21
This article was downloaded by: [University of Glasgow] On: 20 December 2014, At: 10:11 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Communications in Statistics - Theory and Methods Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsta20 Large sample estimation and prediction for explosive growth curve models Pandurang M. Kulkarni a a Department of Statistics , La Trobe University , Melbourne, Australia Published online: 27 Jun 2007. To cite this article: Pandurang M. Kulkarni (1987) Large sample estimation and prediction for explosive growth curve models, Communications in Statistics - Theory and Methods, 16:9, 2677-2696, DOI: 10.1080/03610928708829532 To link to this article: http://dx.doi.org/10.1080/03610928708829532 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http:// www.tandfonline.com/page/terms-and-conditions

Large sample estimation and prediction for explosive growth curve models

Embed Size (px)

Citation preview

Page 1: Large sample estimation and prediction for explosive growth curve models

This article was downloaded by: [University of Glasgow]On: 20 December 2014, At: 10:11Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,37-41 Mortimer Street, London W1T 3JH, UK

Communications in Statistics - Theory and MethodsPublication details, including instructions for authors and subscription information:http://www.tandfonline.com/loi/lsta20

Large sample estimation and prediction for explosivegrowth curve modelsPandurang M. Kulkarni aa Department of Statistics , La Trobe University , Melbourne, AustraliaPublished online: 27 Jun 2007.

To cite this article: Pandurang M. Kulkarni (1987) Large sample estimation and prediction for explosive growth curvemodels, Communications in Statistics - Theory and Methods, 16:9, 2677-2696, DOI: 10.1080/03610928708829532

To link to this article: http://dx.doi.org/10.1080/03610928708829532

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) containedin the publications on our platform. However, Taylor & Francis, our agents, and our licensors make norepresentations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose ofthe Content. Any opinions and views expressed in this publication are the opinions and views of the authors,and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be reliedupon and should be independently verified with primary sources of information. Taylor and Francis shall not beliable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilitieswhatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out ofthe use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematicreproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in anyform to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Page 2: Large sample estimation and prediction for explosive growth curve models

COMMUN. STATIST.-THEORY METH., 1 6 ( 9 ) , 2 6 7 7 - 2 6 9 6 ( 1 9 8 7 )

LARGE SAMPLE ESTIMATION AND PREDICTION FOR EXPLOSIVE GROWTH CURVE MODELS

Pandurang M. Kulkarni

Department of S t a t i s t i c s La Trobe Universi ty

Melbourne, Aus t ra l i a

Key Words and Phrases: asymptotic prediction error; regression wi th come Zated errors; maximwn l i k e Zihood estimation; growth curves as time-series; exp Zosive grouth.

ABSTRACT

Asymptotic d i s t r i b u t i o n s of maximum l ikel ihood es t imators f o r

the parameters i n explosive growth curve models a re derived.

Limit d i s t r i b u t i o n s of predic t ion e r r o r s when the parameters a r e

est imated a re a l s o obtained. The growth curve models are viewed

a s mul t ivar ia te t ime-series models, and t h e usual t ime-series

methods a r e used f o r p red ic t ion . Estimation constrained by a

hypothesis of homogeneity of growth r a t e s is a l so considered.

1. INTRODUCTION

Large sample p roper t i e s of es t imators and t e s t s f o r the para-

meters i n l i n e a r growth curve (or response curve) models with

co r re l a t ed e r r o r s a r e now well documented, see Sandland and

McGilchrist (1979) and Hudson (1983). Hudson (1983), i n p a r t i c u l a r ,

has s tudied the asymptotic p rope r t i e s of c e r t a i n t e s t s t a t i s t i c s

using a t@e-ser ies approach.

The main purpose of t h i s paper i s t o study large sample

p roper t i e s of p red ic t ions when the parameters a r e est imated, and

Copyright O 1987 by Marcel Dekker, Inc.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 3: Large sample estimation and prediction for explosive growth curve models

2678 KULKARNI

i n p a r t i c u l a r , t o examine t h e e f f e c t of est imation of t h e para-

meters on t h e asymptotic variance of the predic t ion e r ro r . It w i l l

be shown t h a t f o r t h e s t a t iona ry models (non-explosive regressors)

t h e e f f e c t of est imation i s asymptotically negl ig ib le whereas f o r

t h e explosive growth curve models the est imation e r r o r cannot be

ignored. Large sample p roper t i e s of predic t ion e r r o r s when t h e

parameters a re estimated a r e studied by Basawa (1986) in a

d i f f e r e n t context f o r non-ergodic models when s imi lar phenomenon

regarding t h e e f f e c t of est imation on predic t ion e r r o r variance has

been observed.

