23
Lecture 13 ANNOUNCEMENTS Midterm #1 (Thursday 10/11, 3:30PM5:00PM) location: Midterm #1 (Thursday 10/11, 3:30PM 5:00PM) location: 106 Stanley Hall: Students with last names starting with AL 306 Soda Hall: Students with last names starting with MZ EECS Dept policy re: academic dishonesty will be strictly followed! OUTLINE EECS Dept. policy re: academic dishonesty will be strictly followed! HW#7 is posted online. Cascode Stage: final comments Frequency Response General considerations General considerations Highfrequency BJT model Miller’s Theorem Frequency response of CE stage EE105 Fall 2007 Lecture 13, Slide 1 Prof. Liu, UC Berkeley Reading: Chapter 11.111.3

Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Lecture 13ANNOUNCEMENTS

• Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location:Midterm #1 (Thursday 10/11, 3:30PM 5:00PM) location:• 106 Stanley Hall: Students with last names starting with A‐L• 306 Soda Hall: Students with last names starting with M‐Z

• EECS Dept policy re: academic dishonesty will be strictly followed!

OUTLINE

EECS Dept. policy re: academic dishonesty will be strictly followed!• HW#7 is posted online.

• Cascode Stage: final comments• Frequency Response

– General considerations– General considerations– High‐frequency BJT model– Miller’s Theorem– Frequency response of CE stage

EE105 Fall 2007 Lecture 13, Slide 1 Prof. Liu, UC Berkeley

q y p g

Reading: Chapter 11.1‐11.3

Page 2: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Cascoding Cascode?• Recall that the output impedance seen looking into the 

collector of a BJT can be boosted by as much as a factor of β, by using a BJT for emitter degeneration.

||)]||(1[ rrrrrgR ++=( ) 11211

121121

||||)]||(1[

ooomout

ooomout

rrrrgRrrrrrgR

βπ

ππ

≤≈++=

• If an extra BJT is used in the cascode configuration, the maximum output impedance remains βro1.

1111max,

121121 ||)]||(1[

oomout

ooomout

rrrgRrrrrrgR

βββ

π

ππ

=≈++≤

EE105 Fall 2007 Lecture 13, Slide 2 Prof. Liu, UC Berkeley

Page 3: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Cascode Amplifier• Recall that voltage gain of a cascode amplifier is high, 

because Rout is high.because Rout is high.

( )21211 πrrgrgA omomv −≈

• If the input is applied to the base of Q2 rather than the p pp 2base of Q1, however, the voltage gain is not as high.– The resulting circuit is a CE amplifier with emitter degeneration, 

which has lower Gwhich has lower Gm.

( )212

2

1m

i

om rrg

gviG

+=≡

EE105 Fall 2007 Lecture 13, Slide 3 Prof. Liu, UC Berkeley

( )2121 oomin rrgv +

Page 4: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Review: Sinusoidal Analysis• Any voltage or current in a linear circuit with a sinusoidal source is a sinusoid of the same frequency (ω)source is a sinusoid of the same frequency (ω).– We only need to keep track of the amplitude and phase, when 

determining the response of a linear circuit to a sinusoidal source.

• Any time‐varying signal can be expressed as a sum of sinusoids of various frequencies (and phases).

Applying the principle of superposition:– The current or voltage response in a linear circuit due to a time‐varying input signal can be calculated as the sum of the sinusoidal responses for each sinusoidal component of the

EE105 Fall 2007 Lecture 13, Slide 4 Prof. Liu, UC Berkeley

sinusoidal responses for each sinusoidal component of the input signal.

Page 5: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

High Frequency “Roll‐Off” in Av

• Typically, an amplifier is designed to work over a limited range of frequencies.limited range of frequencies.– At “high” frequencies, the gain of an amplifier decreases.

EE105 Fall 2007 Lecture 13, Slide 5 Prof. Liu, UC Berkeley

Page 6: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Av Roll‐Off due to CL • A capacitive load (CL) causes the gain to decrease at high frequencieshigh frequencies.– The impedance of CL decreases at high frequencies, so that it shunts some of the output current to ground.

