Lecture on Perturbation Theory

Embed Size (px)

Citation preview

  • 7/28/2019 Lecture on Perturbation Theory

    1/73

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    Perturbation theoryQuantum mechanics 2 - Lecture 2

    Igor Lukacevic

    UJJS, Dept. of Physics, Osijek

    17. listopada 2012.

    Igor Lukacevic Perturbation theory

    http://find/http://goback/
  • 7/28/2019 Lecture on Perturbation Theory

    2/73

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    1 Time-independent nondegenerate perturbation theoryGeneral formulationFirst-order theorySecond-order theory

    2 Time-independent degenerate perturbation theoryGeneral formulationExample: Two-dimensional harmonic oscilator

    3 Time-dependent perturbation theory

    4 Literature

    Igor Lukacevic Perturbation theory

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    3/73

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Contents

    1 Time-independent nondegenerate perturbation theoryGeneral formulationFirst-order theorySecond-order theory

    2 Time-independent degenerate perturbation theoryGeneral formulationExample: Two-dimensional harmonic oscilator

    3 Time-dependent perturbation theory

    4 Literature

    Igor Lukacevic Perturbation theory

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    4/73

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Do you remember this?

    Igor Lukacevic Perturbation theory

    C

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    5/73

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Do you remember this?

    H0

    0n = E

    0n

    0n

    0n|0m = nm complete set

    Igor Lukacevic Perturbation theory

    Contents

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    6/73

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Now, let us kick the potential bottom a little...

    Igor Lukacevic Perturbation theory

    Contents

    http://find/http://goback/
  • 7/28/2019 Lecture on Perturbation Theory

    7/73

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Now, let us kick the potential bottom a little...

    What wed like to solve now is...

    Hn = Enn

    A question

    Does anyone have an idea how?

    Igor Lukacevic Perturbation theory

    Contents

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    8/73

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    Assume

    H = H0

    + H

    Igor Lukacevic Perturbation theory

    Contents

    http://goforward/http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    9/73

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationFirst-order theorySecond-order theory

    AssumeH = H0 + H

    unperturbed Hamiltonian

    perturbation Hamiltonian

    small parameter

    Igor Lukacevic Perturbation theory

    Contents

    http://find/http://goback/
  • 7/28/2019 Lecture on Perturbation Theory

    10/73

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationFirst-order theorySecond-order theory

    AssumeH = H0 + H

    unperturbed Hamiltonian

    perturbation Hamiltonian

    small parameter

    Igor Lukacevic Perturbation theory

    Contents

    http://find/http://goback/
  • 7/28/2019 Lecture on Perturbation Theory

    11/73

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationFirst-order theorySecond-order theory

    AssumeH = H0 + H

    unperturbed Hamiltonian

    perturbation Hamiltonian

    small parameter

    Igor Lukacevic Perturbation theory

    Contents

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    12/73

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationFirst-order theorySecond-order theory

    Name Description Hamiltonian

    L-S coupling Coupling between orbital and H = H0 + f(r)L S

    spin angular momentum in a H = f(r)L Sone-electron atom H0 = p2/2m Ze2/r

    Stark effect One-electron atom in a constant H = H0 + eE0z

    uniform electric field E = ezE0 H = eE0z

    H0 = p2/2m

    Ze2/rZeeman effect One-electron atom in a constant H = H0 + (e/2mc)J B

    uniform magnetic field B H = (e/2mc)J BH0 = p2/2m Ze2/r

    Anharmonic Spring with nonlinear restoring H = H0 + Kx4

    oscilator force H = Kx4

    H0 = p2

    /2m + 1/2Kx2

    Nearly free Electron in a periodic lattice H = H0 + V(x)electron V(x) =

    n Vnexp[i(2nx/a)]

    model H0 = p2/2m

    Igor Lukacevic Perturbation theory

    ContentsTi i d d d b i h G l f l i

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    13/73

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationFirst-order theorySecond-order theory

    Assume

    H is small compared to H0

    eigenstates and eigenvalues of H do not differ much from those of H0

    eigenstates and eigenvalues of H0 are known

    Igor Lukacevic Perturbation theory

    ContentsTime inde endent nondegenerate ert rbation theor General form lation

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    14/73

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationFirst-order theorySecond-order theory

    Assume

    H is small compared to H0

    eigenstates and eigenvalues of H do not differ much from those of H0

    eigenstates and eigenvalues of H0 are known

    expand

    n = 0n +

    1n +

    2

    2n + . . . ,

    En = E0n + E

    1n +

    2E

    2n + . . .

