127
Fakultät für Ingenieurwissenschaften und Informatik Modulhandbuch Masterstudiengang Communications Technology Wintersemester 2013/14 Basierend auf Rev. 1106. Letzte Änderung am 13.09.2013 um 12:48 durch vpollex. Generiert am 13.09.2013 um 14:52 Uhr.

Masterstudiengang Communications Technology

Embed Size (px)

Citation preview

Page 1: Masterstudiengang Communications Technology

Fakultät fürIngenieurwissenschaften undInformatik

Modulhandbuch

MasterstudiengangCommunications Technology

Wintersemester 2013/14

Basierend auf Rev. 1106. Letzte Änderung am 13.09.2013 um 12:48 durch vpollex. Generiert am 13.09.2013 um 14:52 Uhr.

Page 2: Masterstudiengang Communications Technology

Contents

1 Advanced Channel Coding 4

2 Advanced Optoelectronic Communication Systems 7

3 Analog CMOS Circuit Design 9

4 Applied Information Theory 11

5 Architectures of Embedded Systems 14

6 Biosensors 16

7 Channel Coding 18

8 Circuit Design in Nanometer-Scaled CMOS Technologies 21

9 Communication Systems 23

10 Communications Engineering 25

11 Compilers for Embedded Systems 27

12 Compound Semiconductors 29

13 Compressed Sensing - Effiziente Informationserfassung 31

14 Computer Networks 35

15 Cross-organizational distributed systems and Clouds 37

16 Cultural Crossroads 39

17 Design Automation of Embedded Systems 40

18 Dialogue Systems 42

19 Electronic System Design using C and SystemC 44

20 Embedded Security - Informationssicherheit in eingebetteten Systemen 46

21 German as a Foreign Language I 50

22 German as a Foreign Language II 51

23 Industrial Internship 52

24 Information Theory and Biology 53

25 Integrated Microwave Circuits 56

26 Iterative Methods for Wireless Communications 59

27 Kommunikationsnetze 61

28 Lab - Laboratory Automation 63

29 Lab - Microcomputers 65

30 Lab - Optoelectronics 67

31 Lab - RF Engineering 69

32 Lab - Semiconductor Technology 71

2

Page 3: Masterstudiengang Communications Technology

33 Lab - Vector Network Analysis 73

34 Lab Excercise Embedded Systems 75

35 Master’s Thesis 77

36 Mixed-Signal CMOS Chip Design 79

37 Mobilkommunikation 82

38 Modern Semiconductor Devices 84

39 Monolithic Microwave ICs in High-Speed Systems 86

40 Multiuser Communications and MIMO Systems 88

41 Neural Networks and Pattern Classification 90

42 Optical Communications 92

43 Optoelectronic Devices 94

44 Praktikum - Halbleitertechnologie 96

45 Project - Analog CMOS Circuit Design 98

46 Project - Design of Integrated Systems 100

47 Project - Dialogue Systems 102

48 Project - Radio Frequency Electronics 104

49 RF & Microwave Communication Systems 106

50 RF & Microwave Engineering 108

51 Radio Frequency Power Amplifier Design 110

52 Satellite Communications and Navigation 112

53 Semiconductor Sensors 114

54 Sicherheit und Privacy in Mobilen Systemen 116

55 Statistical Signal Processing 118

56 Technical Presentation Skills 120

57 Technology for Micro- and Nanostructures 122

58 Theory of Digital Networks 124

59 Using the Advanced Design System (ADS) in Electronic Design 126

3

Page 4: Masterstudiengang Communications Technology

1 Advanced Channel Coding

Token / Number: 8822270442

German title: -

Credits: 4 ECTS

Semester hours: 3

Language: Englisch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Martin Bossert

Training staff: Prof. Dr.-Ing. Georg Schmidt

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Optional Module, Communication and SystemTechnology

Electrical Engineering, M.Sc., Optional Module, Automation and EnergyTechnology

Electrical Engineering, M.Sc., Optional Module, General Electrical Engineering

Communications and Computer Engineering, M.Sc., Optional Module,

Communications Technology, M.Sc., Optional Technical Module, Communica-tions Engineering

Requirements(contentual):

Bachelor. Linear Algebra, Probability Theory, Combinatorics, elementary GaloisTheory

Learning objectives: The students can analyze, evaluate and compare coding schemes for error de-tection and error correction which are currently and in future systems used fordata transmission, data storage, and data processing. Especially different de-coding algorithms, those based on iterative methods as well as those based onalgebraic methods can be categorized and combined.

Content: The contents of the lecture can be grouped into two blocks: iterative decodingmethods and algebraic decoding methods, which are suited for different kindsof applications Iterative decoding methods are interesting for operating pointsclose to capacity in applications where codes with large block lengths can beapplied. In the lecture, two classes of iterative decoding schemes will be consid-ered. The class of Turbo Codes was introduced 1993 by C. Berrou, A. Glavieuxand P. Thitimasjshima. A Turbo Code consists of simple parallel concatenatedcomponent codes, which can efficiently be decoded by a symbol-by-symbol APosteriori Probability (s/s APP) decoder. Such an s/s APP decoder is capableof utilizing reliability information from the channel and can compute reliabilitiesfor the code symbols. After formally introducing the concept of reliabilities onthe basis of probabilities, the principle of s/s APP decoding will be explained.

