Author
others
View
0
Download
0
Embed Size (px)
Magnetic Magnetic bioferrofluids bioferrofluids with tailoredwith tailored
properties for biomedical applicationsproperties for biomedical applications
F. Palacio, A. Millán, E. Natividad, A. Arizaga, A. Urtizberea,
N.J.O. Silva, R. Piñol, G. Ibarz, M. Castro and A. Mediano
Instituto de Ciencia de Materiales de Aragón.CSIC - Universidad de Zaragoza. Zaragoza
NanoBio-Europe2008Barcelona, 9-13, june 2008
OutlineOutline
•• Introduction: biomedical applications ofIntroduction: biomedical applications ofmagnetic nanomagnetic nanoparticlesparticles
•• Nano vsNano vs. . NanoNano
•• Superparamagnetic particlesSuperparamagnetic particles
•• HyperthermiaHyperthermia
•• Polymeric route to the Polymeric route to the prproduction of iron oxideoduction of iron oxidenanoparticles and nanoparticles and ferrofluidsferrofluids
Interest of Magnetic Nanoparticles inInterest of Magnetic Nanoparticles inBiomedical ApplicationsBiomedical Applications
Controllable sizes (Controllable sizes (≥≥ 100 nm - 100 nm - ≤≤ 10 nm) and 10 nm) andshapes (spheres, needles, beads)shapes (spheres, needles, beads)
Magnetic functionality => Magnetic functionality => magnetic fieldsmagnetic fieldspenetrate human tissuespenetrate human tissues
They obey Coulomb They obey Coulomb’’s law => can be controlleds law => can be controlledat a distanceat a distance
They transfer energy from an ac magnetic field They transfer energy from an ac magnetic fieldand convert it into heatand convert it into heat
Biomedical Applications of MagneticBiomedical Applications of MagneticNanoparticlesNanoparticles
DiagnosisMRI • Sensors
• Cell separation• Enzyme tests• Immunoassays
Therapy
· Hyperthermia (MFH)· Radiotherapy/ /Chimietherapy- -combined MFH· Thermal ablation
• Drug delivery• Arthritic treatments• Chronic disseases
Magnetic (Magnetic (NanoNano)Particles)Particles
Magnetic domains
+ Magnetic field + Magnetic field HH
MagnetisationM = m/Vm
Magnetic forceMagnetic force
Fm = Vm (M/H)(B·H/2)
Atomic World ruled byAtomic World ruled bythe laws of Quantumthe laws of QuantumMechanicsMechanics
Macroscopic World asMacroscopic World aswe perceive it, ruled bywe perceive it, ruled byClassical Mechanics andClassical Mechanics andElecElectromagnetism lawstromagnetism laws
Introduction to Introduction to nano-sizenano-size
From the physics point of viewFrom the physics point of view Nano-Nano- is the interfaceis the interfaceseparating the atomic from the macroscopic scalesseparating the atomic from the macroscopic scales
NANONANOWORLDWORLD
In the atomic world there are propertiesIn the atomic world there are propertieswhose critical lengths are at the nano-scalewhose critical lengths are at the nano-scale
Introduction to Introduction to nano-sizenano-size
At the scale below a critical length new propertiesAt the scale below a critical length new propertiesarise that can give rise to new materials and newarise that can give rise to new materials and new
applicationsapplications
Critical lengths such asCritical lengths such as
one electron Fermi wavelength one electron Fermi wavelength
exciton exciton Bohr radiusBohr radius
single magnetic domain length single magnetic domain length
lead to Quantum Dots and Superparamagnetic particleslead to Quantum Dots and Superparamagnetic particles
Single-domain particles =>Single-domain particles =>superparamagnetssuperparamagnets
When the size of a particle is smaller than theWhen the size of a particle is smaller than theminimum allowing the formation of domainsminimum allowing the formation of domains
((≈≈ 20 - 30 nm), it becomes single-domain and 20 - 30 nm), it becomes single-domain and
superparamagneticsuperparamagnetic