    Igor Lukacevic Perturbation theory

    ContentsTime independent nondegenerate perturbation theory General formulation

    http://find/http://goback/
  • 7/28/2019 Lecture on Perturbation Theory

    15/73

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationFirst-order theorySecond-order theory

    Assume

    H is small compared to H0 eigenstates and eigenvalues of H do not differ much from those of H0

    eigenstates and eigenvalues of H0 are known

    expand

    n = 0n +

    1n +

    22n + . . . ,

    En = E0n + E

    1n +

    2E

    2n + . . .

    and sort

    (0) . . . H00n = E0n 0n ,(1) . . . H01n + H

    0n = E0n

    1n + E

    1n

    0n ,

    (2) . . . H02n + H1n = E

    0n

    2n + E

    1n

    1n + E

    2n

    0n ,

    ...

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory General formulation

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    16/73

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationFirst-order theorySecond-order theory

    Making 0n|

    (1) and using the normalization property of 0n, we get

    First-order correction to the energy

    E1n = 0n|H|0n

    For calculationdetails, see Refs[2], [3] and [4].

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory General formulation

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    17/73

    Time independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationFirst-order theorySecond-order theory

    First-order correction to the energy

    E1n = 0n|H|0n

    Example 1

    Find the first-order corrections to the energy ofa particle in a infinite square well if the floorof the well is raised by an constant value V0.

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory General formulation

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    18/73

    p g p yTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    First-order theorySecond-order theory

    First-order correction to the energy

    E1n = 0n|H|0n

    Example 1

    Find the first-order corrections to the energy ofa particle in a infinite square well if the floorof the well is raised by an constant value V0.

    Unperturbed w.f.: 0n(x) =

    2a

    sin

    na

    x

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory General formulation

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    19/73

    gTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    First-order theorySecond-order theory

    First-order correction to the energy

    E1n = 0n|H|0n

    Example 1

    Find the first-order corrections to the energy ofa particle in a infinite square well if the floorof the well is raised by an constant value V0.

    Unperturbed w.f.: 0

    n(x) =2

    a sinn

    a x

    Perturbation Hamiltonian: H = V0

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory General formulation

    http://find/http://goback/
  • 7/28/2019 Lecture on Perturbation Theory

    20/73

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    First-order theorySecond-order theory

    First-order correction to the energy

    E1n = 0n|H|0n

    Example 1

    Find the first-order corrections to the energy ofa particle in a infinite square well if the floorof the well is raised by an constant value V0.

    Unperturbed w.f.: 0n(x) =

    2

    asin

    n

    ax

    Perturbation Hamiltonian: H = V0First-order correction:E

    1n = 0n|V0|0n = V00n|0n = V0

    corrected energy levels: En E0n + V0

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory

    Ti i d d d b i hGeneral formulationFi d h

    http://find/http://goback/
  • 7/28/2019 Lecture on Perturbation Theory

    21/73

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    First-order theorySecond-order theory

    Example 1

    Find the first-order corrections to the energy ofa particle in a infinite square well if the floorof the well is raised by an constant value V0.

    Unperturbed w.f.: 0n(x) =

    2a sin

    na x

    Perturbation Hamiltonian: H = V0

    First-order correction:E

    1n = 0n|V0|0n = V00n|0n = V0

    corrected energy levels: En E0n + V0

    Compare this result with an exact solution for a constant perturbation all thehigher corrections vanish

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory

    Ti i d d t d t t b ti thGeneral formulationFi t d th

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    22/73

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    First-order theorySecond-order theory

    Example 1

    Find the first-order corrections to the energy ofa particle in a infinite square well if the floorof the well is raised by an constant value V0.

    Unperturbed w.f.: 0n(x) =

    2a sin

    na x

    Perturbation Hamiltonian: H = V0

    First-order correction:E

    1n = 0n|V0|0n = V00n|0n = V0

    corrected energy levels: En E0n + V0

    Compare this result with an exact solution for a constant perturbation all thehigher corrections vanish

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory

    Time independent degenerate perturbation theoryGeneral formulationFirst order theory

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    23/73

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    First-order theorySecond-order theory

    Example 1 (cont.)

