 16.8 42

8.4336( )

16.8 42 16.8 42

di diu t L L i R

dt dt

s I s i s I s I ss

I I s ss

II s

s s s

8.4 H

I0-+

Page 91: Laplace Transform

Example 3A ...contd

2.5 2.50

0

0

120 2 ( )2.5 2.5

120 1 1 2 ( )2.5

18 ( )

2.5 2.5

8 ( )2t tu t e I e i t

II s

s s s

II s

s s s

00

00 0

00 , 8.4

0

, 0

1( )

2, 16.8

2

8.4

8.4

i I i

i I for bo

At t Fl

th

u I

I

x I

IAt t Flux

Therefore,

Page 92: Laplace Transform

Example 5

iL

t=0

dcI C R L

ILdcI R sL1sC

242562525

dcI mAC nFRL mH

2 1

L

dc

dc

VI

sLIV V

s CVsR s L

I CV

ss

RC LC

Page 93: Laplace Transform

Example 5 ...contd

2

5

2 8

5

1 2 2

1

384 10

( 64000 16 10 )384 10

( 32000 24000)( 32000 24000)*

dcL

I LCI

ss s

RC LC

s s s

s s j s jk k ks s a jb s a jb

3 31 224 10 ; 24 10 126.87k k

Solving,

3200024 40 cos 24000 126.87 ( )tLi e t u t mA

Page 94: Laplace Transform

Example 6

iL

t=0

gi C R L

ILgI R sL1sC

cos24

40000 /2562525

g m

m

i I tI mA

rad sC nFRL mH

2 2

2 2

2

2 2 2

/

1

mg

m

m

s II

ss IV V

sCVR s L s

s I CV

ss s

RC LC

Page 95: Laplace Transform

Example 6 ...contd

2 2 2

5

2 8 2 8

1 1

2 2

/

1

384 10

16 10 64000 16 10

*

40000 40000*

32000 24000 32000 24000

mL

s I CVI

ssL s sRC LC

s

s s s

k k

s j s jk k

s j s j

3 31 27.5 10 90 ; 12.5 10 90k k

3200015sin 40000 25 sin 24000 ( )tLi t e t u t mA

Solving,