Biomedical Applications ofBiomedical Applications ofMagnetic NanoparticlesMagnetic Nanoparticles
•• Cell separationCell separation
•• Enzyme Enzyme inmunoassay inmunoassay teststests
•• Sensitive detection of viral agentsSensitive detection of viral agents
•• Drug deliveryDrug delivery
•• Contrast agents for magnetic imagingContrast agents for magnetic imaging
•• DMS as luminescent sensorsDMS as luminescent sensors
•• HyperthermiaHyperthermia
•• ··· the limit is the imagination ······ the limit is the imagination ···
H
FM
Md < critical
sizeSPM
Magnetic force-driven applicationsMagnetic force-driven applications
Transfected cell separation in gen therapy
Magnetic separation
Magnet
Blood vessel
Tissue
Drug delivery
Magnetic nanoparticles as contrastMagnetic nanoparticles as contrastagents for MRIagents for MRI
Huge magnetic moments as compared to Huge magnetic moments as compared to GdGdchelateschelates
Proton relaxation is affected by the largeProton relaxation is affected by the largemagnetic field heterogeneity in the magnetic field heterogeneity in the vecinity vecinity of theof theparticlesparticles
Can induce >10 fold increase in protonCan induce >10 fold increase in protonrelaxivitiesrelaxivities
Shortening of relaxation times, particularly TShortening of relaxation times, particularly T22((negative contrastnegative contrast))
Very high resolution, close to molecular levelVery high resolution, close to molecular level
HypertermiaHypertermia
Magnetic systems can convert energy into heat under the effectsMagnetic systems can convert energy into heat under the effectsof an alternating magnetic fieldof an alternating magnetic field
•• inductive heating (eddy currents) inductive heating (eddy currents)
•• hysteresis hysteresis losseslosses
No relevant at low ac magnetic fieldsNo relevant at low ac magnetic fields
!
PFM
= "µ0f HdM#
HypertermiaHypertermia
Superparamagnetic particlesSuperparamagnetic particles
ϖτ ~ 1 Emáx=>
Emáx (γ-Fe2O3, 10 nm)ϖ ~ 1 MHz
•• NeNeél él relaxationrelaxation
•• Rotational Brownian motion Rotational Brownian motion
-1
-0,5
0
0,5
1
-300 -200 -100 0 100 200 300 400
θ
U
220
1"
!"
"!##
+=
!
PSPM
= "1
2µ
0#"$H
0
2
Biological range: Biological range: 50 kHz 50 kHz ≤≤ f f ≤≤ 1200 1200kHz, H < 15 kHz, H < 15 kA/mkA/m and (H · f)max =and (H · f)max =
485 485 kHzkHz··kA/mkA/m
!
"B
=3#V
H
kT
!
"N
= "0 exp KV / kT( )
!
1
"eff
=1
"N
+1
"B
The shortest relaxation timeThe shortest relaxation timeconstant tends to dominate theconstant tends to dominate theeffective relaxation timeeffective relaxation time
HypertermiaHypertermia
HypertermiaHypertermia
coilscoils
thermalthermalinsulationinsulation
thermometerthermometer
samplesample
!
SAR(W / g) = C"T
"t#
1
mSPM
ΔT/ Δt is calculated fromthe initial slope
Non-adiabatic ----> heat losses ----> estimation of SARNon-adiabatic ----> heat losses ----> estimation of SAR
Adiabatic set-up for hyperthermiaAdiabatic set-up for hyperthermia
Eva Natividad et al., Appl. Phys. Letters, 92, 0991136 (2008)
Sample, Termometer
X
X
Coil (GEPGroup, UZ)
Vacuum
Electricalconnections
LN2
(no metallic components)
T
tacoff
acon
acoff
ΔT
Δt
Operation range:HH = 0 - 8kA/m = 0 - 8kA/m
ff = 50 = 50 –– 300 kHz 300 kHz
H < 15 H < 15 A/mA/m, f < 400 kHz, f < 400 kHz
Biological applicationsBiological applications::H · f < 4.85 · 10H · f < 4.85 · 1088 A/m·s A/m·s
Adiabatic set-up for hyperthermiaAdiabatic set-up for hyperthermia
(see also poster from Ana (see also poster from Ana ArizagaArizaga))
Superparamagnetic Particles forSuperparamagnetic Particles forBiomedical ApplicationsBiomedical Applications
functionalized magnetic nucleus (maghemite, other)
Protecting core,anchoring element
biological vector:antigens, etc.
Functionalized tailfor therapeuticuses: drugs,enzyms, etc.