    Now, cut the perturbation to only a half-wayacross the well

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryGeneral formulationFirst-order theory

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    24/73

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    First-order theorySecond-order theory

    Example 1 (cont.)

    Now, cut the perturbation to only a half-wayacross the well

    E1n = 2V0a

    a/20

    sin2

    n

    ax

    dx =V0

    2

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryGeneral formulationFirst-order theory

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    25/73

    Time independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    First order theorySecond-order theory

    Example 1 (cont.)

    Now, cut the perturbation to only a half-way

    across the well

    E1n = 2V0a

    a/20

    sin2

    n

    ax

    dx =V0

    2

    HW. Compare this result with an exact one.

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryGeneral formulationFirst-order theory

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    26/73

    p g p yTime-dependent perturbation theory

    Literature

    ySecond-order theory

    Now we seek the first-order correction to the wave function.(1) and 1n =

    m=n

    cmn0m give

    First-order correction to the wavefunction

    1n =

    m=n

    0m|H|0n(E0n E0m)

    0m

    For calculationdetails, see Refs[2], [3] and [4].

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryGeneral formulationFirst-order theory

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    27/73

    p g p yTime-dependent perturbation theory

    Literature

    ySecond-order theory

    First-order correction to the wavefunction

    1n = m=n

    0m|H|0n(E0n

    E0m)

    0m

    For calculationdetails, see Refs[2], [3] and [4].

    In conclusion

    First-order perturbation theory gives:

    often accurate energies

    poor wave functions

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryGeneral formulationFirst-order theory

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    28/73

    Time-dependent perturbation theoryLiterature

    Second-order theory

    Example 2

    Compute the first-order corrections for aharmonic oscilator with applied smallperturbation W = ax3.

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTi d d b i h

    General formulationFirst-order theoryS d d h

    http://find/http://goback/
  • 7/28/2019 Lecture on Perturbation Theory

    29/73

    Time-dependent perturbation theoryLiterature

    Second-order theory

    Example 2

    Compute the first-order corrections for a

    harmonic oscilator with applied smallperturbation W = ax3.

    Hamiltonian: H = 2

    2m

    d2

    dx+

    1

    2kx

    2 + ax3

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTi d d t t b ti th

    General formulationFirst-order theoryS d d th

    http://find/http://goback/
  • 7/28/2019 Lecture on Perturbation Theory

    30/73

    Time-dependent perturbation theoryLiterature

    Second-order theory

    Example 2

    Compute the first-order corrections for aharmonic oscilator with applied small

    perturbation W = ax3

    .

    Hamiltonian: H = 2

    2m

    d2

    dx+

    1

    2kx

    2 + ax3

    H0 eigenenergies: E0n =

    n +

    1

    2

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time dependent perturbation theory

    General formulationFirst-order theorySecond order theory

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    31/73

    Time-dependent perturbation theoryLiterature

    Second-order theory

    Example 2

    Compute the first-order corrections for aharmonic oscilator with applied smallperturbation W = ax3.

    Hamiltonian: H =

    2

    2m

    d2

    dx +1

    2 kx2

    + ax3

    H0 eigenenergies: E0n =

    n +

    1

    2

    H0 eigenfunctions:

    0n(x) =

    12nn!

    e

    x2

    2 Hn(x)

    Dont forget...

    n Hn()0 11 22 42 23 83 124 164 482 + 125 325 1603 + 120

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theory

    General formulationFirst-order theorySecond-order theory

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    32/73

    Time-dependent perturbation theoryLiterature

    Second-order theory

    Example 2Compute the first-order corrections for aharmonic oscilator with applied smallperturbation W = ax3.

    Hamiltonian: H =

    2

    2m

    d2

    dx

    +1

    2

    kx2 + ax3

    H0 eigenenergies: E0n =

    n +

    1

    2

    H0 eigenfunctions:

    0n(x) = 1

    2n

    n!

    ex2

    2 Hn(x

    )

    E1n = 0n|ax3|0n = 0

    Dont forget...

    n Hn()0 11 22 42 23 83 124 164 482 + 125 325 1603 + 120

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theory

    General formulationFirst-order theorySecond-order theory

    http://find/http://goback/
  • 7/28/2019 Lecture on Perturbation Theory

    33/73

    Time dependent perturbation theoryLiterature

    Second order theory

    Example 2

    Compute the first-order corrections for aharmonic oscilator with applied smallperturbation W = ax3.