4

Page 5: Masterstudiengang Communications Technology

Content (continued): After this, several tools for analyzing Turbo decoders are considered. Anotherclass of iteratively decodable codes is the class of Low Density Single ParityCheck (LDPC) codes. Such codes are either described by sparsely occupiedmatrices or by bipartite graphs. Both descriptions will be considered, and it willbe explained how LDPC codes can be constructed on the basis of these descrip-tions. After explaining how LDPC codes can be decoded iteratively, tools foranalyzing them will be considered. Algebraic decoding of Reed-Solomon (RS)codes is used in many technical data transmission and data storage systems likehard disks, CDs, DVDs, digital video broadcasting, and many other applications.Two types of decoding strategies will be considered: syndrome-based decodingand interpolation-based decoding. Syndrome-based techniques for decodingReed-Solomon codes are known for more than 30 years, and allow for decodingerrors up to half the minimum code distance. Since such methods can be im-plemented very efficiently, they are applied in many algebraic error correctingschemes. After introducing these classical syndrome-based methods, it will beexplained how these techniques may be applied in interleaved Reed-Solomon(IRS) schemes for decoding errors beyond half the minimum code distance. In1997, M. Sudan proposed a novel algorithm for decoding RS codes, which isbased on bivariate polynomial interpolation. This algorithm can also decodeerrors beyond half the minimum code distance by creating lists of codewordsto resolve ambiguous decoding situations. Moreover, derivatives of the Sudanalgorithm are capable of using lists of symbols at their inputs. The principlesbehind such interpolation-based techniques will be considered in the last part ofthe lecture. It will be explained how the list decoding concept can be used fordecoding errors beyond half the minimum code distance, and how the problemof list decoding is solved by the Sudan algorithm and its derivatives.

Content (continued): In the exercise, students have the opportunity to implement selected algorithmsfrom the lecture using MATLAB under guidance of a research assistant.Topics:Iterative Decoding Methods Turbo-Codes

- A Posteriori Probability (APP) Decoding- Intrinsic and Extrinsic Information- Statistical Analysis Methods like Monte-Carlo Simulation and Exit-Chart- Anal-ysisLow Density Single Parity Check (LDPC) Codes

- Matrix and Graph Representation of LDPC Codes- Code Construction- Iterative Decoding by "Message Passing"- Statistical and Graph-Based Analysis Methods like Density Evolution and Stop-ping SetsAlgebraic Decoding Methods Syndrome-Based Techniques

- Reed-Solomon (RS) Codes- Classical Decoding Approaches like the Peterson-Gorenstein-Zierler and ForneyAlgorithms

- Interleaved Reed-Solomon (IRS) Codes and Collaborative DecodingInterpolation-Based Techniques

- Interpretation of the Decoding Problem as a Polynomial InterpolationProblem

- The Sudan Algorithm and its Derivatives- List Decoding Concepts

5

Page 6: Masterstudiengang Communications Technology

Literature: - Roth R., Introduction to Coding Theory, Cambridge University Press, 2006- Justesen J. and Hoeholdt, T., A Course In Error Correcting Codes, EMS Pub-lishing House, 2004

- Bossert M., Channel Coding for Telecommunications, John Wiley & Sons,1999

- Blahut R. E., Algebraic Codes for Data Transmission, Cambridge UniversityPress, 2003

- MacWilliams F. J. and Sloane N. J. A., The Theory of Error-Correcting Codes,Elsevier, 1977

Basis for: keine Angaben

Modes of learningand teaching:

Lecture “Advanced Channel Coding”, 2 SWS (V) ()Exercise “Advanced Channel Coding”, 1 SWS (Ü) ()

Estimation ofeffort:

Active Time: 38 hPreparation and Evaluation: 32 hSelf-Study: 50 h

Sum: 120 h

Course assessmentand exams:

in der Regel mündliche Pruefung, ansonsten schriftliche Prüfung von 120Minuten Dauer

Requirements(formal):

keine

Grading: Die Modulnote entspricht dem Ergebnis der Prüfung

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

6

Page 7: Masterstudiengang Communications Technology

2 Advanced Optoelectronic Communication Systems

Token / Number: 8822270451

German title: -

Credits: 6 ECTS

Semester hours: 4

Language: English

Turn / Duration: every Winter Term / 1 Semester

Module authority: apl. Prof. Dr.-Ing. habil. Rainer Michalzik

Training staff: apl. Prof. Dr.-Ing. habil. Rainer Michalzik

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Elective Module, Microelectronics

Electrical Engineering, M.Sc., Optional Module, Automation and EnergyTechnology

Communications Technology, M.Sc., Optional Technical Module, Microelec-tronics

Requirements(contentual):

Einführung in die Optoelektronik or Optoelectronic Communication Technology

Learning objectives: The students can outline the multiplexing techniques used in high-capacity op-tical transmission systems and discuss their pros and cons. They are able tolist available types of single-mode optical fibers and explain how to make fibersmore insensitive to bends. They can quantify the transmission distance limita-tions imposed by modal, chromatic, or polarization mode dispersion and canemploy dispersion management as a remedy. The students are able to nameand describe nonlinear effects in fibers. They can illustrate different types ofoptical amplifiers and point out their strengths and weaknesses. They are ableto explain the principles of fiber Bragg gratings and select their parametersaccording to the application. The students can sketch devices suitable for opti-cal multiplexing and demultiplexing and express the merits of planar lightwavecircuits. They can illustrate various types of optical switches implemented asoptical micro-electro-mechanical systems. The students are able to discussthe optical, electronic, and electrical confinement techniques used laser diodes.They recognize the importance of distributed Bragg reflector, distributed feed-back, as well as vertical-cavity surface-emitting lasers and can sketch their layerstructures and explain their operation. The students are able to show how serialdata rates in optical links can be increased with modulator-assisted phase mod-ulation allowing the implementation of higher-order modulation formats. Theycan also describe the principles of corresponding optical receivers as well as thetechnique of coherent detection.