In t h i s paper we study two a l t e r n a t i v e growth curve models

based on (a) a regression model wi th autoregressive e r r o r s (Model I)

and (b) an autoregressive model with a regression component (Model

11). Model I was a l so considered by Hudson (1983) in a d i f f e r e n t

context. The two models exh ib i t s imi l a r asymptotic explosive

behaviour while they i n f a c t d i f f e r i n severa l r e spec t s a s regards

parametr iza t ion, asymptotic p rope r t i e s of t h e es t imates , e t c . We

emphasize t h e case when the regression ( x . ) a t time j increase 3

t o , a t e i t h e r a l i n e a r o r an exponential r a t e a s j -t , and

r e f e r t o such models a s explosive. Explosiveness of regressors

e i t h e r l i n e a r l y o r exponential ly in economic analys is is not un-

common. Simi lar types of models have been s tudied by Granger

(1986) who a l s o d iscusses severa l p r a c t i c a l appl ica t ions of such

models.

Glesser and Olkin (1972) have studied a general regression

model s imi l a r t o our Model I. However, i n t h i s model the

regressors do not depend on time ' n ' . For regression depending

on ' n ' ,.Anderson (1971) has considered est imation f o r both types

of models I and 11, discussed i n our paper. Anderson (1971) has

imposed c e r t a i n condit ions on the regression va r i ab les t o

guarantee s t a t i o n a r i t y (non-explosiveness) and t o obta in t h e

asymptotic normality of the es t imators of the parameters. Using

s imi la r techniques we obta in r e s u l t s on asymptotic normality, e t c . ,

f o r explosive growth curve models by su i t ab ly modifying the con-

d i t i o n s imposed on the regressors .

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 4: Large sample estimation and prediction for explosive growth curve models

EXPLOSIVE GROWTH CURVES 2679

A p r e l i m i n a r y d i s c u s s i o n o f t h e two models is g iven i n

S e c t i o n 2 , and S e c t i o n 3 c o n t a i n s t h e r e s u l t s on l i m i t d i s t r i b u t i o n s

o f t h e maximum l i k e l i h o o d e s t i m a t o r s f o r t h e e x p l o s i v e growth

curves . Asymptotic, j o i n t d i s t r i b u t i o n s o f a f i n i t e number o f

s u c c e s s i v e p r e d i c t i o n e r r o r s a f t e r a s u i t a b l e normal iza t ion a r e

d e r i v e d i n S e c t i o n s 4 and 5 f o r t h e two models. S p e c i f i c examples

a r e cons idered a t t h e end o f S e c t i o n s 4 and 5.

2 . FORMULATION O F THE BASIC EXPMSIVE MODELS

L e t Y denote t h e random o b s e r v a t i o n a t t ime j , j

1 S j S n , { x i j , l ~ i S q 1 a s e t of " f i x e d " r e g r e s s o r s cor responding

t o Y and E be independent N (0 , 0 2 ) v a r i a t e s ( i n n o v a t i o n s ) . j j

Consider t h e f o l l o w i n g models:

Model A . Regression w i t h a u t o r e g r e s s i v e e r r o r s :

where t h e e r r o r s Z a r e assumed t o s a t i s f y a f i r s t - o r d e r auto- j

r e g r e s s i o n r e l a t i o n ,

Model B . Autoregress ion w i t h a r e g r e s s i o n component

eixij + p Y . + E Y o = O . 1 j ' (3)

i=l

The parameters p , a , (Bi , lSi%) , p and c r 2 i n t h e above

models a r e assumed unknown. We assume throughout t h e paper t h a t

t h e a u t o r e g r e s s i o n parameter p s a t i s f i e s j p 1 < 1 and 10 1 < .