    Hamiltonian: H = 2

    2m

    d2

    dx+

    1

    2kx

    2 + ax3

    H0 eigenenergies: E0n =

    n +

    1

    2

    H0 eigenfunctions:

    0n(x) =

    1

    2nn!

    ex2

    2 Hn(x

    )

    E1n = 0n|ax3|0n = 0For 1n we need expressions 0m|H|0n

    Dont forget...

    n Hn()0 11 22 42 23 83 124 164 482 + 125 325 1603 + 120

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theory

    General formulationFirst-order theorySecond-order theory

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    34/73

    p p yLiterature

    y

    Example 2

    Compute the first-order corrections for aharmonic oscilator with applied smallperturbation W = ax3.

    Hamiltonian: H = 2

    2m

    d2

    dx+

    1

    2kx

    2 + ax3

    H0 eigenenergies: E0n =

    n + 12

    H0 eigenfunctions:

    0n(x) =

    1

    2nn!

    ex2

    2 Hn(x

    )

    E1n = 0n|ax3|0n = 0For 1n we need expressions 0m|H|0n for m = n 2k, k Z these are zero

    Dont forget...

    n Hn()0 11 22 42 23 83 124 164 482 + 125 325 1603 + 120

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theory

    General formulationFirst-order theorySecond-order theory

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    35/73

    p p yLiterature

    y

    Example 2

    Compute the first-order corrections for a

    harmonic oscilator with applied smallperturbation W = ax3.

    Hamiltonian: H = 2

    2m

    d2

    dx+

    1

    2kx

    2 + ax3

    H0 eigenenergies: E0n = n + 12

    H0 eigenfunctions:

    0n(x) =

    1

    2nn!

    ex2

    2 Hn(x

    )

    E1n =

    0n

    |ax3

    |0n

    = 0

    For 1n we need expressions 0m|H|0n for m = n 2k, k Z these are zero so, well, for example, take only these:m = n + 3, n + 1, n

    1, n

    3

    Dont forget...

    n Hn()0 11 22 42 23 83 124 164 482 + 125 325 1603 + 120

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theory

    General formulationFirst-order theorySecond-order theory

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    36/73

    Literature

    Example 2

    Compute the first-order corrections for aharmonic oscilator with applied smallperturbation W = ax3.

    n|ax3

    |n + 3 = a (n + 1)(n + 2)(n + 3)(2)3n|ax3|n + 1 = 3a

    (n + 1)3

    (2)3

    n|ax3

    |n 1 = 3a n3

    (2)3

    n|ax3|n 3 = a

    n(n 1)(n 2)(2)3

    Dont forget...

    n Hn()0 11 22 42 23 83 124 164 482 + 125 325 1603 + 120

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLi

    General formulationFirst-order theorySecond-order theory

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    37/73

    Literature

    Example 2

    Compute the first-order corrections for aharmonic oscilator with applied smallperturbation W = ax3.

    n|ax3

    |n + 3 = a (n + 1)(n + 2)(n + 3)(2)3n|ax3|n + 1 = 3a

    (n + 1)3

    (2)3

    n|ax3

    |n 1 = 3a n3

    (2)3

    n|ax3|n 3 = a

    n(n 1)(n 2)(2)3

    Energy differences

    m En Emn+3 3n+1 n-1 n-3 3

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLit t

    General formulationFirst-order theorySecond-order theory

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    38/73

    Literature

    Example 2

    Compute the first-order corrections for a harmonic oscilator

    with applied small perturbation W = ax

    3

    .

    n|ax3|n + 3 = a

    (n + 1)(n + 2)(n + 3)

    (2)3

    n|ax3|n + 1 = 3a

    (n + 1)3

    (2)3

    n|ax3|n 1 = 3a

    n3

    (2)3

    n|ax3|n 3 = a

    n(n 1)(n 2)

    (2)3

    Energy differences

    m En Emn+3 3n+1

    n-1 n-3 3

    1n = a2

    1

    3

    n(n 1)(n 2)

    2

    0n3 + 3n

    n

    2

    0n1

    3(n + 1)

    n + 1

    2

    0n+1 13

    (n + 1)(n + 2)(n + 3)

    2

    0n+3

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationFirst-order theorySecond-order theory

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    39/73

    Literature

    Making 0n|

    (2), using the normalization property of 0n and orthogonality

    between 0n and 1n, we get

    Second-order correction to theenergy

    E2n =

    m=n

    |0m|H|0n|2E0n E0m

    For calculationdetails, see Refs[2], [3] and [4].

