15
04/02/2014 BETTI ANDREA FANG QI HAMMEN OLIVER KLINGE KENNETH KOROBKOVA ANASTASIA SHETTY SIDDESH SOTOMAYOR GARCIA JUAN CARLOS

Loccioni Hardcopy

Embed Size (px)

DESCRIPTION

Hard copy of the small project done for Loccioni on green technology measuring equipments.

Citation preview

Page 1: Loccioni Hardcopy

 

04/02/2014

     

   

   

BETTI ANDREA

FANG QI

HAMMEN OLIVER

KLINGE KENNETH

KOROBKOVA ANASTASIA

SHETTY SIDDESH

SOTOMAYOR GARCIA JUAN CARLOS

 

Page 2: Loccioni Hardcopy

 

Index

Page Number

Topic Serial Number

1  Introduction 1.

1 1 3 5

 Emission  Control        NOx  Emission  Control        SOx  Emissions  Control        Particulate  Matter  Emissions  Control

2. 2.1 2.2 2.3

6

6

7

Energy  Efficiency          Energy  Efficiency  Design  Index  (EEDI)        Ship  Energy  Efficiency  Management  Plan  (SEEMP)

3. 3.1 3.2

9  

an  energy  management  solution  

4.  

 References    

Page 3: Loccioni Hardcopy

1  

1. Introduction

  Globally,  air  pollution  is  regulated  by  International  Marine  Organization  through  its  

International  Convention  for  the  Prevention  of  Pollution  from  Ships  (MARPOL)  and  its  Annex  VI.  The  1997  Air  Pollution  Conference  was  a  historical  response  by  the  IMO  to  address  air  emissions  from  ships  and  their  contribution  to  air  pollution  and  other  environmental  problems.  Especially  the  control  of  emissions  of  nitrogen  oxides  (NOx)  and  sulphur  oxides  (SOx)  was  subject  of  extensive  discussion  at  the  IMO  prior  to  and  during  the  Air  Pollution  Conference.  The  adoption  of  MARPOL  Annex  VI  has  followed  some  years  of  debate  within  organizations.  At  the  same  time  the  Technical  code  on  the  Control  of  Emissions  of  Nitrogen  Oxides  from  Marine  Diesel  Engines  was  adopted.

MARPOL  ANNEX  VI  applies  to  all  ships,  fixed  and  floating  drilling  rigs  and  other  platforms,  but  the  certification  requirements  are  depending  on  size  of  the  vessel  and  when  it  is  constructed.  Annex  VI  also  requires  diesel  engines  (as  described  above)  to  carry  individual  certificates  with  regard  to  NOx  emissions,  named  Engine  International  Air  Pollution  Prevention  (EIAPP)  Certificates.  

2. Emission Control

  2.1  NOx  Emission  Control

Marine  fuel  in  an  I.C  engine  is  burnt  inside  the  combustion  chamber  by  the  correct  mixture  of  fuel  and  air  in  the  presence  of  heat  or  ignition  source.  The  ignition  source  in  the  marine engine  is  the  compression  stroke  of  the  piston,  after  which,  the  combustion  begins.  As  the  air  mixture  is  21  %  Oxygen  and  78%  Nitrogen,  nitrogen  reacts  with  oxygen  under  certain  engine  operating  conditions  to  form  Nitrogen  oxides  or  NOx.  That  is  the  process  of  producing  NOx.  

A  high-­‐level  of  nitrogen  oxide  being  released  into  the  atmosphere  can  result  in  to: ● Ground  Level  Ozone  ● Acid  Deposition  ● Particulate  Matter  ● Nitrification  ● Eutrophication  ● Indirect  Effect  to  Global  Warming  

 According  to  Regulation  13  of  Annex  VI  concerning  NOx-­‐emission  from  diesel  engines,  there  

are  two  sets  of  emission  and  fuel  quality  requirements  are  defined  by  Annex  VI:  global  