7

Page 8: Masterstudiengang Communications Technology

Content: This module provides an advanced overview over modern optical telecommuni-cation and datacom systems as well as associated optoelectronic devices. Thestudents will be able to understand the operation principles, potentials as wellas limitations of various technologies. The following topics are addressed:

- Introduction to optical communication systems- Multiplexing techniques and high-capacity DWDM systems- The CWDM approach- Single-mode fiber types and bending-insensitive fibers- Fiber dispersion limitations and dispersion management- Polarization mode dispersion- Nonlinear fiber transmission effects- Optical amplifiers: EDFA, Raman and semiconductor optical amplifiers- Fiber Bragg gratings

Content (continued): - Devices for optical multiplexing and demultiplexing- Planar lightwave circuits- Optical MEMS- Photon, carrier, and current confinement in laser diodes- Advanced laser diodes for use in telecommunications: DBR and DFB lasers- 100 Gbit/s transmission systems: Mach–Zehnder modulators, higher-order mod-ulation formats and coherent detection

Literature: - A comprehensive English written manuscript is provided

Basis for:

Modes of learningand teaching:

Lecture“Advanced Optoelectronic Communication Systems”, 3 hours per week(L) Exercise“Advanced Optoelectronic Communication Systems”, 1 hours perweek (E)

Estimation ofeffort:

Active Time: 40 hPreparation and Evaluation: 64 hSelf-Study: 76 hTotal: 180

Course assessmentand exams:

Usually oral exam, otherwise written exam of 120 minutes duration

Requirements(formal):

None

Grading: Module mark is identical to exam mark

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

8

Page 9: Masterstudiengang Communications Technology

3 Analog CMOS Circuit Design

Token / Number: 8822270961

German title: Entwurf analoger CMOS Schaltungen

Credits: 6 ECTS

Semester hours: 4

Language: German (Summer term) / English (Winter term)

Turn / Duration: every Semester / 1 Semester

Module authority: Prof. Dr.-Ing. Maurits Ortmanns

Training staff: Prof. Dr.-Ing. Maurits Ortmanns

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Elective Module, Communication and SystemTechnologyElectrical Engineering, M.Sc., Elective Module, MicroelectronicsElectrical Engineering, M.Sc., Optional Module, Automation and Energy Tech-nologyCommunications and Computer Engineering, M.Sc., Elective Module, (Ing)Communications Technology, M.Sc., Optional Technical Module, Microelec-tronics

Requirements(contentual):

Basic knowledge of semiconductor devices, analog circuits, control theory andsignal processing.

Learning objectives: The students are able to describe the behaviour of the MOS transistor, explainits operation and to describe the impact and influence of electrical and man-ufacturing non-idealities. They describe and analyze a transistor level circuitusing the small signal parameters and derive linearized transfer functions. Thestudents differentiate the operation and application of single stage amplifiersand use circuit techniques for gain enhancement. They adopt this to design andanalyze differential amplifiers. They use advanced concepts for frequency com-pensation and stablitzation. The students can compare the advantages andapplication of several multistage differential amplifier concepts, analyze anddesign those amplifiers. They use circuit simulators in order to design thesesingle stage and differential amplifiers upon a given specifiction. The studentsdescribe the origin of electronic noise, analyze simple circuits concerning noisecontribution, adopt the principle of input referred noise in amplifiers, and explainnoise reduction techniques based on design or architecture. They describe andcompare the functionality of various concepts for analog-to-digital converters.

Content: - Devices and layout in MOS technology- CMOS transistor as an analog building block- Small signal equivalent model- 2nd order and short channel effects- Basic CMOS analog building blocks: current sources, cascode, common sourcegain stage

- Differential stage, telescopic amplifier, two-stage amplifier- Noise and distortion in CMOS analog circuits- Switched capacitor circuits and filters- A/D and D/A converter topologies- Sigma-Delta A/D Converter

9

Page 10: Masterstudiengang Communications Technology

Literature: - Allen P.E., Holberg, D.R. “CMOS Analog Circuit Design”, Oxford UniversityPressl

- Baker, R.J. “CMOS Circuit Design, Layout, and Simulation”, Wiley- Razavi, B. “Design of Analog CMOS Integrated Circuits”, McGraw-Hill- Johns, D. “Analog Integrated Circuit Design”, Wiley

Basis for: “Basis for” / Grundlage für: “Project: Analog CMOS Circuit Design”, ElectiveModules, Master-Thesis

Modes of learningand teaching:

Lecture “Analog CMOS Circuit Design”, 3 SWS (V) ()Exercise “Analog CMOS Circuit Design”, 1 SWS (Ü) ()

Estimation ofeffort:

Active Time: 60 hPreparation and Evaluation: 120 hSum: 180 h

Course assessmentand exams:

Course assessment: Attending the lectures and excercises, usually oral exam,otherwise written exam of 120 minutes duration

Requirements(formal):

none

Grading: Module mark is identical to exam mark

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

10

Page 11: Masterstudiengang Communications Technology

4 Applied Information Theory

Token / Number: 8822270422

German title: -

Credits: 8 ECTS

Semester hours: 6

Language: Englisch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Martin Bossert

Training staff: Prof. Dr.-Ing. Martin BossertDr.-Ing. Carolin Huppert

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Elective Module, Communication and SystemTechnologyElectrical Engineering, M.Sc., Optional Module, Automation and Energy Tech-nologyCommunications and Computer Engineering, M.Sc., Elective Module,

Communications Technology, M.Sc., Optional Technical Module, Communica-tions EngineeringComputer Science, M.Sc., Specialization Subject, Informationstheorie

Requirements(contentual):

- Bachelor- Probability theory

Learning objectives: Information theory provides a measure for information and describes fundamen-tal limits for communication and storage systems with respect to source coding,channel coding, muti-user communication, and cryptology. The students willbe able to explain, apply and analyze lossless and lossy source coding algorithms(data compression). Furthermore, they will be able to evaluate the performancewith respect to the source coding theorem which states that Shannons uncer-tainty is the fundamental limit for compression. They can describe and analyzethe channel capacity as the fundamental limit of information which can betransmitted error free over a channel using an appropriate code with a certainrate. With this context they can categorize and evaluate channels and trans-mission methods. For the omnipresent Gaussian noise the channel capacity canbe calculated and interpreted.For basic muti-user communication scenarios (broadcast and multiple access)fundamental algorithms (Tomlinson-Harashima, superposition coding, etc.) andtheir application can be analyzed and evaluated based on the mutual informa-tion. These algorithms and methods enable the sudents to analyze and catego-rize also scenarios which are not treated in the module or will be developed inthe future.The information theoretic point-of-view of cryptology enables the students tocompare, categorize, and evaluate crypto algorithms.