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationFirst-order theorySecond-order theory

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    40/73

    Literature

    Now we seek the second-order correction to the wave function.(2) and 1n =

    m=n

    cmn0m give

    Second-order correction to the wave function

    2n =

    m=n

    0n|H|0n0m|H|0n

    (E0n E0m)2

    +k=n

    0m|H|0k0k|H|0n(E0n

    E0m)(E0n

    E0k)

    0m

    For calculationdetails, see Refs[2], [3] and [4].

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    41/73

    Literature

    Contents

    1 Time-independent nondegenerate perturbation theoryGeneral formulationFirst-order theorySecond-order theory

    2 Time-independent degenerate perturbation theoryGeneral formulationExample: Two-dimensional harmonic oscilator

    3 Time-dependent perturbation theory

    4 Literature

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    42/73

    Symmetry Degeneracy Perturbation

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    43/73

    Symmetry Degeneracy Perturbation

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    44/73

    A question

    Whats wrong with

    E2n =m=n

    |0m|H|

    0n|

    2

    E0n E0m , m, n q

    if unperturbed eigenstates are degenerate E01 = E02 = = E0q?

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    45/73

    H = H0 + HH0

    0n = E

    0n

    0n

    E01 q-fold degenerate

    m1 E

    Construct

    n =

    qi=1

    anm

    0

    m

    which diagonalizes submatrixof H:n|H|k = Enk

    m2

    %Nondegenerateperturbation theorywith basis B

    q(H E)a = 0

    m3E detH EnI

    = 0

    m8 m6 m5 m4T

    c

    y

    c

    {n}Gives new basis B

    m7' {ani} E1, E2, . . . , Eq

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/http://goback/
  • 7/28/2019 Lecture on Perturbation Theory

    46/73

    Matrix H in basis B

    H =

    H11 H1,q+1 . . .

    . . . 0

    Hq/2,q/2

    0. . .

    HqqHq+1,1

    ...

    Igor Lukacevic Perturbation theory

    ContentsTime-independent nondegenerate perturbation theory

    Time-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    47/73

    H = H0 + HH0

    0n = E

    0n

    0n

    E01 q-fold degenerate

    m1 E

    Construct

    n =

    qi=1 a

    nm

    0

    m

    which diagonalizes submatrixof H:n|H|k = Enk

    m2

    %Nondegenerateperturbation theorywith basis B

    q(H E)a = 0

    m3E detH EnI

    = 0

    m8 m6 m5 m4T

    c

    y

    c

    {n}Gives new basis B

    m7' {ani} E1, E2, . . . , Eq

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    48/73

    For n = 1,

    qm=1

    (Hpm Enpm)anm = 0 appear as

    H11

    E1 H

    12 H

    13 . . . H

    1q

    H21 H22 E1 H23 . . . H2q...

    ......

    ......

    Hq1

    a11

    a12...

    a1q

    = 0

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    49/73

    H = H0 + HH0

    0n = E

    0n

    0n

    E01 q-fold degenerate

    m1 E

    Construct

    n =

    q

    i=1 a

    nm

    0

    m

    which diagonalizes submatrixof H:n|H|k = Enk

    m2

    %Nondegenerateperturbation theorywith basis B

    q(H E)a = 0

    m3E detH EnI

    = 0

    m8 m6 m5 m4T

    c

    y

    c

    {n}Gives new basis B

    m7' {ani} E1, E2, . . . , Eq

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    50/73

    The q roots of secular equation detH EnI = 0 are the diagonal elements of

    the submatrix of H.