Page 4: Loccioni Hardcopy

2  

requirements,  and  more  stringent  requirements  applicable  to  ships  in  Emission  Control  Areas.   Regulation  applies  to  each  marine  diesel  engine  with  a  power  output  of  more  than  130KW  

installed  on  a  ship: Ø    Tier  I:  ships  constructed  from1  January  2000  to  1.  January  2011  allowable  emissions  of  

total  weighted  NOx  depending  on  engine  speed Ø    Tier  II:  For  diesel  engines  installed  on  ships  constructed  on  or  after  1  January  2011  

allowable  emissions  of  total  weighted  NOx  depending  on  engine  speed. Ø    Tier  III:  Ships  constructed  on  or  after  1  January  2016  will  have  additional  limitations  when  

operating  in  an  Emission  Control  Area.  For  the  purpose  of  NOx  emissions  no  Emission  Control  Areas  (ECAs)  have  yet  been  designated,  but  it  is  expected  that  both  the  Baltic  Sea  and  the  North  Sea  will  be  designated  well  ahead  of  1  January  2016.  

Basically,  there  are  two  main  techniques  in  controlling  NOx  emissions  from  the  ship:  SCR  

technology  and  HAM  technology.    IMO  Tier  III  directive  means  installation  of  SCR  technology  for  ships  to  fulfill  the  2016  

legislation.  The  technology  was  initially  used  on  trucks  (Dansk  Technology).  SCR  is  the  most  efficient  method  to  reduce  NOx  emissions  from  ships  (up  to  90-­‐95%  of  reduction).  Selective  Catalytic  Reduction  (SCR)  is  one  of  the  most  cost-­‐effective  and  fuel-­‐efficient  diesel  engine  emissions  control  technologies  available.  SCR  technology  has  been  used  commercially  in  Japan  since  1980  and  in  Germany.    

A  second,  widely  acclaimed  technology  for  reducing  NOx  pollution  from  diesel  engines  is  the  

“Humid  Air  Motor”  (HAM).  This  technology  is  able  to  reduce  NOx  formation  by  up  to  65%.  By  HAM  method  a  NOx  reduction  level  of  40%  is  achievable  without  using  additional  heating  of  the  intake  air  and  a  level  of  65%  when  additional  heat  is  introduced  from  the  engine  coolant  or  exhaust  gases.  This  method  is  cheaper  than  SCR    

Water  Injection  and  Water  emulsion:  In  this  method  water  is  added  to  reduce  the  

temperature  of  combustion  leading  to  low  NOx  emission.This  method  has  a  drawback  of  increasing  the  specific  fuel  oil  combustion  with  reduction  in  NOx  by  only  20-­‐45%.

MAN  B&W  Diesel  thoroughly  tested  both  emulsion  injection,  which  had  for  the  first  time  been  put  to  a  test  on  petrol  engines  in  the  fifties,  and  direct  water  injection  on  their  engines.  MAN  B&W  is  already  applying  this  technology  in  the  Baltic  Sea  ferry  Mariella.  

High  Scavenge  Pressure  and  Compression  Ratio:  With  high  scavenge  pressure  and  

compression  ratio,  large  amount  of  air  can  be  introduced  inside  the  cylinder  to  lower  combustion  temperature  and  NOx  emission.  

Two  Stage  Turbocharger:The  Maritime  Industry  is  facing  the  dilemma  of  reducing  toxic  engine  emission  without  increasing  the  specific  fuel  oil  consumption.    

Page 5: Loccioni Hardcopy

3  

Principle  of  Working  :  To  reduce  the  NOx  emission  from  the  ships  engine  fuel  injection  rate  

shaping  has  been  practiced  which  results  in  increase  in  the  SFOC.  POWER2  turbocharger  Works  on  Miller  Cycle  Principle  where  in  the  compromise  of  fuel  consumption  for  NOx  reduction  can  be  shifted  to  far  lower  range.  