11

Page 12: Masterstudiengang Communications Technology

Content: Information theory is the basis of modern telecommunication systems. Maintopics of information theory are source coding, channel coding, multi-user com-munication systems, and cryptology. These topics are based on Shannons workon information theory, which allows to describe information with measures likeentropy and redundancy. After a short overview of the whole area of informa-tion theory, we consider concepts for statistical modeling of information sourcesand derive the source coding theorem. Afterwards, important source coding al-gorithms like Huffman, Tunstall, Lempel-Ziv and Elias-Willems are described.The second part of the lecture investigates channel coding. Important prop-erties of codes and fundamental decoding strategies are explained. Moreover,we introduce possibilities for estimating the error probability and analyze themost important channel models according to the channel capacity introducedby Shannon. The Gaussian channel is very important, and therefore, describedextensively. The third part deals with aspects of multi-user communication sys-tems. We introduce several models and investigate methods that can achievethe capacity regions. Finally, we give an introduction on data encryption and se-cure communication. In the projects, several information theoretic topics (e.g.,Lempel-Ziv-coding) will be investigated by means of implementation tasks.

Content (continued): Overview: Basics:- Uncertainty (entropy), mutual information- Fanos lemma, data processing lemma, information theory inequalitySource Coding:

- Shannon’s source coding theorem- Coding methods for memoryless sources: Shannon-Fano-, Huffman-, Tunstall,and arithmetic coding

- Coding for sources with memoryChannel Coding:

- Concepts of linear binary block codes- Shannon’s channel coding theorem- Random coding and error exponent- MAP (maximum a-posteriori) and ML (maximum likelihood) decoding- Bounds (Bhattacharriyya, union, etc.)- Channels and capacities: Gaussian channel, fading channelMulti-User Systems:

- Duplex transmission- MAC (multiple access) channel- BC (broadcast) channel- MIMO (multiple input multiple output) channelCryptology:

- Problem settings in cryptology- IT-securityProjects: Universal Source Coding (Lempel-Ziv-coding) and Mutual Informa-tion

Literature: - Cover, Thomas: Elements of Information Theory, Wiley- Script 2009 (in German)- Johannesson: Informationstheorie - Grundlagen der (Tele-) Kommunikation,Addison-Wesley

Basis for: für Communication Engineering and Wireless

Modes of learningand teaching:

Lecture “Applied Information Theory”, 3 SWS (V) ()Exercise “Applied Information Theory”, 2 SWS (Ü) ()Project “Applied Information Theory”, 1 SWS (P) ()

12

Page 13: Masterstudiengang Communications Technology

Estimation ofeffort:

Active Time: 90 hPreparation and Evaluation: 90 hSelf-Study: 60 h

Sum: 240 h

Course assessmentand exams:

Usually oral exam, otherwise written exam of 120 minutes duration.

Requirements(formal):

keine

Grading: Module mark is identical to exam mark.

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

13

Page 14: Masterstudiengang Communications Technology

5 Architectures of Embedded Systems

Token / Number: 88222????? (Wird vom Dezernat 2 festgelegt)

English title: Architectures of Embedded Systems

Credits: 6 ECTS

Semester hours: 4

Language: Englisch

Turn / Duration: sporadic (Summer Term) / 1 Semester

Module authority: Prof. Dr.-Ing. Frank Slomka

Training staff: Prof. Dr.-Ing. Frank Slomka

Integration of moduleinto courses of studies:

Embedded Systems, M.Sc., Core Subject, Embedded SystemsCommunications Technology, M.Sc., Optional Technical Module, Communica-tions Engineering

Requirements(contentual):

Bachelor Degree in Computer Science or Electrical Engineering

Learning objectives: Students will know the structure and architecture of embedded systems.The could describe different technologies and architecture patterns of hard-ware/software systems. The could develop hard- and software componentsof embedded systems. The have an basic understanding of hardware/softwarecodesign and architecture synthesis. The are familiar with scheduling algorithmsand algorithms for binding and allocation in behavioral synthesis.

Content: - Computer Architectures of Embedded Systems- Chip Design and Technologies- Hardware Design of Embedded Systems- Software Design of Embedded Systems- Behavioral Synthesis- Algorithms for Allocation Binding and Scheduling in Behavioral Synthesis- Programmable on a Chip Design

Literature: - Jürgen Teich: Digitale Hardware-/Software Systeme, Springer 1997- Jean J. Labrosse: Embedded Systems Building Blocks, CMP 2000- Peter Marwedel: Eingebette Systeme, Springer 2007- Daniel Gajski et al.: Design of Embedded Systems, Addisson Wesley, 1994- Giovanni De Micheli, Synthesis and Optimization of Digital Circuits, MCGraw-Hill, Inc. 1994

Basis for: –

Modes of learningand teaching:

Lecture Architectures of Embedded Systems, 2 SWS (Prof. Dr.-Ing. FrankSlomka)Laboratory Programmable on a Chip Design, 2 SWS (Dipl.-Ing. Tobias Bund)

Estimation ofeffort:

Active Time: 60 hPreparation and Evaluation: 120 hSum: 180 h

14

Page 15: Masterstudiengang Communications Technology

Course assessmentand exams:

The examination for this module is done orally or written, depending on thenumber of attendees. The actual examination mode will be announced at thebeginning of the course.

Requirements(formal):

Keine

Grading: The module’s grades arise from the examination’s result.

Basierend auf Rev. 1086. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

15

Page 16: Masterstudiengang Communications Technology

6 Biosensors

Token / Number: 8822270903

German title: -

Credits: 3 ECTS

Semester hours: 2

Language: English

Turn / Duration: every Winter Term / 1 Semester

Module authority: Prof. Dr.-Ing. Hermann Schumacher

Training staff: Dr. Alberto Pasquarelli

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Optional Module, General Electrical EngineeringElectrical Engineering, M.Sc., Optional Module, Communication and SystemTechnologyElectrical Engineering, M.Sc., Optional Module, Automation and Energy Tech-nologyElectrical Engineering, M.Sc., Optional Module, MicroelectronicsCommunications Technology, M.Sc., Elective Module, Microelectronics

Requirements(contentual):

Basic knowledge of chemistry and biochemistry help understanding the biologi-cal part of biosensors.

