Upload
trinhxuyen
View
218
Download
0
Embed Size (px)
This document is the property of EADS SPACE. It shall not be communicated to third parties without prior written agreement.Its content shall not be disclosed. © EADS SPACE - 2005
ASTRIUM
Lunar Lander Conceptfor LIFE
Hansjürgen Günther TOB 11
Bremen, 23/24.11.2006
Page 1 Lunar Lander Concept 23/24.11.2006
ASTRIUMSystem Approach
Baseline Assumptions:• Launcher Ariane5 ECA • Lander based on ATV technology
and similar projects
Page 2 Lunar Lander Concept 23/24.11.2006
ASTRIUMSystem Aspects: Lunar Far Side
• Primary landing site on lunar far side:- Deadalus crater at 179° E, 5° S
93 km
• Best shielding from terrestrial RF spillage
• Best shielding from solar RF bursts at lunar night
Page 3 Lunar Lander Concept 23/24.11.2006
ASTRIUMSystem Aspects: Payload Data Transfer (1)
• High data rate to be transferred from lunar far side to earth via data relay satellite
• Propose to use one data relay satellite DRS in halo orbit aroundL2 of Earth/Moon System
• EMI considerations suggest optical link to DRS, Ka-band link to earth GS (baud rate ≥ 100 Mbit/s)
Earth
Moon
DRS with laser terminal
GS with Ka-band receiver
Halo-orbit about L2
Ka – band link
Optical link
Page 4 Lunar Lander Concept 23/24.11.2006
ASTRIUMSystem Aspects: Payload Data Transfer (2)
Page 5 Lunar Lander Concept 23/24.11.2006
ASTRIUMSystem Aspects: Lander Configuration
Launch Configuration Landed Configuration
Page 6 Lunar Lander Concept 23/24.11.2006
ASTRIUMDeployed Sensor Configuration
Lander with astronomy payload deployed
15 km
Distance of antenna modules 15*2^n [m], n=0, 1....10
15 m
0,3 m
Glas fibre cable
Page 7 Lunar Lander Concept 23/24.11.2006
ASTRIUMSensor Deployment by Rover(s)
(Courtesy NASA MER)
Page 8 Lunar Lander Concept 23/24.11.2006
ASTRIUMSystem Mass Budget
kgAR5 ECA capability 7800Adapter mass 200
BOL Mass in LTO 7600Mass in LLOMass on LS 2863Unusable prop static 45Unusable prop dynamic 30Unusable prop trimm 65Pressurant 22Dry Mass 2701
Structure/Mechanisms 480Propulsion 440Power 220GNC 50Avionics 110Communication 28Thermal control 32System margin 136Lunar Lander Subsystems 1496
Payload incl. margin 1205Payload w/o margin 1341
Page 9 Lunar Lander Concept 23/24.11.2006
ASTRIUMPayload Mass Budget
Antenna moduledipole 0.2no off dipole 4electronics 0.2solar generator 0.4box 0.3Module 1.7no off Module 33Total Ant Modules 56.1 kg
Payload on LanderSilex terminal 150Ant data acquisition 45Miscell 50Remaining on Lander 245 kgcable kg/km 2km 45total cable 90 kg
Rover:Power 60Propulsion 80Structures 50Avionics 30total Rover x 3 660 kg
Mechanisms, Ramps 150 kg
Payload 1201 kg
Page 10 Lunar Lander Concept 23/24.11.2006
ASTRIUMPayload Power Budget
Antenna Module PowerNo of arm 3ant mod per arm 11feeds per ant mod 2PWR ADC/feed 0.1RCU/feed 0.2Safety factor 2Total ant mod. 1.2 WSolar generator W/m² 170min. area cm² 70.59Area required for ops above 6° 705.9 cm²Array size (n cm by n cm) 26.6
Duty cycle 46.7 % overall93.3 % daytime
0 % nighttime
Payload on LanderNo off FPGA 57Power / FPGA 5 WTotal power 285 Wother 50 WSilex terminal 130 W
Total Payload 465 W
Page 11 Lunar Lander Concept 23/24.11.2006
ASTRIUMStructure/Mechanism: Design Concept
Design Concept• Payload Module• Propulsion Module • Equipment Module
PropulsionModule
PayloadModule
Equipment Module
Page 12 Lunar Lander Concept 23/24.11.2006
ASTRIUMStructure/Mechanism: Design Concept
Propulsion Module
Isogrid-Plate
Sandwich-Plate
CorrugatedWeb
CorrugatedShell
Page 13 Lunar Lander Concept 23/24.11.2006
ASTRIUMPower Generation & Storage
Radioisotope Thermolectric Generator (RTG)
Page 14 Lunar Lander Concept 23/24.11.2006
ASTRIUMPower Generation & Storage
PV-Battery system(Li-Ion)
RFCRegenerativeFuel Cells
RTGRadioisotopeThermoelectr.