Engine  Component  Modification:  Reduce  the  NOx  formation  during  combustion  process  

rather  than  investing  on  expensive  secondary  measures.   New  designs  like  Green  Ultra  long  stroke  engine  from  MAN  (GME  series)  with  reduced  mean  

piston  speed  gives  more  time  for  excess  air  and  proper  combustion  to  lessen  NOx  formation. Followed  are  some  examples  of  competitors  about  how  to  use  techniques  in  controlling  

NOx  emission.  Peter  Döhle  Schiffahrts  uses  Martek  Marinox  engine  emission  monitor  which  helps  keep  an  account  of  NOx  and  SOx  emissions  and  helps  save  fuel  of  0.6-­‐2.1%.  Port  State  Control  and  other  regulatory  bodies  can  get  the  emission  data  of  the  ship  before  they  arrive  and  SOx  monitoring  can  give  reports  and  data  about  ships  entering  the  SECA  areas.  Installations  in  rental  methods  and  costs  of  saving  fuel  can  cover  up  these  expenses.  

Norwegian  waters  have  a  special  NOx  tax,  MariNOx  -­‐  a  monitoring  software,  reduces  this  tax  because  you  only  pay  for  the  amount  of  NOx  that  you  have  emitted  and  not  as  high  as  rpm  (revolution  per  minute)  tax  specified  by  regulations  and  it  is  certified  by  the  Norwegian  Maritime  Directorate.

  2.2  SOx  Emissions  Control  

The  sulphur  oxide  (SOx)  and  Particulate  Matter  emissions  from  ships  will  in  general  be  controlled  by  setting  a  limit  on  the  sulphur  content  of  marine  fuel  oils.    Loccioni  could  use  its  network  to  cooperate  with  Oil  Majors,  thus  providing  monitoring  equipments  as  well  as  contact  to  purchase  high-­‐quality  fuel.

The  volume  of  low  sulphur  fuel  oils  in  each  tank  as  well  as  the  date,  time,  and  position  of  the  ship  when  any  fuel-­‐oil-­‐changeover  operation  is  completed  prior  to  the  entry  into  an  Emission  Control  Area  or  commenced  after  exit  from  such  an  area,  shall  be  recorded  in  such  log-­‐book  as  prescribed  by  the  Administration.

According  to  Annex  VI  as  an  alternative  to  using  marine  fuel  oil  with  low  sulphur  content  in  Emission  Control  Areas  an  exhaust  gas  cleaning  system  or  other  equivalent  system  may  be  used  (abatement  technologies),  or  in  any  case  a  mitigating  measure  like  the  installation  of  filtration/treatment  systems.

Page 6: Loccioni Hardcopy

4  

Development  of  a  type  approval  standard  for  such  systems  is  ongoing  in  IMO.  Some  of  the  current  available  abatement  technology  is  based  on  seawater  scrubbing  principles.

Scrubbers  are  a  possible  alternative  to  low  sulphur  fuels,  which  would  cut  emissions  of  SOx  by  99%  and  considerably  reduce  emissions  of  other  polluting  particles,  but  there  are  still  some  concerns  about  the  by-­‐products  they  produce  in  the  cleaning  process.  The  scrubber  effluent  could  be  forbidden  to  discharge  overboard  by  some  ports  since  the  scrubbing  process  transfer  the  poison  elements  from  gas  to  water.  

There  is  however  a  few  concerns  related  to  these  types  of  scrubber  type  systems:  the  EU  

has  been  reluctant  to  accept  scrubbers  though  based  on  rials  they  have  indicated  that  they  may  accept  abatement  technology  as  an  equivalent  to  low  sulphur  fuel.  

Some  projects  currently  in  the  prototype  phase  show  promising  results  in  terms  of  overcoming  the  above  indicated  constraints.  It  should  also  be  taken  into  account  that  exhaust  gas  cleaning  alternatives  will  reduce  the  emission  of  particulate  matter  (PM).  Particulate  matter  is  considered  to  be  the  next  focal  point  of  IMO  and  this  increases  the  future  relevance  of  exhaust  gas  cleaning  systems.  Since  Loccioni  is  good  at  monitoring  services,  it  could  develop  more  on  software  or  appliance  to  test  the  quality  of  scrubber  effluent  before  discharge  it.  Loccioni  can  also  help  monitor  and  test  about  the  real  reasons  of  occasional  technical  problems.

