1
Sample Initial SC, F g -1 SC, F g -1 after 2000 cycles CoMoO 4 -1 23 N/A CoMoO 4 -2 46 17 References [1] L.Q. Mai, F. Yang, Y. L. Zhao, X. Xu, L. Xu and Z. Luo, Hierarchical MnMoO 4 /CoMoO 4 Hetrostructured Nanowires with Enhanced Supercapacitor Performance. Nat. Commun. 2 (2011) 381-385. [2] M. C. Liu, L. B. Kong, X. J. Ma, C. Lu, X. M. Li, Y. C. Luo and L. Kang, Hydrothermal Process for the Fabrication of CoMoO 4 .0.9 H 2 O Nanorods with Excellent Electrochemical Behaviour. New J. Chem. 36 (2012) 1713-1716. [3] X. Zhanwei, L. Zhai, X. Tan, M. B. Holt, L. Zhang, B. Shalchi Amirkhiz, and D. Mitlin, Supercapacitive carbon nanotube-cobalt molybdate nanocomposites prepared via solvent-free microwave synthesis. RSC Adv. 2 (2012) 2753-2755. Acknowledgments This research was funded from ARC’s Discovery Projects funding scheme. The authors would like to acknowledge Australian Synchrotron (P9499) for providing beam time to enable work on IR, Curtin University for SEM facilities and AINSE Research Grant (ALNGRA15051) to carry out the microscopy work at ANSTO. Sample Initial specific capacitance / F g -1 Specific capacitance after 2000 cycles / F g -1 Pure CoMoO 4 (absence of additive) 23 18 CoMoO 4 + Urea 46 17 CoMoO 4 + F127 surfactant 79 59 0.0 0.2 0.4 0.6 -20 -10 0 10 20 30 Pure CoMoO 4 CoMoO 4 +Urea CoMoO 4 + F127 Current / mA Potential / V vs Hg / HgO A 1 C 1 C 2 Cyclic Voltammetry 0 400 800 1200 1600 2000 0 20 40 60 80 100 CoMoO 4 +Urea CoMoO 4 +F127 Specific Capacitance / F g -1 Cycle number Cycling Stability 0 900 1800 2700 3600 0.0 0.4 0.8 1.2 1.6 F127 Urea Discharge Potential / V Time / Sec Charge Experimental procedure Conclusions The F127 surfactant changes the rod-like structure of CoMoO 4 to nanospheres. The interaction between the chosen surfactant and cobalt molybdate assist the growth of nanospheres having a carbon composites on the surface for good electronic conductivity. The mesoporous cobalt molybdate demonstrated a great pseudo capacitance and excellent cycling stability (almost 80% capacity retention over 2000 cycles) when utilised as electrode in a hybrid device vs activated carbon electrode. The charge-discharge tests revealed that surfactant assisted CoMoO 4 device had a specific capacitance of 79 F g -1 and energy density of 21 W h kg -1 at a current of 1 mA. 20 30 40 50 (-133) (510) (222) (041) (400) (-132) (-222) (220) (002) (021) (111) CoMoO 4 + urea CoMoO 4 + F127 Intensity / a.u 2 / degrees Pure CoMoO 4 X-ray diffraction patterns (-201) FESEM images of CoMoO 4 materials prepared in the (1) absence and (2) presence of Urea and (3) F127 as an additive. There is a significant change in morphology from rod-shape (1) to nanowafer (2) and nanospheres (3). TEM image of the F127 material (4) shows hexagonal shaped particles relating to a single phase CoMoO 4 (please see XRD). 1 4 3 2

Maryam Poster

Embed Size (px)

Citation preview

Page 1: Maryam Poster

Sample Initial SC, F g-1 SC, F g-1

after 2000 cycles

CoMoO4-1 23 N/A

CoMoO4-2 46 17

CoMoO4-3 79 59

References [1] L.Q. Mai, F. Yang, Y. L. Zhao, X. Xu, L. Xu and Z. Luo, Hierarchical

MnMoO4/CoMoO4 Hetrostructured Nanowires with Enhanced

Supercapacitor Performance. Nat. Commun. 2 (2011) 381-385.

[2] M. C. Liu, L. B. Kong, X. J. Ma, C. Lu, X. M. Li, Y. C. Luo and L.

Kang, Hydrothermal Process for the Fabrication of CoMoO4.0.9 H2O

Nanorods with Excellent Electrochemical Behaviour. New J. Chem. 36

(2012) 1713-1716.

[3] X. Zhanwei, L. Zhai, X. Tan, M. B. Holt, L. Zhang, B. Shalchi

Amirkhiz, and D. Mitlin, Supercapacitive carbon nanotube-cobalt

molybdate nanocomposites prepared via solvent-free microwave synthesis.

RSC Adv. 2 (2012) 2753-2755.

Acknowledgments This research was funded from ARC’s Discovery Projects funding

scheme. The authors would like to acknowledge Australian

Synchrotron (P9499) for providing beam time to enable work on IR,

Curtin University for SEM facilities and AINSE Research Grant

(ALNGRA15051) to carry out the microscopy work at ANSTO.

Sample Initial specific

capacitance / F g-1

Specific capacitance

after 2000 cycles /

F g-1

Pure CoMoO4 (absence of

additive)

23 18

CoMoO4 + Urea 46 17

CoMoO4 + F127 surfactant 79 59

0.0 0.2 0.4 0.6-20

-10

0

10

20

30

Pure

CoMoO4

CoMoO4

+Urea

CoMoO4

+ F127

Cu

rren

t /

mA

Potential / V vs Hg / HgO

A1

C1

C2

Cyclic Voltammetry

0 400 800 1200 1600 20000

20

40

60

80

100

CoMoO4

+Urea

CoMoO4

+F127

Sp

ecif

ic C

ap

acit

an

ce /

F g

-1

Cycle number

Cycling Stability

0 900 1800 2700 36000.0

0.4

0.8

1.2

1.6

F127Urea

Discharge

Po

ten

tia

l /

V

Time / Sec

Charge

Experimental procedure

Conclusions The F127 surfactant changes the rod-like structure of CoMoO4 to nanospheres.

The interaction between the chosen surfactant and cobalt molybdate assist the

growth of nanospheres having a carbon composites on the surface for good

electronic conductivity. The mesoporous cobalt molybdate demonstrated a great

pseudo capacitance and excellent cycling stability (almost 80% capacity

retention over 2000 cycles) when utilised as electrode in a hybrid device vs

activated carbon electrode. The charge-discharge tests revealed that surfactant

assisted CoMoO4 device had a specific capacitance of 79 F g-1 and energy

density of 21 W h kg-1 at a current of 1 mA.

20 30 40 50

(-133)

(510)

(222)

(041)

(400)

(-132)

(-222)

(220)

(002)

(021)

(111)

CoMoO4

+ urea

CoMoO4

+ F127

Inte

ns

ity

/ a

.u

2 / degrees

Pure CoMoO4

X-ray diffraction patterns

(-201)

FESEM images of CoMoO4 materials prepared in the (1) absence and (2)

presence of Urea and (3) F127 as an additive. There is a significant change

in morphology from rod-shape (1) to nanowafer (2) and nanospheres (3).

TEM image of the F127 material (4) shows hexagonal shaped particles

relating to a single phase CoMoO4 (please see XRD).

1

4 3

2