Learning objectives: Learning objectives:The world-wide needs for chemical detection and analysis rises steadily. Sev-eral resons lead to this trend, for instance the rapid increase in the prevalenceof diabetes, the increasing need for environmental and health monitoring, newlegislative standards for food and drugs quality control or even the early detec-tion of biological and chemical terror attacs. Thanks to higher sensitivity andspecificity, short response times and reduction of overall costs, biosensors canbe very competitive in addressing these needs when compared to traditionalmethods.Students can describe basic principles, mechanisms of action and applicationsof biosensors in different scenarios. After taking this module, participants cananalyze biosensors, break-down in the elementary components and identify andillustrate every individual function in the information flow, from recognition totransduction and transmission. Students illustrate the clinical and industrial ap-plications differentiate biosensor market sectors, e.g. commodities for everydayconsumer needs or professional equipments for research. Furthermore, they areable to understand and critically analyze research in biosensors. Finally studentsare able to develop appropriate concepts and independently propose solutionsfor given problems.

Content: - Introduction to biosensors- Applications overview- Biological detection methods: catalithic, immunologic, etc- Physical transduction methods: electrochemical, optical, gravimetric, etc.- Immobilization techniques: adsorption, entrapment, cross-linking, covalentbonds

- Biochip technologies: DNA and protein chips, Ion-channel devices, MEA andMTA, Implants

- Extras: invited talk(s), experimental exercise, excursion

16

Page 17: Masterstudiengang Communications Technology

Literature: - Biosensors, Rai University- Marks R.S. et al., Handbook of Biosensors and Biochips, Wiley, 2007- Gizeli E. and Lowe C.R., Biomolecular Sensors, Taylor & Francis, 2002- Lecture Notes

Basis for: Masters Thesis in the area of biosensors.

Modes of learningand teaching:

Lecture “Biosensors”, lecture with demonstrations and seminars, 1,75 SWS (V)()Seminar “Biosensors”, 0,25 SWS ()Laboratory “Biosensors”, 2 x 2 h ()

Estimation ofeffort:

Active Time: 30 hPreparation and Evaluation: 50 hSelf-Study: 10 h

Sum: 90 h

Course assessmentand exams:

Written examination of 120 min.

Requirements(formal):

keine

Grading: Module mark is identical to exam mark.

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

17

Page 18: Masterstudiengang Communications Technology

7 Channel Coding

Token / Number: 8822270426

German title: Kanalcodierung

Credits: 8 ECTS

Semester hours: 6

Language: Englisch

Turn / Duration: every Winter Term / 1 Semester

Module authority: Prof. Dr.-Ing. Martin Bossert

Training staff: Prof. Dr.-Ing. Martin Bossert

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Elective Module, Communication and SystemTechnologyElectrical Engineering, M.Sc., Optional Module, Automation and Energy Tech-nologyCommunications and Computer Engineering, M.Sc., Elective Module,Communications Technology, M.Sc., Compulsory Subject Module, Communica-tions EngineeringComputer Science, M.Sc., Specialization Subject, Informationstheorie

Requirements(contentual):

Bachelor

Learning objectives: Forward error detection and correction are part of any system for transmissionand storage of information in order to protect the information against distur-bances during transmission or write/read processes. The students will be ableto order, identify, and design block- and convolutional codes as well as codedmodulation. Codes with arbitray parameters - within the fundamental limits- can be composed and rated with generator and parity check matrices andpolynomials. They can list, apply, and evaluate (hard, soft, iterative) decodingalgorithms for binary and non binary block codes and for convolutional codes.Further, they can explain the fundamental theory and are able to analyze, cate-gorize, and evaluate the majority of code constructions and decoding algorithmsalso the ones which are not explicitly treated in this modul and the ones whichwill be developed in the future. The students can explain fundamental limitsof code parameters and decoding and can create their own code constructionsand examine and compare them and their decoding.

18

Page 19: Masterstudiengang Communications Technology

Content: Channel coding has become an essential part in communication and storagesystems. Block and convolutional codes are used in all digital standards. Theaim of channel coding is to protect the information against disturbances duringtransmission or write/read processes. Thereby redundancy is added for errordetection and for error correction. This course is about basic concepts in channelcoding and gives an introduction to the more advanced methods of codedmodulation. Lecture topics:

- Linear block-codes– Generator and parity-check matrix– Cosets– Principles of decoding– Hamming codes– Bounds for code parameters (Hamming-, Singleton-, Gilbert-Varshamov-Bounds)– Trellis representation of block-codes– Plotkin construction, Reed-Muller (RM) codes (relationship to binary PN- andWalsh-Hadamard sequences)– APP and ML decoding (sequence and symbol based)

Content (continued): - Algebraic coding– Prime fields, primitive elements, component- and exponent representation– Reed-Solomon (RS) codes as cyclic codes with generator- and check-polynomials– Algebraic error and erasure correction with the Euclidean algorithm– BCH codes (as subfield subcodes of RS codes)– The perfect Golay-code as non-primitive BCH-code– Decoding of algebraic codes (key equation, Euclidean- and Berlekamp-Masseyalgorithm)

- Convolutional codes– Algebraic properties– State Diagram– Trellis representation– Error correction capabilities of convolutional codes– Viterbi- and BCJR algorithm (flow in graphs)

- Further coding and decoding techniques– LDPC codes– Permutations-, Majority- and Information-Set decoding– Dorsch algorithm (ordered statistics decoding)– Parallel (Turbo)- and serial concatenated codes and their iterative decoding

- Introduction to generalized code concatenation and coded modulation- Project orientated Lab: LDPC, RS decoding, RM-codes

Literature: - Martin Bossert: Channel Coding for Telecommunications, Wiley & Sons, 1999- Martin Bossert: Kanalcodierung, Teubner, 1998- Johannesson, Zigangirov: Fundamentals of Convolutional Coding , IEEE Press

Basis for: keine Angaben

Modes of learningand teaching:

Lecture “Channel Coding”, 3 SWS (V) ()Exercise “Channel Coding”, 2 SWS (Ü) ()Project “Channel Coding”, 1 SWS (P) ()

Estimation ofeffort:

Active Time: 90 hPreparation and Evaluation: 70 hSelf-Study: 80 h

Sum: 240 h

19

Page 20: Masterstudiengang Communications Technology

Course assessmentand exams:

Usually oral exam, otherwise written exam of 120 minutes duration.