Before  entering  the  ECA,  the  fuel  should  be  changed  to  the  required  sulphur  content  oil  and  completed.  In  order  to  facilitate  safe  and  simple  change-­‐over,  the  installation  of  separate  marine  gas  oil/diesel  oil  supply  piping  with  heating  capabilities  should  be  considered.  Considering  the  differences  in  cost,  some  owners  are  installing  an  additional  set  of  service  and  settling  tanks  for  low  sulphur  fuel  oils.  Loccioni  could  develop  a  suitable  monitoring  system  to  fulfill  this  change-­‐over  procedure  since  changeover  from  heavy  fuel  oil  to  marine  gas  oil  is  however  completely  different  and  clearly  not  common  standard.  

Page 7: Loccioni Hardcopy

5  

 2.3  Particulate  Matter  Emissions  Control  

Particulate  matter  is  a  designation  for  a  large  variety  of  extremely  small  particles  of  organic  and  inorganic  origin.  They  can  contain  carbon,  metals,  ash,  soot  (almost  purely  elemental  carbon),  acids  such  as  sulphates  and  nitrates  and  carbonates.    This  particulate  matter  is  a  result  of  combustion  of  fuel  oil. PM  emission  as  function  of  sulphur  content  in  the  fuel  oil.  From  MAN  Diesel  &  Turbo Studies  suggest  that  there  are  many  consequences  of  PM  pollution  including  the  following:    

● Increased  respiratory  symptoms,  such  as  irritation  of  the  airways,  coughing  and  difficulty  breathing  

● Mutagenic  and  carcinogenic  effects  ●  Particulate  emissions  are  strongly  related  to  NOx  emissions,  and  in  order  to  reach  extremely  

low  emission  levels,  reduction  of  particulate  via  lube-­‐oil-­‐consumption  control  is  becoming  an  essential  part  of  the  total  strategy.  Important  advances  are  being  made  through  improvements  in  the  combustion  system,  including:  

● Changes  such  as  higher  fuel-­‐injection  pressures,  ● Combustion  chamber  and  piston  ring-­‐pack  designs,  ● Exhaust  gas  re-­‐circulation  and  electronic  controls,  etc.    In  addition,  engine  manufacturers  and  suppliers  are  actively  investigating  control  of  

particulate  emissions  contributed  by  the  engine  lubricant.   Diesel  particulate  filter  (or  DPF)  is  a  device  designed  to  remove  diesel  particulate  matter  or  

soot  from  the  exhaust  gas  of  a  diesel  engine.  Several  alternative  fuels  are  available  to  reduce  diesel  particulate  emissions.  These  include  both  bio-­‐diesel  based  fuels  and  water  emulsion  fuels.  Another  most  commonly  used  tool  is  exhaust  gas  measurement  using  fixed  or  portable  equipment  with  analysis  and  recording  capability.  It’s  usually  installed  on  the  vessels’  stack  (exhaust  gas  funnel)  or  at  a  more  suitable  section  of  the  exhaust  gas  piping  systems.

Page 8: Loccioni Hardcopy

6  

               3. Energy Efficiency

  3.1  Energy  Efficiency  Design  Index  (EEDI)  

Energy  Efficiency  Design  is  an  index  with  credibility  due  to  numerous  stakeholders  who  were  forming  it:    policy-­‐makers,  shipowners,  naval  architects,  class  societies.  Therefore  the  index  is  not  only  concerned  about  technical  matters  but  also  commercial  etc.  Ships  are  already  the  most  energy-­‐efficient  way  to  transport  heavy  cargo;  however,  even  more  can  be  done.  We  need  more  efficient  engines  and  propulsion  systems,  improved  hull  designs  and  larger  ships.  EEDI  at  its  first  phase  is  concentrated  only  heavy  cargo  ships  and  will  not  be  able  to  calculate  the  efficiency  of  ships  with  diesel-­‐electric,  turbine  or  hybrid  propulsion  systems  as  they  will  need  additional  correction  factors.