The "growth" component i n t h e above models is g iven by t h e

r e g r e s s i o n f u n c t i o n E (Y. ) , and we have 3

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 5: Large sample estimation and prediction for explosive growth curve models

KULKARNI

f o r model A

la[&] + 1 1 ~i~k- lx i , j -k+ l f o r model B 1-p i=l k=l

Thus f o r model A t he growth is l i n e a r in the parameters while it is

non-linear f o r model B . 2j

v a r ( ~ . lxij) = 0 2

1 1 - P 2 I , f o r both t h e models A and B 3

It w i l l be assumed i n what follows t h a t f o r each i , 0 < xij I. rn a s j + rn . It i s then c l e a r t h a t , f o r both the

models

where x = max{xij ,l 6 i 5 q} . A growth process s a t i s f y i n g (6) j

and z : t a s j + - w i l l be r e fe r red t o a s an explosive process. 3

I n s p i t e of t h e d i f ference i n the spec i f i ca t ion of t h e two

models both t h e processes exh ib i t t he same asymptotic explosive

behaviour i n t h e sense of (6) . Also, f o r both the models it is

c l e a r from (4 ) t h a t

We s h a l l now use the bas ic models discussed above t o formulate

t h e growth curve models i n the following section.

- Note: 0 i n (6) implies Y when divided by X is bounded i n - P j j p robab i l i ty .

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 6: Large sample estimation and prediction for explosive growth curve models

EXPLOSIVE GROWTH CURVES

3 . GROWTH CURVE: MODELS AND ESTIMATION OF P W T E R S

Let Y U v ( j ) denote the observation a t time j , on the v t h

indiv idual belonging t o uth group, 1 6 u < m , 1 < v < N , and

1 6 j 6 n . The t o t a l number of indiv iduals is given by

N = N1 + ... + Nm , and on each of these N indiv iduals observ-

a t i o n s a t n time p o i n t s a r e made. Assume t h a t ';yij and {ykk1

a r e independent for i f R or j # k . The growth curve models

based on t h e bas ic models A and B of t h e previous sec t ion a re then

defined by the following.

Model I

where

and E ( j 1 a r e independent N (0 ,a t ) var i a t e s . uv

Model I1

YUv(0) = 0 , and E ( j ) a r e a s inModel I . uv

We now consider t he maximum l ike l ihood es t imators of t he

parameters, and ob ta in t h e i r l i m i t d i s t r i b u t i o n s a s n + " .

3.1. Estimation f o r Model I

The log-l ikelihood function based on the observations f o r t h e

u t h group f o r Model I is given by, ( ignoring constant te rms) ,

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 7: Large sample estimation and prediction for explosive growth curve models

KULKARNI

where

The estimating equations f o r Put Biu , 1 S i 5 q , and pU are

given by

where E ( j ) i s defined by (12). F ina l ly a 2 can be estimated uv u

by

where E ( j ) denotes cUV ( j ) with a l l the parameters replaced by uv

t h e i r estimators.

and

Assume t h a t the following condition i s s a t i s f i e d : Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 8: Large sample estimation and prediction for explosive growth curve models

E X P L O S I V E GROWTH CURVES

(h) lirn{cil/(bibl) '~ = fiL, 1 5 i, k ' q . n*

Remark: Condition l ( a ) ensures t h e exis tence of t he l imi t ing

covariance between t h e mle 's of t h e parameters vU and AU T

fl = (0 Lu , . . . , 8 ) , and condit ion l ( b ) t h a t of t h e covariance Nu qu between

Oiu and 0 . ( 1 , 1 . These condit ions a re

xu needed because of the explosiveness of the regressors . I t can be

seen t h a t even when t h e r eg res so r s a re not explosive these

condit ions a r e enough t o ensure t h e asymptotic normality of t h e

mle 's .

Also, l e t I (n) = diag{n,b b ,bq,n}, where IU(n ) i s U 2 'T. -

a (q+2) x(q+2) diagonal matr ix , and & = (!-I 1€J1ute2u,. . - 1 0 ,P I u qu u

where & i s (q+2) x1 vector of t h e parameters and T denotes t h e

transpose. Let F denote a qxq matrix with ( i , k ) t h element given

by fig . Note t h a t t he diagonal elements of F a re a l l equal t o T

uni ty . Denote M_ = ( f l , . . . , f ) where M i s a q x l vector. The 9

Fisher information matrix corresponding t o the parameter i s

then given by J,(&) ,

where

LA'(&) denotes the matrix of t h e second de r iva t ives of LU wi th

respect t o the components of . It i s e a s i l y v e r i f i e d t h a t

Let $(n) denote t h e es t imate of & obtained by solv ing t h e

equation (13). The following theorem can be v e r i f i e d v i a standard

asymptotics.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 9: Large sample estimation and prediction for explosive growth curve models

2684 KULKARNI

Theorem 3.1. Under c o n d i t i o n 1, and Model I , a s n + , and f o r e a c h u , 1 < u < m ,

4 Iu (n) (&in) -&) + Nqi2 (0,~;' (h) ) , i n d i s t r i b u t i o n ,

p rov ided JU is non-singular .