⎞⎜⎜⎛RA 1||

⎠⎜⎜⎝

−=L

Cmv CjRgA

ω||

EE105 Fall 2007 Lecture 13, Slide 6 Prof. Liu, UC Berkeley

Page 7: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Frequency Response of the CE Stage• At low frequency, the capacitor is effectively an open circuit and A vs ω is flat At high frequencies thecircuit, and Av vs. ω is flat.  At high frequencies, the impedance of the capacitor decreases and hence the gain decreases.  The “breakpoint” frequency is 1/(RCCL).C

1222 +=

ωLC

Cmv

CRRgA

LC

EE105 Fall 2007 Lecture 13, Slide 7 Prof. Liu, UC Berkeley

Page 8: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Amplifier Figure of Merit (FOM)• The gain‐bandwidth product is commonly used to benchmark amplifiers.  p– We wish to maximize both the gain and the bandwidth.

• Power consumption is also an important attribute.– We wish to minimize the power consumption.

( )CmRg 1 ⎞⎜⎜⎛( )

CCC

LCCm

VICR

g

1nConsumptioPower

BandwidthGain ⎠⎜⎜⎝=

×

LCCT CVV1 =

EE105 Fall 2007 Lecture 13, Slide 8 Prof. Liu, UC Berkeley

Operation at low T, low VCC, and with small CL superior FOM

Page 9: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Bode Plot• The transfer function of a circuit can be written in the general formgeneral form

L⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+

= 21

11)( zz

jj

AjHωω

ωω

ωA0 is the low-frequency gainωzj are “zero” frequencies

L⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟

⎟⎠

⎞⎜⎜⎝

⎛+

=

21

0

11)(

pp

jjAjH

ωω

ωω

ω ωzj are zero frequenciesωpj are “pole” frequencies

• Rules for generating a Bode magnitude vs. frequency plot:As ω passes each zero frequency the slope of |H(jω)| increases– As ω passes each zero frequency, the slope of |H(jω)| increasesby 20dB/dec.

– As ω passes each pole frequency, the slope of |H(jω)| decreases 

EE105 Fall 2007 Lecture 13, Slide 9 Prof. Liu, UC Berkeley

by 20dB/dec.

Page 10: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Bode Plot Example• This circuit has only one pole at ωp1=1/(RCCL); the slope of |Av|decreases from 0 to ‐20dB/dec at ωp1. | v| / p1

1=ω

LCp CR1 =ω

• In general, if node j in the signal path has a small‐signal resistance of Rj to ground and a capacitance Cj to ground then it contributes a pole at frequency (R C )‐1

EE105 Fall 2007 Lecture 13, Slide 10 Prof. Liu, UC Berkeley

ground, then it contributes a pole at frequency (RjCj) 1

Page 11: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Pole Identification Example

1 1

inSp CR

11 =ω

LCp CR

12 =ω

EE105 Fall 2007 Lecture 13, Slide 11 Prof. Liu, UC Berkeley

Page 12: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

High‐Frequency BJT Model• The BJT inherently has junction capacitances which affect its performance at high frequencies.affect its performance at high frequencies.Collector junction: depletion capacitance, CµEmitter junction:  depletion capacitance, Cje, and also j

diffusion capacitance, Cb.

b CCC +≡

EE105 Fall 2007 Lecture 13, Slide 12 Prof. Liu, UC Berkeley

jeb CCC +≡π

Page 13: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

BJT High‐Frequency Model (cont’d)• In an integrated circuit, the BJTs are fabricated in the surface region of a Si wafer substrate; anothersurface region of a Si wafer substrate; another junction exists between the collector and substrate, resulting in substrate junction capacitance, CCS.g j p CS

BJT cross-section BJT small-signal model

EE105 Fall 2007 Lecture 13, Slide 13 Prof. Liu, UC Berkeley

Page 14: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Example: BJT Capacitances• The various junction capacitances within each BJT are explicitly shown in the circuit diagram on the right.p y g g

EE105 Fall 2007 Lecture 13, Slide 14 Prof. Liu, UC Berkeley

Page 15: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Transit Frequency, fT• The “transit” or “cut‐off” frequency, fT, is a measure of the intrinsic speed of a transistor and is defined asof the intrinsic speed of a transistor, and is defined as the frequency where the current gain falls to 1.