EEDI  is  continuous  technical  development  for  all  technical  components  affecting  to  energy  efficiency  and  it  separates  technical  and  design-­‐based  measures  from  the  operational  and  commercial  ones  in  order  to  find  out  the  real  efficiency  of  a  unit.  This  helps  to  compare  ships  with  similar  carrying  capabilities  to  each  other.  It  has  been  (wrongly)  argued  that  the  EEDI  limits  installed  power  and  so  induces  owners  to  use  small-­‐bore  high-­‐rpm  engines,  thereby  increasing  fuel  consumption.  However,  a  reduction  of  installed  power  does  not  require  a  reduction  in  engine  bore  and  increasing  rpm.  The  easiest  way  to  reduce  power  would  be  to  “de-­‐rate”  the  exact  same  engine  by  limiting  the  “maximum”  rpm.  This  would  have  the  impact  of  increasing  propeller  efficiency  (if  the  exact  same  propeller  is  installed),  as  propeller  efficiency  will  generally  improve  as  rpm  decreases.  Another  practical  way  to  reduce  installed  horsepower  is  to  install  an  engine  with  one  cylinder  fewer.  This  would  have  no  impact  on  specific  fuel  consumption  or  rpm.  Such  engines  can  be  identified  by  reference  to  the  catalogues  of  major  engine  manufacturers.

The  energy  saved  by  the  use  of  wind  or  solar  energy  is  also  deducted  from  the  total  CO2  emissions,  based  on  actual  efficiency  of  the  systems.  The  transport  work  is  calculated  by  multiplying  the  ship’s  capacity  (dwt),  as  designed,  with  the  ship’s  design  speed  measured  at  the  maximum  design  load  condition  and  at  75  per  cent  of  the  rated  installed  shaft  power.  It  is  a  non-­‐prescriptive  mechanism  that  leaves  the  choice  of  which  technologies  to  use  in  a  ship  design  to  the  stakeholders,  as  long  as  the  required  energy-­‐efficiency  level  is  attained,  enabling  the  most  cost-­‐efficient  solutions  to  be  used.  Such  technologies  have  been  comprehensively  considered  in  the  2009  IMO  GHG  Study.  Following  adoption  in  2011  and  entry  into  force  in  2013,  the  introduction  of  the  EEDI  for  all  new  ships  will  mean  that  between  45  and  50  million  tons  of  CO2  will  be  removed  from  the  atmosphere  annually  by  2020,  compared  with  “business  as  usual”  and  depending  on  the  growth  in  world  trade.  For  2030,  the  reduction  will  be  between  180  and  240  million  tons  annually  from  the  introduction  of  the  EEDI.

 

Page 9: Loccioni Hardcopy

7  

Another  measurement  has  been  introduced  to  monitor  the  operative  efficiency  of  all  kinds  of  ships,  not  depending  on  engine  or  size,  called  EEOI  (Energy  Efficiency  Operational  Index). This  ratio  provides  data  concerning  the  operative  efficiency  of  a  ship,  relating  costs  (emissions)  with  benefits,  resulting  in  grams  of  emissions  per  cargo  mile.  Thus,  the  weight  of  a  ship  is  very  important  to  be  considered.     3.2  Ship  Energy  Efficiency  Management  Plan  (SEEMP)

The  SEEMP  is  a  mandatory  tool  under  MARPOL  Annex  VI  entered  into  force  in  January  2013,  it  has  been  created  with  the  main  purpose  of  contributing  to  the  global  reduction  of  emissions  as  mentioned  in  the  introduction  of  this  handout. SEEMP  is  a  monitoring  tool  aiming  to  improve  and  optimize  energy  efficiency  of  ships,  helping  on  the  measures  of  fuel  efficient  operations  through  the  careful  planning  of  every  trip  related  to  time,  speed  and  weather;  optimizing  the  ship  and  cargo  handling  matched  to  the  port  requirements,  as  well  as  the  optimization  of  machinery  and  equipment;  assisting  on  getting  a  better  performance  on  engine,  systems  and  heat  recovery. It  is  estimated  by  a  study  realized  by  the  IMO  (International  Maritime  Organization)  that  in  2020  to  be  an  average  of  151,  5  million  tons  of  annual  CO2  reduction  due  to  the  measures,  and  in  2030,  will  increase  to  an  average  of  330  million  tons  per  year.