3.2. Es t imat ion f o r Model I1

The log- l ike l ihood f u n c t i o n f o r model I1 based on observa-

t i o n s from t h e u t h group i s g iven by LU

a s d e f i n e d i n (11) , where

t h e e r r o r terms E ( j ) a r e now d e f i n e d by uv

The l i k e l i h o o d e s t i m a t i n g e q u a t i o n s f o r u U r O i u , l S i S q ,

and pU a r e g iven by

1 1 e U V ( j ) = 0 , 1 1 c U V ( j v j v j

and 1 x ~ ~ ~ ( j ) Y ~ ~ ( j - l ) = 0 v j

where E. ( j ) a r e g iven by (15) uv

x ( i , j ) = O , 1 5 i S q , uv

(16)

F o r e a s e of p r e s e n t a t i o n we now

t a k e q = l s o t h a t t h e r e i s o n l y one r e g r e s s o r x U v ( j ) , and (15) is

r e p l a c e d by

Denote a; (n) = x xUv ( j ) , b: (n) = x x2 (j) , uv

v j v j

and suppose t h e f o l l o w i n g c o n d i t i o n i s s a t i s f i e d .

Remark: Condi t ion 2 i s t o o b t a i n t h e l i m i t i n g covar iance between

u and (Burpu) . It can be no ted t h a t c o n d i t i o n 2 i s s i m i l a r u

t o c o n d i t i o n 1 (a) i n S e c t i o n 3.1.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 10: Large sample estimation and prediction for explosive growth curve models

EXPLOSIVE GROWTH CURVES

Now, denote t h e m a t r i x o f norms a s fo l lows .

1: (n) = d i a g { n , b: (n) , b: (n) 1 , where I; (n) i s a (3x3) d i a g o n a l

m a t . l e t = (au ,6u ,pu)T be t h e (3x1) v e c t o r o f parameters .

It can be shown, u s i n g T o e p l i t z r s l e m , t h a t t h e F i s h e r in format ion

m a t r i x p e r o b s e r v a t i o n cor responding t o t h e e s t i m a t i o n o f is

where f* i s d e f i n e d by c o n d i t i o n 2 ,

c = l i m i I : a (n) /I: xUV (n) 1 , d = l i m ( 1 a2 (n) /I: x:v (n) 1 , and uv

n* v v n* v uv v n-1

e = lim{E a uv

7 n-@x (R). uv (n) xuv (n) f i x i v (n) 1 where a (n) = e U L P U uv n* v v !L=1

Under t h e assumptions, 0 < xUv (n) + , and c o n d i t i o n 2 , it can

e a s i l y be v e r i f i e d t h a t a l l t h e l i m i t s f*, c , d , and e i n J* u

above e x i s t wi thout f u r t h e r c o n d i t i o n s .

S p e c i f i c examples f o r t h e s e models w i l l be d i s c u s s e d i n t h e

fo l lowing s e c t i o n .

W e s t a t e t h e fo l lowing theorem, which can be proved us ing t h e

u s u a l asympto t ic t h e o r y .

Theorem 3.2. Under Model 11, and c o n d i t i o n 2 , a s n -+ f o r e a c h

u , 1 S u S m , we have

i n d i s t r i b u t i o n , where $ * (n) i s t h e s o l u t i o n of (16) . '-4

We now c o n s i d e r parameter e s t i m a t i o n f o r a s p e c i a l c a s e of

Model I1 under t h e hypothes i s t h a t t h e r e g r e s s i o n parameters f o r

d i f f e r e n t groups are equa l . Denote by Model IIH , t h e model I1

under t h e n u l l h y p o t h e s i s s p e c i f i e d above.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 11: Large sample estimation and prediction for explosive growth curve models

KULKARNI

3.3. Model 11, : Parameter E s t i m a t i o n

Consider Model I1 w i t h m=2 ( i . e . two groups) , q = l , a =0, U

02=1, u=1,2, and l e t t h e n u l l hypothes i s 11 s p e c i f y t h a t 8 =8 u 1 2

(homogeneity r e g a r d i n g t h e r e g r e s s i o n p a r a m e t e r s ) . Then, under H ,

t h e parameters o f t h e model a r e 0 , (where O =O = 8 ) , pl and 1 2 P2 '

We s h a l l r e f e r t o t h e model under H by model IIH . It is t o be

noted t h a t t h e e s t i m a t e s of 8 , pl and p2 under H use

o b s e r v a t i o n s from both t h e groups u n l i k e i n t h e case of t h e models

I and 11 , where o b s e r v a t i o n s o n l y from a s i n g l e group a r e needed

t o e s t i m a t e t h e parameters o f t h a t group.