SPSSolar PowerSatellite
Mass required forenergy storage ~ 7500kg ~ 170kg (H2O) ~ 400kg
N/A But dedicatedSolar Power Satellite
Solar Array Area ~ 41m² ~ 58m² N/A SA on the SPS~ 27m²
Waste Heat/ Dissipation
Moderate~ 280W peak
Moderate~ 600W average
very high~ 31kW continuesly
low
Technology Readiness State of the Art
FC availableElectrolyzer to be developed
State of the Art
Laser Power transmission to be developed
RisksDevelopment of electrolyzerlifetime
Availability of RTGSafety aspects during ground handling
Development of Solar Power Satellite and laser transmission
Page 15 Lunar Lander Concept 23/24.11.2006
ASTRIUMData Management - De-Centralized Design Concept
PropulsionDrive Electronic
GYRA
Mission Timeline Controller
TCU CMU
Communication S/Sincl. mass memory
ACCA
STRSSU
RA
LVPT
ThermistorHT
Sensors
GNC Equipment / Sensor Propulsion Equipment / Sensor Thermal Control Actuators/Sensor
to CMU
fromGNCPDECommsvideo
StereoCamera
S-BandAntenna
X-BandAntenna
GNC & AOCS Controller
IMU
Video Processing Unit
P/L Controller(PLC)
Page 16 Lunar Lander Concept 23/24.11.2006
ASTRIUMCommunications
Overall COM Architecture
Page 17 Lunar Lander Concept 23/24.11.2006
ASTRIUMCommunications
COM Functional Architecture – Layout Onboard Lunar Lander
TMHGA
TC
MGA
LGA1
LGA2
Data
Radio Frequency
Distribution Unit
(RFDU)
(Diplexer,Switches,
Hybrid)
SSPA
SSPA
TWTA
TWTA
Dip
lexe
rD
iple
xer
CPF 2redund.
CPF 1nominal
X-Band Transmitternominal
X-Band Transmitterredundant
S-Band Transponderredundant
S-Band Transpondernominal
Page 18 Lunar Lander Concept 23/24.11.2006
ASTRIUMPropulsion
Clustered / Plugged Nozzle Layout
Page 19 Lunar Lander Concept 23/24.11.2006
ASTRIUMPropulsion
Tanks
2-Tank Concept:• Alphabus propellant tank• V=1911 dm^3 • MEOP 24 bar • thin titanium liner with CFRP overwrap• new development of MT Aerospace • Diameter x Height: 1154.2 mm x 1372 mm
4-Tank Concept:• Spacebus propellant tank• V = 1000 dm^3 • MEOP 19.5 bar• titanium tank• EADS-ST• Diameter x Height: 1154.2 mm x 1259 mm
Page 20 Lunar Lander Concept 23/24.11.2006
ASTRIUMConclusion
Within the LIFE scenario, the Lunar Lander is a very challengingproject:
• With todays technology, only RTGs can fulfill the power require-ments during lunar night – the power demand is a serious challenge (considering the RTG procurement problems)
• It is therefore proposed to refrain from night time operations• The data transfer requirements and the unique location on lunar
far side necessitate additional infrastructural elements (e. g. optical laser link, data relay satellites)
• Compared to the above, the remaining technical challenges can be covered with moderate development effort