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    51/73

    H = H0 + HH00n = E0n

    0n

    E01 q-fold degenerate

    m1 E

    Construct

    n =

    q

    i=1

    anm

    0

    m

    which diagonalizes submatrixof H:n|H|k = Enk

    m2

    %Nondegenerateperturbation theorywith basis B

    q(H E)a = 0

    m3E detH EnI

    = 0

    m8 m6 m5 m4T

    c

    y

    c

    {n}Gives new basis B

    m7' {ani} E1, E2, . . . , Eq

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    52/73

    H = H0 + HH00n = E0n

    0n

    E01 q-fold degenerate

    m1 E

    Construct

    n=

    q

    i=1

    anm0

    m

    which diagonalizes submatrixof H:n|H|k = Enk

    m2

    %Nondegenerateperturbation theorywith basis B

    q(H E)a = 0

    m3E detH EnI

    = 0

    m8 m6 m5 m4T

    c

    yc

    {n}Gives new basis B

    m7' {ani} E1, E2, . . . , Eq

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    53/73

    H = H0 + HH00n = E0n

    0n

    E01 q-fold degenerate

    m1 E

    Construct

    n =

    q

    i=1

    anm0

    m

    which diagonalizes submatrixof H:n|H|k = Enk

    m2

    %Nondegenerateperturbation theorywith basis B

    q(H E)a = 0

    m3E detH EnI

    = 0

    m8 m6 m5 m4T

    c

    yc

    {n}Gives new basis B

    m7' {ani} E1, E2, . . . , Eq

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    54/73

    H = H0 + HH00n = E0n

    0n

    E01 q-fold degenerate

    m1 E

    Construct

    n =

    q

    i=1

    anm0

    m

    which diagonalizes submatrixof H:n|H|k = Enk

    m2

    %Nondegenerateperturbation theorywith basis B

    q(H E)a = 0

    m3E detH EnI

    = 0

    m8 m6 m5 m4T

    c

    yc

    {n}Gives new basis B

    m7' {ani} E1, E2, . . . , Eq

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    55/73

    H = H0 + HH00n = E0n

    0n

    E01 q-fold degenerate

    m1 E

    Construct

    n =

    q

    i=1

    anm0

    m

    which diagonalizes submatrixof H:n|H|k = Enk

    m2

    %Nondegenerateperturbation theorywith basis B

    q(H E)a = 0

    m3E detH EnI

    = 0

    m8 m6 m5 m4T

    c

    yc

    {n}Gives new basis B

    m7' {ani} E1, E2, . . . , Eq

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    56/73

    n = n +1n +

    22n + . . . n qn =

    0n +

    1n +

    22n + . . . n > qEn = E

    0n +E

    1n +

    2E2n + . . . n

    q (E01 =

    = E0q)

    En = E0n + E

    1n +

    2E2n + . . . n > qEn = n|H|n n qE1n = 0n|H|0n n > q

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    57/73

    n = n +1n +22n + . . . n qn =

    0n +

    1n +

    22n + . . . n > qEn = E

    0n +E

    1n +

    2E2n + . . . n q (E01 = = E0q)En = E

    0n + E

    1n +

    2E2n + . . . n > qEn =

    n

    |H

    |n

    n

    q

    E1n = 0n|H|0n n > q

    So, what do we get from degenerate perturbation theory:

    1st-order energy corrections

    corrected w.f. (with nondegenerate states they serve as a basis forhigher-order calculations)

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    58/73

    Two-dimensional harmonic oscilator Hamiltonian:

    H0 =

    p2x + p2y

    2m +

    K

    2 (x

    2

    + y

    2

    )

    np = n(x)p(y) |np

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    59/73

    Two-dimensional harmonic

    oscilator Hamiltonian:

    H0 =p2x + p

    2y

    2m+

    K

    2(x2 + y2)

    np = n(x)p(y) |np

    Enp = (n + p+ 1) is(n + p+ 1)-fold degenerate.Whats the degeneracy of

    |01

    state?

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    60/73

    Two-dimensional harmonic

    oscilator Hamiltonian:H0 =

    p2x + p2y

    2m+

    K

    2(x2 + y2)

    np = n(x)p(y) |np

    Enp = (n + p+ 1) is(n + p+ 1)-fold degenerate.Whats the degeneracy of |01state?E10 = E01 = 20.