Thus, model 1111 is s p e c i f i e d by

The log- l ike l ihood f u n c t i o n f o r Model I1 i s g iven by H

( i g n o r i n g t h e te rms f r e e from t h e parameters )

T Denote = (p1,p2,8) , and c o n s i d e r t h e ( 3 x 3 ) m a t r i x of norm w

I (n) = d i a g i b * (n) ,b* (n) ,b* (n) + b* (n) 1 where b* ( n ) = 1 Z x k v ( j ) , U 1 2 1 2 U v j

u=1,2 . With E ( j ) s p e c i f i e d by (19) , t h e e s t i m a t i n g e q u a t i o n s uv

a r e

1 ~ ~ ~ ( j ) Y ~ ~ ( j - l ) = 0 , u = l r 2 , and 1 1 1 ~ ~ ~ ( j ) x ~ ~ ( j ) = 0. (20) V I u v j

Le t

n-1 n-1-R where a (n) = 0

uv L P u x (9.) , and l e t u s suppose t h a t uv

Condi t ion 3 is s a t k $ i e d .

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 12: Large sample estimation and prediction for explosive growth curve models

EXPLOSIVE GROWTH CURVES 2687

Condi t ion 3 1imC.E 1x2 ( j ) / (b; (n)+b; ( n ) ) 1 = a* i s f i n i t e , u=1,2 uv u

n- v j

where b; (n) i s d e f i n e d a s above.

Remark: Note t h a t c o n d i t i o n (3) reduces t o u n i t y f o r t h e c a s e

of s i n g l e group i . e . u=l . We need c o n d i t i o n (3) because it i s

c l e a r t h a t e s t i m a t i o n f o r model I1 needed o b s e r v a t i o n s on ly from

a s i n g l e group, whereas here f o r model 11 e s t i m a t i o n of H

pa rameters i n v o l v e s o b s e r v a t i o n s from a l l groups.

Now, u s i n g T o e p l i t z ' s lemma one can show t h a t t h e F i s h e r

in format ion m a t r i x p e r o b s e r v a t i o n is g iven by

where R* (u=1,2) a r e a s s p e c i f i e d i n (21) and c o n d i t i o n dul u r U

( 3 ) .

The f o l l o w i n g theorem can be v e r i f i e d us ing s t a n d a r d

asympto t ics .

Theorem 3.3. Under t h e Model II and c o n d i t i o n 3, a s n + OD we

have

where (n ) i s t h e e s t i m a t e of $ obta ined by s o l v i n g (20) . N U N U

4 . PREDICTION AND ASYMPTOTIC DISTRIBUTION OF

PREDICTION ERRORS FOR MODEL I

4.1. L i m i t d i s t r i b u t i o n of p r e d i c t i o n e r r o r s

I n t h i s s e c t i o n we s h a l l d i s c u s s t h e p r e d i c t i o n f o r Model I , assuming t h a t t h e f i r s t n o b s e r v a t i o n s a r e known, and t h e n o b t a i n

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 13: Large sample estimation and prediction for explosive growth curve models

2688 KULKARNI

t h e asympto t ic d i s t r i b u t i o n o f t h e p r e d i c t i o n e r r o r w i t h e s t i m a t e d

parameters .

L e t us denote t h e t - s t e p ahead p r e d i c t o r (1 < t 5 k) o f

Y . ( n + t ) given o b s e r v a t i o n s YUv ( j ) , 1 5 j < n , by uv

& ( n + t ) = E [Y ( n + t ) I h(1) , . . .flU(n) I -u

= E [Y ( n + t ) 1 (n ) 1 , where 5 ( n + t ) i s a N x l v e c t o r -u 4 U

w i t h i t s v t h element given by

L e t (n-kt) dermte & ( n + t ) wi.th a l l t h e parameters r e p l a c e d by

t h e i r e s t i m a t e s . Also , l e t e (11-kt) = 5 (ni . t ) - Y ( n + t ) -u NU hZ1

and z U ( n + t ) = 5 (n+t ) - Yw ( n + t ) be t h e p r e d i c t i o n e r r o r s when t h e W