Requirements(formal):

keine

Grading: Module mark is identical to exam mark.

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

20

Page 21: Masterstudiengang Communications Technology

8 Circuit Design in Nanometer-Scaled CMOS Technologies

Token / Number: 8822271726

German title: Schaltungsentwurf in nanometerskalierter CMOS Technologie

Credits: 5 ECTS

Semester hours: 4

Language: englisch (german upon verbal agreement)

Turn / Duration: every Summer Term / 1 Semester

Module authority: Dr. Jens AndersProf. Dr.-Ing. Maurits Ortmanns

Training staff: Dr. Jens AndersProf. Dr.-Ing. Maurits Ortmanns

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module,Electrical Engineering, M.Sc., Optional Module, Communication and SystemTechnology

Electrical Engineering, M.Sc., Optional Module, Microelectronics

Communications Technology, M.Sc., Optional Technical Module, Microelec-tronics

Requirements(contentual):

Learning objectives: The students are able to explain MOSFET operation in deep submicron tech-nologies including short channel and narrow width effects using charge-basedtransistor modeling. They can identify situations in which a classical square-lawbased design approach is prone to fail and apply non-square law based designmethodologies to synthesize circuits even under these conditions. The studentscan predict the effects of mismatch and process variations on the performanceof integrated circuits and can select operating points to mitigate these effects.Furthermore, they are able to evaluate different layout styles regarding theirrobustness against mismatch and process variations and select an appropriatelayout style for a given application. The students are able to apply advancedlinear feedback theory in the form of the Middlebrook and Tian’s method toelectronic circuits to predict their stability. The students can analyze advancedsingle-ended and fully-differential op-amp structures and synthesize these struc-tures for a given performance. The students can explain the need for on-chipreferences and power management and synthesize on-chip voltage references,current references and voltage regulators. The students can analyze CMOS sub-circuits in the presence of noise and distinguish important noise related perfor-mance metrics. The students are able to identify main ideas of state-of-the-artresearch articles and present those ideas to their fellow students.

Content: - MOSFET operation and modern CMOS devices- MOS device models- Analog Design Styles in deep submicron technologies- Feedback theory and closed loop feedback simulation- Advanced differential amplifiers- References and Power Management- Analog filters- Advanced A/D Converter Concepts

21

Page 22: Masterstudiengang Communications Technology

Literature: - Möller, F.; Frohne, H.; Löcherer, K.; Müller, H.: Grundlagen der Elektrotechnik- Unbehauen, R.: Grundlagen der Elektrotechnik 1- Unbehauen, R.: Grundlagen der Elektrotechnik 2- Albach, M.: Grundlagen der Elektrotechnik 1- Albach, M.: Grundlagen der Elektrotechnik 2- C. Enz and E. A. Vittoz, Charge-based MOS transistor modeling : The EKVmodel for low-power and RF IC design. Chichester, England ; Hoboken, NJ:John Wiley, 2006.

- B. Razavi, Design of analog CMOS integrated circuits. Boston, MA: McGraw-Hill, 2001.

- W. M. C. Sansen, Analog design essentials. Dordrecht, The Netherlands:Springer, 2006.

Basis for: Master-Thesis

Modes of learningand teaching:

Lecture “Circuit Design in Nanometer-Scaled CMOS Technologies”, 2 SWS ()Seminar “Circuit Design in Nanometer-Scaled CMOS Technologies”, 2 SWS ()

Estimation ofeffort:

Active Time: Lecture: 28 hPreparation and Evaluation: Lecture: 12 hSelf-Study: Seminar: 40 hPreparation and Evaluation: Seminar (presentation and written documenta-tion): 30 hPreparation and Evaluation: Lecture (exam): 40 h

Sum: 150 h

Course assessmentand exams:

Voraussetzung für die Prüfungszulassung ist der Erwerb eines Seminarscheins,welcher die erfolgreiche Teilnahme am Seminar bestätigt. (Successful participa-tion in the seminar certified by a “pass certificate” is a prerequisite for partici-pation in the oral/written examination.)

Requirements(formal):

Voraussetzung für die Kursteilnahme ist die erfolgreiche Teilnahme an der Vor-lesung “Analog CMOS Circuit Design” oder einer äquivalenten Veranstaltung.(Successful participation in the course “Analog CMOS Circuit Design” or a sim-ilar qualification are a course prerequisite.)

Grading: Based on the oral/written exam grade

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

22

Page 23: Masterstudiengang Communications Technology

9 Communication Systems

Token / Number: 8822270434

German title: -

Credits: 4 ECTS

Semester hours: 3

Language: Englisch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Martin Bossert

Training staff: Dr. Hans-Joachim Dreßler

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Optional Module, Communication and SystemTechnology

Electrical Engineering, M.Sc., Optional Module, Automation and EnergyTechnology

Electrical Engineering, M.Sc., Optional Module, General Electrical Engineering

Communications and Computer Engineering, M.Sc., Optional Module,

Communications Technology, M.Sc., Optional Technical Module, Communica-tions EngineeringEmbedded Systems, M.Sc., Application Subject, Communication

Requirements(contentual):

Bachelor

Learning objectives: Understanding the- characteristics of the mobile radio channel and related transmission techniques,- network and protocol architecture, basic protocol procedures, physical layer,performance as well as network planning of mobile radio systems

- principles of OFDM based broadband systems.

Content: Communication systems play a major role in the modern society. Since the1990ies especially wireless communications is of increasing interest worldwide.For the definition of such systems lots of aspects need to be taken into Con-sideration. Among others frequency band allocation, efficient use of radio andnetwork resources, number of sites required to provide radio coverage, targeteduser service characteristics like maximum bit rate and quality and last but notleast cost of implementation. After a short presentation of the wireless com-munications history the characteristics of the terrestrial mobile radio channelare introduced followed by an overview of basic transmission techniques oversuch channels. The second part deals with the TDMA based GSM standard.The role of the network elements being part of the overall network architectureand the services available to the users are introduced. Mobility and securityaspects, protocol architecture, signalling procedures are further topics. Lowerlayer specification and related performance which form the basis for cell plan-ning are discussed in detail. In the third part the UMTS standard which isbased on WCDMA is explained. The presentation follows a similar structure ascompared to the GSM presentation which allows comparison of both systems.

