Lighting Control

  • View
    67

  • Download
    5

Embed Size (px)

DESCRIPTION

Lighting Control

Text of Lighting Control

  • Ind

    ust

    rial E

    lectr

    ical En

    gin

    eerin

    g a

    nd

    A

    uto

    matio

    n

    CODEN:LUTEDX/(TEIE-5267)/1-86(2009)

    Lighting Control Possibilities in Cost and Energy-Efficient Lighting Control Techniques

    Gumundur Benediktsson

    Division of Industrial Electrical Engineering and Automation Faculty of Engineering, Lund University

  • Lighting control possibilities in cost and energy-efficient

    lighting control techniques

    Gudmundur Benediktsson

    Industrial Electrical Engineeringand Automation IEA

    AB Regin

    December 2009

  • Abstract

    In a modern society there is a constant increase in electrical use but at thesame time the environmental awareness among consumers is rising. Thismaster theses aims at investigating the possibilities in cost and energy-efficient lighting control techniques.

    This master thesis is written for the Measurement Technology and Indus-trial Electrical Engineering division, IEA, within the Faculty of Engineeringof Lund University in cooperation with AB Regin in Landskrona.

    Lighting control systems are studied from an energy saving perspective andthe relation to reduction of carbon dioxide emission is addressed. Designingtools, such as LENI and ELI, are introduced and their relation to inter-national standards in electrical and lighting design. To illustrate the costefficiency of lighting control systems, a case study is conducted at Schenkerlogistics in Vxj, revealing the payback time of the lighting control instal-lation.

    A market study is carried out, where available lighting control systems areinvestigated. Different protocols are compared based on parameters such asdata rate, power consumption and cost. The aim of this study is to selectone existing system to be implemented on one of AB Regins platforms. Forthis purpose a selection criteria is composed.

    Digital Addressable Lighting System, DALI, is chosen for implementationalong with the EXOcompact controller from AB Regin. The implementationdeals with building an interface between the EXOline, used by AB Regin,and the DALI line, defined by the DALI protocol. A DALI Master Unit isbuilt around an Atmel ATmega186 microprocessor and some testing of send-ing messages from the EXO system to a DALI enabled lamp is performed.

    Based on the case study conducted and other sources, the cost and energy-efficiency of lighting controle systems are proven. The concept of controllinglights from AB Regins EXOSystem is also proven with implementation andtesting.

  • Preface

    This report is a result of my master thesis project carried out at AB Re-gin, Landskrona with supervision from Industrial Electrical Engineering andAutomation (IEA) at Lund University, Faculty of Engineering. The workwas carried out from May to December 2009, and during this time I havereceived help from many persons. The people I want to thank especially are:

    Jonas Mller, my supervisor at AB Regin, Landskrona. For his endless en-thusiasm for this project, which has been very inspiring and given me theextra power sometimes needed. Without his unselfishness regarding his lim-ited time, this work would never have gone so smoothly. Thanks Jonas.

    Lars Mattsson at AB Regin, for his tremendous help with protocols and mi-crocontroller programming.

    Carl Hansson at AB Regin, for his help with circuit design and componentselection.

    Other staff at AB Regin in Landskrona, for the help they were always readyto provide and a warm welcome to their office.

    Gunnar Lindstedt my supervisor at LTH, for the confidence he showed inme when appointing me for this work and all the help he has provided.

    Finally, I would like to thank my family and friends for their support duringmy university studies.

    Lund December 2009

    Gudmundur Benediktsson

  • Contents

    1 Introduction 11.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    2 Technical background 32.1 Lighting systems . . . . . . . . . . . . . . . . . . . . . . . . . 3

    2.1.1 Light sources . . . . . . . . . . . . . . . . . . . . . . . 32.2 Lighting control systems . . . . . . . . . . . . . . . . . . . . . 7

    2.2.1 Types of systems . . . . . . . . . . . . . . . . . . . . . 8

    3 Empirical studies 113.1 Energy efficiency in modern buildings . . . . . . . . . . . . . 11

    3.1.1 Green buildings . . . . . . . . . . . . . . . . . . . . . . 113.1.2 Environmental economics . . . . . . . . . . . . . . . . 123.1.3 Standards and regulations . . . . . . . . . . . . . . . . 13

    3.2 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.2.1 Schenker logistics terminal in Vxj . . . . . . . . . . 15

    3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    4 Market study 214.1 Communication networks . . . . . . . . . . . . . . . . . . . . 21