There  is  a  manual  template  which  presents  which  needs  must  be  done  on  board,  how  and  when  these  needs  must  be  done,  who  should  do  these  and  all  the  benefits  of  these. This  manual  template  is  based  on  four  steps  shown  in  the  graph  below.  

Beside  to  all  this,  there  are  also  ecological  and  economical  benefits  since  ship-­‐owners  can  identify  potential  savings  in  fuel  consumption,  so  the  ship-­‐owners  can  reduce  fuel  consumption,  save  costs  and  decrease  the  emissions  causing  a  lower  environmental  impact. This  is  the  template  used  for  the  implementation  of  the  SEEMP  where  companies  should  fill  in  all  the  information  asked  on  it  in  order  to  have  a  better  control  of  the  energy  efficiency.  

Page 10: Loccioni Hardcopy

8  

The  manual  template  as  proposed  by  the  IMO:  

 

Page 11: Loccioni Hardcopy

9  

an  energy  management  solution

  Kомпас  is  an  online-­‐based  IT  software  aiming  to  monitor  the  fuel  and  energy  

consumption  of  a  ship  in  order  to  improve  its  efficiency.  

It  collects  all  possible  KPIs  (key  performance  indicators)  that  are  impacting  the  expenditure  of  a  vessel  and  automatically  provides  a  best-­‐practice  approach  by  analyzing  the  information. Additionally,  this  solution  offers  the  possibility  to  compare  collected  data  from  the  whole  fleet  with  each  other  in  order  to  review  the  compliance  with  the  regulations  of  saving  fuel  to  decrease  the  costs  and  reduce  the  environmental  pollution.  

 Kомпас  works  as  an  online  tool.  As  visualized,  all  information  collected  are  stored  on  

the  company’s  server  and  are  available  from  every  place  at  any  time  due  to  unlimited  online  access.

Additionally,  reports  on  fuel  consumption  and  an  online  SEEMP  template  will  be  created.  Port  state  controls,  especially  the  members  of  the  SECA  (sulphur  emission  control  area),  will  review  it  to  charge  fees  for  exceeding  average  figures  and  for  not  considering  energy  efficient  measurements  on  board,  since  it  is  obligatory  to  do  so.  The  advantages  of  this  online  opportunity  will  be  presented  below,  like  time  saving  and  the  possibility  of  monitoring  the  actual  fuel  consumption  on  board  in  order  to  react  and  optimize  it  along  the  way.  

The  software  itself  has  four  main  categories  included  in  its’  taskbar.  

Page 12: Loccioni Hardcopy

10  

 The  homepage  of  Kомпас,  named  “Dashboard”,  portrays  current  information  about  the  location  of  your  and  other  sister  ships  with  the  option  to  specifically  look  for  a  certain  vessel. Additionally,  meters  provide  you  with  information  about  the  velocity,  the  kilogram  per  nautical  mile  to  measure  the  efficiency  of  the  airframe  and  the  engine  performance  at  current  speed.  Other  measurements,  visualized  by  graphs,  are  showing  various  other  important  KPIs  as  the  EEOI  ratio,  used  to  gather  data  concerning  the  operative  efficiency  of  the  ship,  relating  costs  (emissions)  with  benefits,  resulting  in  grams  of  emissions  per  cargo  mile.  EEOI  method  is  better  than  EEDI  because  it  could  calculate  any  ships  efficiency  -­‐  old  and  new  unlike  EEDI.  Additional  figures  like  the  energy  consumption  rate  and  average  speed  are  tracked  and  reported  as  well,  enabling  the  ship  owner  analyses  of  potential  improvements.        The  second  category,  called  “Fleet”,  is  created  to  give  the  user  the  possibility  to  compare  ships  with  each  other.    