C t l t t fConceptual set-up to measure fT

inmout VgI =inT

minmin

out

CjgZg

II

=⎟⎟⎠

⎞⎜⎜⎝

⎛==

ω11

in

inin Z

VI =

in

mT

inTin

Cg

j

=⇒

⎠⎝

ω

πCgf m

T =2

EE105 Fall 2007 Lecture 13, Slide 15 Prof. Liu, UC Berkeley

πC

Page 16: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Dealing with a Floating Capacitance• Recall that a pole is computed by finding the resistance and capacitance between a node and GROUNDand capacitance between a node and GROUND. 

• It is not straightforward to compute the pole due to Cµ1in the circuit below, because neither of its terminals isin the circuit below, because neither of its terminals is grounded.

EE105 Fall 2007 Lecture 13, Slide 16 Prof. Liu, UC Berkeley

Page 17: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Miller’s Theorem • If Av is the voltage gain from node 1 to 2, then a floating impedance ZF can be converted to twofloating impedance ZF can be converted to two grounded impedances Z1 and Z2:

ZVZZVVV⇒

− 11121

vFF

F AZ

VVZZ

ZZ −=

−=⇒=

1

21

11

1

121

FF ZVZZVVV 122

221 =−=⇒−=−

EE105 Fall 2007 Lecture 13, Slide 17 Prof. Liu, UC Berkeleyv

FFF A

ZVV

ZZZZ 11

21

22 −−

Page 18: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Miller Multiplication• Applying Miller’s theorem, we can convert a floating capacitance between the input and output nodes of p p pan amplifier into two grounded capacitances.  

• The capacitance at the input node is larger than the l floriginal floating capacitance. 

vAA −≡0 FF CjZZ⎞⎛

===21

1

1

FvCAjAA ⎟⎠⎞⎜

⎝⎛ ++−

00

2111111 ω

FF CjZZ 11ω

EE105 Fall 2007 Lecture 13, Slide 18 Prof. Liu, UC Berkeley

( ) F

F

v

F

CAjACj

AZZ

001 1

111 +

=+

=−

ω

Page 19: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Application of Miller’s Theorem

( ) FCmSinp CRgR +=

11

outp

CR⎞

⎜⎜⎛+

=11

1,ω

EE105 Fall 2007 Lecture 13, Slide 19 Prof. Liu, UC Berkeley

FCm

C CRg

R⎠

⎜⎜⎝+1

Page 20: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Small‐Signal Model for CE Stage

EE105 Fall 2007 Lecture 13, Slide 20 Prof. Liu, UC Berkeley

Page 21: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

… Applying Miller’s Theorem 

( )( )ωCRgCRinp ++

=11

, ( )( )µCRgCR CminThev ++ 1

⎞⎛ ⎞⎛=ω outp

1,

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛++ µC

RgCR

CmoutC

p11

,

EE105 Fall 2007 Lecture 13, Slide 21 Prof. Liu, UC Berkeley

Note that ωp,out > ωp,in

Page 22: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Direct Analysis of CE Stage

• Direct analysis yields slightly different pole locations and an extra zero:and an extra zero:

mg=ω

XYz C=

ω

( ) ( )( ) ( )outXYCinThevThevXYCm

outXYCinThevThevXYCmp

CCRCRRCRgCCRCRRCRg

++++++++

=

111ω

( ) ( )( )outinXYoutXYinCThev

outXYCinThevThevXYCmp CCCCCCRR

CCCCg++

=2ω

EE105 Fall 2007 Lecture 13, Slide 22 Prof. Liu, UC Berkeley

Page 23: Lecture 13 - University of California, Berkeleyee105/fa07/lectures/Lecture 13.pdf · Lecture 13 ANNOUNCEMENTS • Midterm #1 (Thursday 10/11, 3:30PM‐5:00PM) location: • 106 Stanley

Input Impedance of CE Stage

rZ ||1( )[ ] π

µπωr

CRgCjZ

Cmin ||

1++≈

EE105 Fall 2007 Lecture 13, Slide 23 Prof. Liu, UC Berkeley