Superparamagnetic Particles forSuperparamagnetic Particles forBiomedical ApplicationsBiomedical Applications
The magnetic nucleus should preferable bebiocompatible, otherwise a strong protectivecoating (+ its validation!!) is required for invivo applications
• Maghemite
• Magnetite
• Co-ferrites and other (in vitro)
Tailoring magnetic nanoparticlesTailoring magnetic nanoparticles
Production methods must focus on:
• narrow size dispersion
• variable size control
• variable shape control
• control of organization andparticle-matrix interactions
Interest:Interest:• Important applications of magnetic nanoparticles are very exigent
regarding size and shape dispersion
• Polymers can provide a way to avoid agglomeration and easysurface functionalisation
DSAR
ΔD
Onlyparticleswithin anarrow ΔDare efficient
Size dependence of the SpecificAbsorption Rate (SAR)
ω, H
Tailoring magnetic nanoparticlesTailoring magnetic nanoparticles
1. Synthesize the magnetic particles,normally magnetite or maghemite
2. Avoid agglomeration by keeping themdispersed in a surfactant
3. Eliminate surfactant to stabilise theparticles either electrostatically orsterically
4. Functionalise the particles
Thermal decomposition of Fe(CO)5.Thermal decomposition of Fe(CO)5.
Oleic acid
Solvent: octhyl ether
ΔFe(CO)5
Maghemite, 10 nm Maghemite, 20 nmMaghemite, 14 nm
Size dispersion ≈ 5% Size ranges: 4-20 nm
Tailoring magnetic nanoparticlesTailoring magnetic nanoparticles
Fe(CO)5
Oleic acidOcthyl ether
Δ
Me3NO
γ-Fe2O3
(RO)3SiR’R’ Si OH
O
O
TEM EFTEM
Tailoring magnetic nanoparticlesTailoring magnetic nanoparticles
+
Hydrophilic PVP polymer
metal salt
(eventually)
disgregation ferrofluid
homogeneous gel nanocomposite
base
A. Millán and F. Palacio, Applied Organometallic Chemistry, 15, 396-400 (2001)A. Millán et al., Acta Materialia 55, 2201-9 (2007).A. Millán, F. Palacio, G. Ibarz, Patent PCT/EP2007/058312
Tailoring magnetic nanoparticlesTailoring magnetic nanoparticleswith polymerswith polymers
PEG
copolymerisation
Either spheres and rods can beselectively prepared
Simple and quick single-pot reactionSpheric particle sizes 2 - 15 nmSize dispersion ±10%No aggregation. Uniform distribution.
0
20
40
60
80
0 1 2 3 4 5 6 7 8 9 10D (nm)
Polymers can provide a wayPolymers can provide a wayto avoid agglomeration andto avoid agglomeration andeasy surface functionalisationeasy surface functionalisation
Tailoring magnetic nanoparticlesTailoring magnetic nanoparticleswith polymerswith polymers
Bioferrofluids, pH = 7.4
Adequate polymer design leads to nanocomposites which disperse ina phosphate buffer saline solution as nanoparticles coated with PEG
FerrofluidFerrofluidsamplesample
TestsTestssamplessamples
Maghemite ferrofluidsMaghemite ferrofluids
Maghemite ferrofluidsMaghemite ferrofluids
Ferrofluids Ferrofluids are are persistent for persistent for more more than one monththan one month
-4 10-7
0
4 10-7
8 10-7
1.2 10-6
0 50 100 150 200 250 300 350
MAGNETIC STABILITY
Freshly preparedAfter one month
M(e
mu
) a.u
.
T(K)
ZFC//FC(25Oe)
0
0.001
0.002
0.003
0.004
0.005
0
0.001
0.002
0.003
0.004
0.005
0.006
0 10 20 30 40 50 60 70 80
Maghemite rods
!''(e
mu
/Oeg
Fe
2O
3)
- 24h
!''(e
mu
/Oeg
Fe
2 O3 ) - 1
mo
nth
Temperature (K)
1 Hz
117 Hz
852 Hz
24 hours1 month
NMR NMR relaxometryrelaxometry
0 50 100 150 2000,1
1
100 100 200
100
200
300
R2 (
mM
-1
s -1
)
! (MHz)
T=297K
Fe = 11.2 mg / ml
R1 (
mM
-1
s -1
)
! (MHz)
Endorem PEI-25 PEI-COOH60 PEI-COOH75 PEI-500
• R1 and R2 relaxivities compared with commercial ENDOREM®
• PEI-25 R1 relaxivity compares to ENDOREM®
• PEI-25 R2 relaxivity higher over the whole field range.