 Therefore,  the  operator  can  select  between  various  criteria  as  shown  below:

Page 13: Loccioni Hardcopy

11  

First,  the  user  needs  to  select  his/her  own  ship,  before  choosing  the  to-­‐be-­‐compared  criteria  and  selecting  the  ship  of  interest.  In  addition,  the  user  can  also  have  a  detailed  look  by  defining  and  containing  the  speed  and  the  given  weather  conditions.   After  the  selection  of  the  variables,  the  software  will  portray  the  desired  data  and  the  KPIs  will  be  displayed  in  an  opposed  way.  

This  option  provides  the  user  with  important  data  and  functions  as  a  best-­‐practice  approach  since  giving  the  possibility  to  directly  compare  available  data  and  analyze  the  most  energy  efficient  route.  

 

 The  “SEEMP”  category  directly  refers  to  the  regulations  of  the  ANNEX  VI  document  as  

defined  and  explained  in  this  handout.      

Since  this  document  is  mandatory  to  have  on  board  and  provide  to  the  intended  harbor,  

Kомпас  offers  an  IT  solution  to  this  process  by  creating  an  online  template,  consequently  increasing  its  efficiency,  in  a  time  and  cost  saving  manner.  

First  of  all,  the  latest  versions  of  all  SEEMP  documents,  from  any  ship  of  the  fleet,  are  digitally  available  from  any  place.  Moreover,  it  can  be  easily  invoked  and  edited  at  any  time.  The  updated  version  will  be  immediately  available  since  authorized  users  are  having  access  to  the  served  of  the  company  where  the  documents  are  stored.   Secondly,  since  this  tool  is  aimed  to  improve  the  energy  efficiency  of  the  boat,  other  ships  can  also  call  up  SEEMP  documents  from  sister  ships  to  see  what  and  how  is  done  over  there.

Page 14: Loccioni Hardcopy

12  

 Kомпас  also  provides  the  possibility  to  send  the  SEEMP  

record  directly  to  the  desired  port  on-­‐demand,  or  print  it  out  if  it  is  needed.

To  improve  the  efficiency  on  board,  the  Kомпас  software  offers  the  user  a  checklist  function.  By  clicking  “measures”,  the  captain,  e.g.  the  person  in  charge,  can  see  and  control  which  crew  member  was  and  now  is  in  charge  of  the  tasks  that  need  to  be  done  and  when  they  were  done  in  order  to  fulfill  the  erected  rules  in  order  to  increase  the  energy  efficiency  of  the  ship.

Besides  that,  this  tool  gives  the  company  the  opportunity  of  monitoring  the  ships  from  its  office  or  any  portable  device.

Of  course  this  overview  can  also  be  edited  at  any  time  from  any  place  to  guarantee  the  availableness  of  most  recent  updates.  

The  “Voyage”  section  of  the  software  offers  a  best-­‐practice  solution  when  it  comes  down  to  define,  e.g.  select,  the  most  energy  efficient  route  of  the  upcoming  trip.  

 

   Therefore,  Kомпас  automatically  stores  all  the  information  of  every  trip  on  the  server,  analyses  them  and  benchmark  the  most  efficient  routes  and  ship  settings,  concerning  engine  workload,  speed,  freight,  weather  and  sea  conditions,  among  others.  Multiple  solutions  concerning  the  route  are  possible  and  displayed.

Page 15: Loccioni Hardcopy

 

References

 

1. Marpol  73/78  Annex  VI,  Regulations  for  the  Prevention  of  Air  Pollution  from  Ships,  Technical  and  Operational  implications.  Managing  Risk  

2. www.eolss.net  3. www.imo.org  4. www.dnvgl.com  5. www.greenship.org  6. www.sintef.no  7. www.globenewswire.com  8. www.ecomarinepower.com  9. www.schiffundhafen.de  10. www.lr.org  11. www.issuu.com  12. www.mandieselturbo.com  13. www.marineinsight.com  14. www.martek-­‐marine.com  15. hwww.navtronic-­‐project.eu  16. www.deutsche-­‐flagge.de  17. www.forschungsinformationssystem.de  

 

siddeshshetty
Typewritten Text
You can check this application and the video by clicking here