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    61/73

    Now, turn on the perturbation: H = Kxy

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/http://goback/
  • 7/28/2019 Lecture on Perturbation Theory

    62/73

    Now, turn on the perturbation: H = Kxy

    find w.f. which diagonalize H

    1 =a

    10 +b

    012 = a

    10 + b

    01

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    63/73

    Now, turn on the perturbation: H = Kxy

    find w.f. which diagonalize H

    1 = a10 + b01

    2 = a10 + b

    01

    calculate the elements of submatrix of H in the basis {10, 01}

    H = K

    10|xy|10 10|xy|0101|xy|10 01|xy|01

    = E

    0 11 0

    E = K22 , 2 = m0

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationExample: Two-dimensional harmonic oscilator

    Now, turn on the perturbation: H = K xy

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    64/73

    Now, turn on the perturbation: H K xy

    find w.f. which diagonalize H

    1 = a10 + b012 = a

    10 + b

    01

    calculate the elements of submatrix of H in the basis {10, 01}

    H = K

    10|xy|10 10|xy|0101|xy|10 01|xy|01

    = E

    0 11 0

    E =K

    22, 2 =

    m0

    solve the secular equation

    E EE E = 0 E = E E10

    E+ = E10 + E

    E = E10 E

    ddd

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theory

    Time-dependent perturbation theoryLiterature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    65/73

    obtain the new w.f. from

    E EE

    E

    a

    b = 0= E

    = +E 1 = 12 (10 + 01)E = E 2 = 12 (10 01)

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    General formulationExample: Two-dimensional harmonic oscilator

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    66/73

    obtain the new w.f. from E EE E

    a

    b

    = 0

    = E = +E 1 = 12 (10 + 01)

    E = E 2 = 12 (10 01)

    HW

    How does the threefold-degenerate energy

    E = 30

    of the two-dimensional harmonic oscilator separate due to the perturbation

    H = Kxy?

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    Contents

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    67/73

    1 Time-independent nondegenerate perturbation theoryGeneral formulationFirst-order theorySecond-order theory

    2 Time-independent degenerate perturbation theoryGeneral formulationExample: Two-dimensional harmonic oscilator

    3 Time-dependent perturbation theory

    4 Literature

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    68/73

    Problem

    If the system is initially in H0, what is the probability that, after time t,transition to another state (of H0) occurs?

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    69/73

    ProblemIf the system is initially in H0, what is the probability that, after time t,transition to another state (of H0) occurs?

    Let us assume:

    H(r, t) = H0(r) + H(r, t)

    n(r, t) = n(r)eit

    H0n = E0n n

    (r, t) =

    ncn(t)n(r, t) , t > 0

    it

    = (H0 + H)

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    70/73

    Problem

    If the system is initially in H0, what is the probability that, after time t,transition to another state (of H0) occurs?

    Let us assume:

    H(r, t) = H0(r) + H(r, t)n(r, t) = n(r)e

    it

    H0n = E0n n

    (r, t) =n

    cn(t)n(r, t) , t > 0

    i

    t = (H0 + H)

    Can you remember the meaning of these coefficients?

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    71/73

    Inserting (r, t) and cn(t) = c0n + c

    1n(t) +

    2c2n (t) + . . . into time-dependentS.E. and factorizing the perturbation Hamiltonian as H(r, t) = H(r)f(t) gives

    Probability that the system has undergone a transition from state l to statek at time t

    Plk = Plk = |cn|2 =Hkl

    2

    t

    eiklt

    f(t)dt2

    For calculation details, see Refs [2] and [3].

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    Contents

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    72/73

    1 Time-independent nondegenerate perturbation theoryGeneral formulationFirst-order theorySecond-order theory

    2 Time-independent degenerate perturbation theoryGeneral formulationExample: Two-dimensional harmonic oscilator

    3 Time-dependent perturbation theory

    4 Literature

    Igor Lukacevic Perturbation theory

    Contents

    Time-independent nondegenerate perturbation theoryTime-independent degenerate perturbation theoryTime-dependent perturbation theory

    Literature

    Literature

    http://find/
  • 7/28/2019 Lecture on Perturbation Theory

    73/73

    1 I. Supek, Teorijska fizika i struktura materije, II. dio, Skolska knjiga,Zagreb, 1989.

    2 D. J. Griffiths, Introduction to Quantum Mechanics, 2nd ed., PearsonEducation, Inc., Upper Saddle River, NJ, 2005.

    3 R. L. Liboff, Introductory Quantum Mechanics, Addison Wesley, SanFrancisco, 2003.

    4 A. Szabo, N. Ostlund, Modern Quantum Chemistry, Introduction toAdvanced Electronic Structure theory, Dover Publications, New York,1996.

    5

    Y. Peleg, R. Pnini, E. Zaarur, Shaums Outline of Theory and Problems ofQuantum Mechanics, McGraw-Hill, 1998.

    Igor Lukacevic Perturbation theory

    http://find/