23

Page 24: Masterstudiengang Communications Technology

Content (continued): OFDM is the next topic and it will become evident why it is of special interest inthe case of broadband transmission over dispersive multipath channels. Finallya brief look to market figures concludes the course, thereby demonstrating thehuge potential behind the mobile radio market.

Literature: - Walke: Mobile Radio Networks, John Wiley & Sons, 1999- ETSI Recommendations for GSM-Standard, www.etsi.org- Eberspächer, Vögel, Bettstetter: GSM, Global System for Mobile Communica-tion, Teubner, 2001

- Holma, Toskala: WCDMA for UMTS, Wiley, 2006- Holma, Toskala: HSDPA/HSUPA for UMTS. High Speed Radio Access forMobile Communications, John Wiley & Sons, 2006

- Holma, Toskala: WCDMA for UMTS - HSPA Evolution and LTE, John Wiley& Sons, 2007

- Holma, Toskala: LTE for UMTS - OFDMA and SC-FDMA Based Radio Access,John Wiley & Sons, 2009

- Holma, Toskala: LTE for UMTS - Evolution to LTE Advanced, John Wiley &Sons, 2011

- Bossert: Channel Coding for Telecommunications, John Wiley& Sons, 1999- Tse, Viswanath: Fundamentals of Wireless Communications, Cambridge Uni-versity Press, 2005

- Dahlmann, Parkvall, Sköld, Beming: 3G Evolution, HSPA and LTE for MobileBroadband, Academic Press, 2007

- 3GPP Recommendations, http://www.3gpp.org/specs/numbering.htm- 3GPP Recommendations for UMTS Long Term Evolution (Evolved UTRA as-pects), http://www.3gpp.org/ftp/Specs/html-info/36-series.htm

- CPRI (Common Public Radio Interface), http://www.cpri.info- Ramaswami, Sivarajan and Sasaki: Optical Networks: A Practical Perspective,Morgan Kaufmann Publishers, Elsevier, 2009

- Chris Johnson, Long Term Evolution in Bullets, 2nd edition, 2012, www.lte-bullets.com

Basis for: keine Angaben

Modes of learningand teaching:

Lecture “Communication Systems”, 2 SWS (V) ()Exercise “Communication Systems”, 1 SWS (Ü) ()

Estimation ofeffort:

Active Time: 36 hPreparation and Evaluation: 46 hSelf-Study: 38 h

Sum: 120 h

Course assessmentand exams:

Usually written exam of 120 minutes duration, otherwise oral exam

Requirements(formal):

keine

Grading: Module mark is identical to exam mark.

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

24

Page 25: Masterstudiengang Communications Technology

10 Communications Engineering

Token / Number: 8822270421

German title: Nachrichtentechnik

Credits: 10 ECTS

Semester hours: 8

Language: Englisch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Robert Fischer

Training staff: Prof. Dr.-Ing. Robert FischerDr. Werner Teich

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Elective Module, General Electrical EngineeringElectrical Engineering, M.Sc., Compulsory Subject Module, Communication andSystem TechnologyElectrical Engineering, M.Sc., Optional Module, Automation and Energy Tech-nologyCommunications and Computer Engineering, M.Sc., Elective Module,Communications Technology, M.Sc., Compulsory Subject Module,

Requirements(contentual):

- signals and systems (discrete and continuous-time signals and systems)- fundamentals of random variables and random processes- fundamentals of communications (analog and digital transmission)

Learning objectives: The students will be able to assess, compare, and design state-of-the-art digitalcommunication schemes. They can operate with equivalent complex basebandsignals and systems and appraise the action of system on stochastic processes.Digital pulse amplitude modulation and its variants can be explained and de-vised. The representation of signals in a signal space can be formulated and ap-plied for designing optimum receivers. Coherent and non-coherent approachescan be discriminated. Digital modulation formats can be assessed in the power-bandwidth plane. The students will identify and characterize the action ofdistorting channels and are able to design and evaluate suitable equalizers. Theconcepts of single- and multi-carrier tranmission can be explained, justified andsynthesized for new applications.

Content: - Introduction- Equivalent complex baseband- Fundamentals of digital communications / digital pulse amplitude modulation(PAM)

- Variants of PAM transmission (CAP, MSK, GMSK) / non-coherent transmission- Signal space representation- FSK, CPM- Channel models and digital transmission over dispersive channels- Orthogonal frequency-division multiplexing- Multiple-input/multiple-output systems

25

Page 26: Masterstudiengang Communications Technology

Literature: - J.G. Proakis: Digital Communications. McGraw Hill, 5th ed., 2008- S. Haykin, M. Moher: Communications Systems. John Wiley & Sons, 5th ed.2009.

- K.D. Kammeyer,: Nachrichtenübertragung. Teubner-Verlag, 4. Aufl., 2011.- J.R. Ohm, H.D. Lüke: Signalübertragung, Grundlagen der digitalen und analo-gen Nachrichtenübertragungssysteme. Springer-Verlag, 8. Auflage, 2002.

- J. Lindner: Informationsübertragung, Grundlagen der Kommunikationstechnik.Springer-Verlag, 2004.

Basis for:Multuser Communications and MIMO SystemsIterative Methods for Wireless Communications

Modes of learningand teaching:

Lecture “Communications Engineering”, 4 SWS (V) ()Exercise “Communications Engineering”, 2 SWS (Ü) ()Laboratory “Communications Engineering”, 2 SWS (P) ()

Estimation ofeffort:

Active Time: 144 hPreparation and Evaluation: 100 hSelf-Study: 56 h

Sum: 300 h

Course assessmentand exams:

Usually written exam of 120 minutes, otherwise oral exam; successful participa-tion at the lab course is prerquiste for the exam

Requirements(formal):

Grading: Module mark is identical to exam mark.