    4.1.1 Network topology . . . . . . . . . . . . . . . . . . . . . 214.1.2 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 224.1.3 Buses . . . . . . . . . . . . . . . . . . . . . . . . . . . 224.1.4 Transmission media . . . . . . . . . . . . . . . . . . . 244.1.5 OSI model . . . . . . . . . . . . . . . . . . . . . . . . . 26

    4.2 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274.2.1 KNX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284.2.2 LonMark . . . . . . . . . . . . . . . . . . . . . . . . . 324.2.3 BACnet . . . . . . . . . . . . . . . . . . . . . . . . . . 364.2.4 EnOcean . . . . . . . . . . . . . . . . . . . . . . . . . 39

  • CONTENTS vii

    4.2.5 ZigBee . . . . . . . . . . . . . . . . . . . . . . . . . . . 434.2.6 Modbus . . . . . . . . . . . . . . . . . . . . . . . . . . 464.2.7 DALI . . . . . . . . . . . . . . . . . . . . . . . . . . . 484.2.8 0-10V Analog . . . . . . . . . . . . . . . . . . . . . . . 52

    4.3 Other systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 544.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    4.4.1 Selection criteria . . . . . . . . . . . . . . . . . . . . . 554.4.2 Selection matrix . . . . . . . . . . . . . . . . . . . . . 554.4.3 Chosen solution . . . . . . . . . . . . . . . . . . . . . . 56

    5 Practical implementation 575.1 Proof of concept . . . . . . . . . . . . . . . . . . . . . . . . . 575.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    5.3.1 DALI lamp . . . . . . . . . . . . . . . . . . . . . . . . 585.3.2 EXOcompact . . . . . . . . . . . . . . . . . . . . . . . 585.3.3 DALI master unit . . . . . . . . . . . . . . . . . . . . 59

    5.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635.5 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    6 Conclusions and future work 656.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    Appendix 72

    A Circuit drawings 72

    B DALI master unit program 74

  • List of Figures

    2.1 Progressions of some common light sources efficiency. . . . . 72.2 Example of robust lighting control system. . . . . . . . . . . . 82.3 Common lighting control strategies for energy saving. . . . . . 8

    3.1 Graphical representation of the ELI index and examples oftwo different installations. . . . . . . . . . . . . . . . . . . . . 14

    3.2 The Schenkers warehouse, different light level for different zones. 163.3 Illustration of the lighting control strategy in the warehouse. . 173.4 Electrical use in MWh for the first two quarters of each year. 183.5 Light sources in normal office space at Schenker. . . . . . . . 19

    4.1 The four most common types of network topology. . . . . . . 224.2 Classes of transmission media. . . . . . . . . . . . . . . . . . . 244.3 Optic fiber cable. . . . . . . . . . . . . . . . . . . . . . . . . . 254.4 The 7-layer OSI model. . . . . . . . . . . . . . . . . . . . . . . 264.5 Standards in building automation. . . . . . . . . . . . . . . . 274.6 The KNX stack. . . . . . . . . . . . . . . . . . . . . . . . . . 294.7 Logical topology of the KNX system. . . . . . . . . . . . . . . 304.8 KNXs individual numbering system. . . . . . . . . . . . . . . 304.9 KNX/TP1 data packet. . . . . . . . . . . . . . . . . . . . . . 314.10 Functional profile of LON object. . . . . . . . . . . . . . . . . 334.11 Block diagram of a normal LON device. . . . . . . . . . . . . 334.12 LON media types. . . . . . . . . . . . . . . . . . . . . . . . . 344.13 A typical EIA-709.1 packet. . . . . . . . . . . . . . . . . . . . 354.14 The four layer BACnet model and equivalent OSI layers. . . . 374.15 BACnet-based building automation system architecture. . . . 384.16 BACnet service requests and replies. . . . . . . . . . . . . . . 394.17 Self-powered wireless sensor technology from EnOcean. . . . . 404.18 EnOcean smart repeating concept. . . . . . . . . . . . . . . . 404.19 Mesh routing concept. . . . . . . . . . . . . . . . . . . . . . . 414.20 An EnOcean data packet. . . . . . . . . . . . . . . . . . . . . 424.21 EnOcean protocol functions. . . . . . . . . . . . . . . . . . . . 424.22 ZigBee topology. . . . . . . . . . . . . . . . . . . . . . . . . . 44

  • LIST OF FIGURES ix

    4.23 ZigBee model, stack architecture. . . . . . . . . . . . . . . . . 454.24 ZigBee PPDU. . . . . . . . . . . . . . . . . . . . . . . . . . . 454.25 Modbus with master and slave units on bus topology. . . . . . 464.26 General Modbus fr