parameters a r e lcnown and when they a r e es t imated r e s p e c t i v e l y , 2 t

and denote n ( n + t ) = v a r (Y (n+k) ]Y_U (n) ) = L (1-p,, ) a{/ (1-pt) I I , u RU

where . I is an (N xN ) i d e n t i t y mat r ix . Then t h e r e s p e c t i v e u u

s t a n d a r d i z e d p r e d i c t i o n e r r o r s a r e def ined by

Now

Using T a y l o r ' s expansion f o r E; (n+t ) we o b t a i n W

where F;: (n+t ) denotes t h e (N ) x (q+2) m a t r i x of p a r t i a l d e r i v a t i v e s u

of L ( n + t ) w i t h r e s p e c t t o t h e components of and I U b ) i s

t h e m a t r i x of norms d e f i n e d i n S e c t i o n 3.1.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 14: Large sample estimation and prediction for explosive growth curve models

EXPLOSIVE GROWTH CURVES

Let 442 (n) be a (KNUxl) v e c t o r w i t h i t s e lements

(n) -+ N [E,B (&) ] i n d i s t r i b u t i o n ,

*u

whpre B ( 4 ) = ( (gts)) is a (KNU X mu) mat r ix w i t h hZ1

I is (NUxNU) i d e n t i t y mat r ix .

The l i m i t d i s t r i b u t i o n o f t h e p r e d i c t i o n e r r o r w i t h parameters

known is t h u s given by (24) .

F u r t h e r , i n o r d e r t o o b t a i n t h e d i s t r i b u t i o n of p r e d i c t i o n

e r r o r w i t h e s t i m a t e d p a r a m e t e r s , denote t h e tth column of GU(n)

by

and assume t h a t t he c o n d i t i o n 4 holds.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 15: Large sample estimation and prediction for explosive growth curve models

2690 KULKARNI

Condi t ion 4. lim[w ( i , n ) ] = g U v ( i , t ) i s f i n i t e uv

Remark: Condit ion (4) i s needed t o o b t a i n t h e convergence i n

d i s t r i b u t i o n o f p r e d i c t i o n e r r o r , whereas c o n d i t i o n (1) f o r t h e

convergence i n d i s t r i b u t i o n of t h e e s t i m a t e s o f t h e parameters .

I n g e n e r a l , e i t h e r o f t h e s e c o n d i t i o n s does n o t imply t h e o t h e r .

It is c l e a r i n examples i n t h e fo l lowing s e c t i o n s t h a t t h e s e

c o n d i t i o n s a r e n o t hard t o ach ieve .

Then we have

'I' and & ( i , t ) = ( g u l ( i , t ) ,... g U r N ( i , t ) ) ,

Nuxl u

w i t h guv (i,t) d e f i n e d in Condit ion 4 .

L e t GU = [& , . . . G (K) I and ;$ (n) be a (lUi x l ) v e c t o r w i t h -u -u u

its e lements

Now, us ing (25) , Theorem (3.1) and n o t i n g t h a t t h e two te rms

on t h e r i g h t o f (24) a r e u n c o r r e l a t e d , it is easy t o v e r i f y t h a t

n + N (2, ( ) i n d i s t r i b u t i o n (28) u

- 1 w i t h B (k) , GU and JU a s s p e c i f i e d i n (24) , (26) -(27) and

Theorem 3 . 1 r e s p e c t i v e l y .

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 16: Large sample estimation and prediction for explosive growth curve models

EXPLOSIVE GROWTH CURVES 2691

Thus, (28) g i v e s t h e asymptot ic d i s t r i b u t i o n o f t h e

p r e d i c t i o n e r r o r w i t h e s t i m a t e d parameters .

4.2. Examples

TO i l l u s t r a t e t h e above r e s u l t s , we c o n s i d e r some s p e c i f i c

examples, f o r Model I .

I n each c a s e we o b t a i n 2, F and G ( t ) , which can r e s p e c t -

i v e l y be used t o g e t J (2) d e f i n e d i n (15) and $ (iU) d e f i n e d

i n (28) . Le t h = [ ( l - ~ ~ ~ ) 0 2 ] - * [1 -p2 l f .

