10
Metabolism Metabolism refers to all the chemical reactions taking place in a cell. There are thousands of these in a typical cell, and to make them easier to understand, biochemists arrange them into metabolic pathways . The intermediates in these metabolic pathways are called metabolites . Photosynthesis and respiration are the reverse of each other, and you couldn’t have one without the other. The net result of all the photosynthesis and respiration by living organisms is the conversion of light energy to heat energy. What is ATP? All living cells require energy, and this energy is provided by respiration. glucose + oxygen carbon dioxide + water (+ energy) What form is this energy in? It’s in the form of chemical energy stored in a compound called ATP (adenosine triphosphate ). So all respiration really does is convert chemical energy stored in glucose into chemical energy stored in ATP. ATP is a nucleotide, one of the four found in DNA (see module 2), but it also has this other function as an energy Reactions that release energy (usually breakdown reactions) are called catabolic reactions (e.g. respiration) Reactions that use up energy (usually synthetic reactions) are called anabolic reactions (e.g. photosynthesis).

Lecture II - Atp Respiration and Photosynthesis Version 2

  • Upload
    niceann

  • View
    219

  • Download
    0

Embed Size (px)

DESCRIPTION

Lecture II - Atp Respiration and Photosynthesis Version 2

Citation preview

Metabolism  Metabolism refers  to  all  the  chemical  reactions  taking  place  in  a  cell.  There  are  thousands  of  these  in  atypical  cell,  and  to make  them easier  to understand,  biochemists arrange  them  into metabolic  pathways.The intermediates in these metabolic pathways are called metabolites.

 

Photosynthesis and respiration are the reverse of each other, and you couldn’t have one without the other.The net result of all the photosynthesis and respiration by living organisms is the conversion of light energyto heat energy.

What is ATP?   All living cells require energy, and this energy is provided by respiration.

glucose  +  oxygen    carbon dioxide  +  water  (+ energy)

What  form  is  this  energy  in?  It’s  in  the  form  of  chemical  energy  stored  in  a  compoundcalled ATP (adenosine  triphosphate).  So  all  respiration  really  does  is  convert  chemicalenergy stored in glucose into chemical energy stored in ATP. ATP is a nucleotide, one ofthe four found in DNA (see module 2), but it also has this other function as an energy 

Reactions  that  release energy  (usually breakdown  reactions) are called  catabolicreactions (e.g. respiration)

Reactions  that  use  up  energy  (usually  synthetic  reactions)  are  called  anabolicreactions (e.g. photosynthesis).

storage molecule. ATP is built up from ADP and phosphate (PO43­) , abbreviated to Pi):

All  the  processes  in  a  cell  that  require  energy  (such  as  muscle  contraction,  active  transport  andbiosynthesis)  use  ATP  to  provide  that  energy.  So  these  processes  all  involve  ATPase  enzymes,  whichcatalyse the breakdown of ATP to ADP + Pi, and make use of the energy released. So the ATP moleculesin a cell are constantly being cycled between ATP and ADP + Pi.

 

The first part of respiration is simply the breakdown of glucose to a compound called pyruvate. This doesn’t require oxygen, so is described asanaerobic respiration (without air). It is also calledglycolysis and it takes place in the cytoplasm of cells. It only produces 2 molecules of ATP per molecule of glucose.

 

Normally pyruvate goes straight on to the aerobic part, but if there is no oxygen it is converted tolactate (or lactic acid) instead. Lactate stores a lot of energy, but it isn’t wasted: when oxygen is available it is converted back to pyruvate, which is then used in the aerobic part of respiration.

The second part of respiration is the complete oxidation of pyruvate to carbon dioxide and water. Oxygen is needed for this, so it is described asaerobic respiration (with air). It takes place in the mitochondria of cells and produces far more ATP: 34 molecules of ATP per molecule of glucose.

 

Fats (mainly triglycerides) can also be used in aerobic respiration (but not anaerobic) to produce ATP.

 

Stage molecules produced per glucoseFinal ATP yield

(old method)

Final ATP yield

(new method)

Glycolysis

2 ATP used ­2 ­2

4 ATP produced (2 per triose phosphate) 4 4

2 NADH produced (1 per triose phosphate) 6 5

Link Reaction 2 NADH produced (1 per pyruvate) 6 5

Krebs Cycle

2 ATP produced (1 per acetyl coA) 2 2

6 NADH produced (3 per acetyl coA) 18 15

2 FADH produced (1 per acetyl coA) 4 3

Total 38 32

HIGHLY IMPORTANT EXPERIMENT – A MUST KNOW THAT MAY SHOW UP IN ALMOST EVERY EXAM!