Relaxivities R1 and R2 quantifiesthe increased nuclear relaxationrates 1/T1 and 1/T2 of nuclei(typically protons) due to thepresence of magnetic centers
Hyperthermia valuesHyperthermia values
A. Millán et al (in preparation)
Fortin et al, J. Am. Chem. Soc., 129 (9)(2007) 2628-2635
G. Glöckl, R. Hergt, M. Zeisberger et al.,JP: CM 18 (2006) S2935–49
Wang et al, J. Magn. .Magn. Mat., 293(2005) 334-340
ibid., 280 (2004) 358-368
Hergt et al, J. Magn. .Magn. Mat., 270(2004) 345-357
Ma et al, J. Magn. .Magn. Mat., 268(2004) 33-39
Hilger et al, Academic Radiology, 9(2002) 198-202
Brunsentsov et al, J. Magn. .Magn.Mat., 225 (2001) 113-117
Hiergeist et al, J. Magn. .Magn. Mat.,201 (1999) 420-422
Ref.
144
9.2
14.7
93.7
22.9
27.4
0.8
2.1
12.9
10.8
27.211.3
SAR *(W/g)
158
1650
98
85
900
600
28.9
75.6
93
210
200
78
SAR(W/g)
1.1
35.8
6.6
0.9
12.7
9.5
5.4
5.4
5.4
13.2
5.5
1.2 - 5.3
Hf/(Hf)max
150
700
400
63
410
410
80
80
400
880
410
410
f(kHz)
5
24.8
8
7
15
11.2
32.5
32.5
6.5
7.2
6.5
1.4 - 6.3
H(kA/m)
d ≈12needles
16.5 - 24.8
7.9 - 22.3
6 - 10
7 - 18
15
81 - 416
7.5 - 46
10
10 - 12
100
8
Size (nm)
maghemite
maghemite
maghemite
magnetite
maghemite
maghemite
magnetite
magnetite
magnetite
maghemite
magnetite
magnetite
Material
(*) Referred to standard H = 4.85 (*) Referred to standard H = 4.85 kA/mkA/m, f = 100 kHz values, f = 100 kHz values
Nanomagnets for Nanomagnets for theragnostictheragnostic
MRIMRIPAVIAPAVIA
χχ acac at at ra
dio-radio-
Frequencies
Frequencies
Florence
Florence
Hyperthermia
Hyperthermia
Zaragoza
Zaragoza
Low NMRfrequencies (few kHz- 10 MHz) down to 4.2 K, multinuclear operatinal mode,
Adiabatic and non adiabatic magnetothermia set ups (50 - 500 kHz,0 - 8 kA/m, down to 80K
χac susceptibi-
lity set up50 - 500 kHz
1.5 - 350 K
Interested Interested may may contactcontact: : [email protected]@unizar.es.es or [email protected] [email protected]
Group TERMOMAGGroup TERMOMAG
Ana ARIZAGAAna ARIZAGA
Ramon BURRIELRamon BURRIEL
Javier CAMPOJavier CAMPO
Miguel CASTROMiguel CASTRO
Clara GONZALEZClara GONZALEZ
Miguel A. GONZALEZMiguel A. GONZALEZ
Gemma Gemma IBARZIBARZ
Ricardo LOPEZRicardo LOPEZ
Emma LYTHGOEEmma LYTHGOE
Eva NATIVIDADEva NATIVIDAD
Angel MILLANAngel MILLAN
M Carmen MORON M Carmen MORON
Lucas OLOLucas OLO
Elias PALACIOSElias PALACIOS
Rafael PIÑOLRafael PIÑOL
Ines Ines PUENTEPUENTE
Alberto RODRIGUEZAlberto RODRIGUEZ
Clara RODRClara RODRIGUEZIGUEZ
Cristina SAENZ de PIPAONCristina SAENZ de PIPAON
Jorge SANCHEZJorge SANCHEZ
Nuno Nuno J. O. SILVAJ. O. SILVA
Leticia TOCADOLeticia TOCADO
Ainhoa Ainhoa URTIZBEREAURTIZBEREA
ACKNOWLEDGEMENTSACKNOWLEDGEMENTS
MEC, MAT2004-03395-C02-01
CONSOLIDER - MAT2007-61621
European Network ofExcelence, 6FP
Programa CENIT - Ingenio 2010Industrial Consortium
Proyecto de colaboración industrialEscalado de producción
MolecularMolecularNanoscienceNanoscience
Programa ConsoliderIngenio 2010