Example 1. Take m=l, N =1 i n model I . u

Case (i). (Exponential growth) x . = A' , A > 1 . I

It can be shown t h a t

- 1 J (A) = cr-2 d i a g [ (1-p ) ', 1, (1-p * ) ] which i s a ( 3 x 3 ) d i a g o n a l

m a t r i x and

T t t

(t) f w

-' ( A 2 - 1 ) . = [ O , g ( t ) , O ] h , where g ( t ) =----- ( A - P )

Case (ii) . (Linear growth) x . = j . I

6 (1- ) T We g e t M = - , F=l , and G ( t ) = [0,0,01 h . 2 l + p

T h i s l e a d s t o t h e conc lus ion t h a t t h e e s t i m a t i o n o f parameters

does n o t c o n t r i b u t e t o t h e asymptot ic v a r i a n c e of t h e p r e d i c t i o n

e r r o r .

Example 2. Le t m=l., N =1, q=2 i n Model I . Let h be a s u

d e f i n e d i n example 1.

j Case (i) . (Both growth components e x p o n e n t i a l ) x . . = 1 . , hi > 1, 11 1

i=1 ,2 we g e t = (0,O) ,

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 17: Large sample estimation and prediction for explosive growth curve models

KULKARNI

T and G ( ~ ) = [O, g ( i , t ) ,0] h ,

N lSi.52 t t f - 1

where . g ( i , t ) = (Ai-p ) (A:-1) (Ai-p) .

Case ( i i ) . (Exponential and l i n e a r growth components) x =A: , 1 j

A > 1 and x = j . 1 2 j

We o b t a i n = [ 0 , 6 / 2 1 , F = I = i d e n t i t y m a t r i x , and 2x2

t t f -1 G ( ~ ) = [0 , g ( t ) , 0 , O I T h , where g ( t ) = (A-p )(A2-1) (A-p) . N

We may n o t e t h a t t h e c o n t r i b u t i o n s due t o t h e e s t i m a t i o n o f t h e

parameter O2 (corresponding t o t h e l i n e a r growth) i n t h e

asympto t ic v a r i a n c e o f p r e d i c t i o n e r r o r is z e r o , while t h e

e s t i m a t i o n o f O1 corresponding t o t h e e x p o n e n t i a l growth r e s u l t s

i n an i n c r e a s e i n t h e p r e d i c t i o n e r r o r var iance .

5. PREDICTION AND ASYMPTOTIC DISTRIBUTION O F

PREDICTION ERRORS FOR MODEL 11

The l i m i t i n g d i s t r i b u t i o n of p r e d i c t i o n e r r o r s w i t h e s t i m a t e d

parameters f o r Models I1 can be ob ta ined on t h e same l i n e s a s f o r

Model I d i s c u s s e d i n S e c t i o n 4.

5.1. Limit d i s t r i b u t i o n o f p r e d i c t i o n e r r o r s

,We s h a l l use t h e same n o t a t i o n a s i n S e c t i o n 4 , f o r d e f i n i n g

t h e p r e d i c t i o n e r r o r , e r r o r v a r i a n c e , e t c . For s i m p l i c i t y l e t us

t a k e p = l i n Model I1 , and proceed ing a s i n S e c t i o n 4 , we g e t ,

A.

f ;* ( n i t ) = (n+t ) + ( n ) ( t ) I (n) J I n ( n - (29) h21

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 18: Large sample estimation and prediction for explosive growth curve models

EXPLOSIVE GROWTH CURVES 2693

where e * ( n t t ) = ( n + t ) k ( n + t ) , % ( n + t ) = & (n+t ) - & ( n + t ) , CZ1

5: (n+t ) denotes t h e (NUx3) m a t r i x o f p a r t i a l d e r i v a t i v e s o f

5 ( n + t ) w i t h r e s p e c t t o t h e components of . And , I:(n) -Il

a r e a s d e f i n e d i n Sec t ion 3 . 2 .

Also,

where

L e t us assume t h a t t h e c o n d i t i o n (5) ho lds

Condit ion 5.

S i m i l a r remark a s i n Sec t ion 4 ho lds f o r c o n d i t i o n s ( 2 ) and (5 ) .

Then we have,

where oT = ( 0 , . . -0) , hU a s d e f i n e d above, G N U

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 19: Large sample estimation and prediction for explosive growth curve models

) = lirnl.2 ( n ) ] , v=1, ... N n-%o uv u -

Assuming t h a t c o n d i t i o n s (3) and (5)

same arguments a s i n S e c t i o n 4 , it can be

h o l d , and us ing t h e

shown t h a t

(1) = r T 1 , - . . n I N B ) i n d i s t r i b u t i o n KN

ICNU u (32)

where B (z) = B (k), B (&) d e f i n e d i n (24) .

Hence t h e asymptot ic v a r i a n c e of p r e d i c t i o n e r r o r s w i t h parameters

known, is t h e same f o r bo th t h e Models I and 11 .

Also,

j%(n) + N , ) ) i n d i s t r i b u t i o n

T -1 where $ (G) = B (,Q + GU J: GU ,

GU = [GU , . . . G:) 1 , G:) l S t U , d e f i n e d i n (31) . and

J*-I i s a s d e f i n e d i n Theorem 3.2. u

We now c o n s i d e r an example f o r model I1 .

Example 4. L e t m=l, N =1, and q = l , i n Model II . u

Case (i). x. = A' , A > 1 . Then we have, 7

u s i n g t h e s e J* (G) d e f i n e d i n (18) can be ob ta ined .

f t-1 t-1 i t-i-1 And g ( t ) = [ O (,A2-1) l i t (A-p)-l + ( t - i ) A p 1

i=l t t f

= e ( A -p ) ( A ~ - 1 ) ( A - P ) - ~ , - 4 t t f , and g * ( t ) = (A -p ) (,A2-1) (A-p)

- 1

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 20: Large sample estimation and prediction for explosive growth curve models

EXPLOSIVE GROWTH CURVES 2695

By comparing t h i s w i t h Example 1 c a s e ( i ) , it is c l e a r t h a t

t h e asymptot ic v a r i a n c e o f p r e d i c t i o n e r r o r w i t h es t imated

parameter i s d i f f e r e n t f o r t h e Models I and I1 .

Case (ii). L e t x = j . Then c = ~ ( l - p ) - ' , f * = 6 / 2 , d = c 2 , j

e = c . Using t h e s e r e s u l t s J ($$) d e f i n e d i n (18) can be T

o b t a i n e d , and a s expected we g e t g ( t ) = [O ,0,01 h .

Remark: D e t a i l s of o b t a i n i n g t h e asymptot ic p r e d i c t i o n e r r o r

d i s t r i b u t i o n f o r Model 1111 a r e o m i t t e d s i n c e t h e y can e a s i l y be

o b t a i n e d on t h e same l i n e s a s i n S e c t i o n s 4 and 5.

ACKNOWLEDGEMENT

The au thor would l i k e t o thank D r . I . V . Basawa f o r s u g g e s t i n g

t h e t o p i c . Also he would l i k e t o thank t h e e d i t o r and t h e r e f e r e e s

f o r t h e i r h e l p f u l comments.

BIBLIOGRAPFN

Anderson, T.W. (1971). The S t a t i s t i c a l Analys i s of Time S e r i e s New York, John Wiley and Sons, Inc.

Basawa, I . V . (1986). Asymptotic d i s t r i b u t i o n s of p r e d i c t i o n e r r o r s and r e l a t e d t e s t s o f f i t f o r n o n s t a t i o n a r y p r o c e s s e s . To appear i n Annals of S t a t i s t i c s .

Chakravor ty , S.R. (1976). Maxinun l i k e l i h o o d e s t i m a t e s of t h e g e n e r a l growth curve model. Ann. I n s t . S t a t i s t . Math, 28 349-357.

G l e s s e r , L. J. and O l k i n , I. (1972). E s t i m a t i o n f o r a r e g r e s s i o n model w i t h an unknown covar iance mat r ix . Proc . S i x t h Berkeley Symposium, Vol. 1, 541-568.

Granger, C.W.J. (1986). Models t h a t g e n e r a t e t r e n d s . Presen ted a t t h e 26 th summer r e s e a r c h i n s t i t u t e of t h e A u s t r a l i a n Mathe- m a t i c a l S o c i e t y , Canberra , January 1986.

Hudson,, I .L. (1983) . Asymptotic t e s t s f o r growth curve models w i t h a u t o r e g r e s s i v e e r r o r s . A u s t r a l . J. S t a t i s t . , 25, 413-424.

Sandland, R.L. and McGilchr i s t , C.A. (1979). S t o c h a s t i c growth curve a n a l y s i s . B iomet r ics , 2, 255-271.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14

Page 21: Large sample estimation and prediction for explosive growth curve models

Rec&Lved Novemberr, 1985 ; RevAed June, 1 9 t i 7 .

Recommended AnonymowLy.

Redefiecd Anonymounly.

KULKARNI

Dow

nloa

ded

by [

Uni

vers

ity o

f G

lasg

ow]

at 1

0:11

20

Dec

embe

r 20

14