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

26

Page 27: Masterstudiengang Communications Technology

11 Compilers for Embedded Systems

Token / Number: 88222????? (To be set by Dezernat II)

English title: Compilers for Embedded Systems

Credits: 6 ECTS

Semester hours: 4

Language: English

Turn / Duration: sporadic (Winter Term) / 1 Semester

Module authority: Prof. Dr. Heiko Falk

Training staff: Prof. Dr. Heiko Falk

Integration of moduleinto courses of studies:

Embedded Systems, M.Sc., Core Subject, Embedded Systems EngineeringCommunications Technology, M.Sc., Optional Technical Module, Communica-tions Engineering

Requirements(contentual):

Knowledge in the areas of embedded systems and compiler construction, astaught in the course of the modules “Entwurfsmethodik eingebetteter Systeme”and “Grundlagen des Übersetzerbaus”, is advantageous. However, the relevantfoundations will be recapitulated sufficiently for lateral entrants.Skills in C/C++ programming are beneficial for the labs.

Learning objectives: The relevance of embedded systems increases from year to year. Within suchsystems, the amount of software to be executed on embedded processors growscontinuously due to its lower costs and higher flexibility. Because of the par-ticular application areas of embeded systems, highly optimized and application-specific processors are deployed. Such highly specialized processors impose highdemands on compilers which have to generate code of highest quality. Afterthe successful attendance of this course, the students are able

- to illustrate the structure and organization of such compilers,- to distinguish and explain intermediate representations of various abstractionlevels, and

- to assess optimizations and their underlying problems in all compiler phases.The high demands on compilers for embedded systems make effective codeoptimizations mandatory. The students learn in particular,

- which kinds of optimizations are applicable at the source code level,- how the translation from source code to assembly code is performed,- which kinds of optimizations are applicable at the assembly code level,- how register allocation is performed, and- how memory hierarchies can be exploited effectively.Since compilers for embedded systems often have to optimize for multiple objec-tives (e.g., average or worst-case execution time, energy dissipation, code size),the students learn to evaluate the influence of optimizations on these differentcriteria.While attending the labs, the students will learn to implement a fully functionalcompiler including optimizations.

27

Page 28: Masterstudiengang Communications Technology

Content: - Scope and Motivation- Compilers for Embedded Systems - Requirements and Dependencies- Internal Structure of Compilers- Prepass Optimizations- HIR Optimizations and Transformations- Code Selection- LIR Optimizations and Transformations- Register Allocation- Compilers for Safety-Critical Real-Time Systems- Future Prospects

Literature: - P. Marwedel. Embedded System Design - Embedded Systems Foundations ofCyber-Physical Systems. 2nd Edition, Springer, 2012.

- S. S. Muchnick. Advanced Compiler Design and Implementation. MorganKaufmann, 1997.

- A. W. Appel. Modern compiler implementation in C. Oxford University Press,1998.

Basis for: Master’s theses in the areas of embedded systems design and compiler construc-tion

Modes of learningand teaching:

Lecture Compilers for Embedded Systems, 3 SWS (Prof. Dr. Heiko Falk)Exercise Compilers for Embedded Systems, 1 SWS (Dipl.-Inf. Nicolas Roeser)

Estimation ofeffort:

Active Time: 60 hPreparation and Evaluation: 120 hSum: 180 h

Course assessmentand exams:

The examination for this module is done orally or written, depending on thenumber of attendees. The actual examination mode will be announced at thebeginning of the course.

Requirements(formal):

None.

Grading: The module’s grades arise from the examination’s result.

Basierend auf Rev. 1086. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

28

Page 29: Masterstudiengang Communications Technology

12 Compound Semiconductors

Token / Number: 8822270461

German title: Verbindungshalbleiter

Credits: 6 ECTS

Semester hours: 4

Language: Englisch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr. Ferdinand Scholz

Training staff: Prof. Dr. Ferdinand Scholz

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesAdvanced Materials, M.Sc., Optional Module,

Electrical Engineering, M.Sc., Optional Module, Microelectronics

Electrical Engineering, M.Sc., Optional Module, Automation and EnergyTechnology

Electrical Engineering, M.Sc., Optional Module, General Electrical Engineering

Communications Technology, M.Sc., Optional Technical Module, Microelec-tronics

Requirements(contentual):

Kenntnisse und Kompetenzen der Module: Grundlagen der Halbleiterphysik

Learning objectives: After successfully having finished the module, the students are able to describethe basic physics of compound semiconductors and contrast them to those ofelemental semiconductors. They are able to describe important characteristicslike band gap, lattice constant or refractive index and identify their systematictrends. They are able to derive from those basics the application possibilitiesof compound semiconductors and discuss their advantages and disadvantages.They are able to describe and compare the most important fabrication andcharacterization methodes. They are able to describe the constitution of themost important basic hetero structures and explain their mode of operation.Based on that, they are able to develop the structure of important representativedevices like light emitting diodes or laser diodes and to describe in detail thefunction of the respective structural details.

Content: - Basics of Semiconductors, Compound Semiconductors- Bulk crystal growth, liquid phase epitaxy, vapor phase epitaxy, molecular beamepitaxy

- Optical processes, spectroscopic methods- Electrical characterisation methods- x-ray diffraction, microscopy methods, other characterisation methods- Strain in semiconductor structures- Low-dimensional structures: quantum wells, wires, dots- Semiconductor Light emitters and Laser Diodes- Short Wavelength materials: Group III nitrides- Electronic devices: HEMTs, HBTs- Solar Cells

29

Page 30: Masterstudiengang Communications Technology

Literature: - skript to lecture- C. Kittel, Introduction to Solid State Physics (John Wiley, New York, 1996)- O. Madelung, Grundlagen der Halbleiterphysik, Springer- R.J. Malik (Volume Ed.), F.F.Y. Wang (Series Ed.), Materials Processing, The-ory and Practices, Vol. 7: III-V-Semiconductor Materials and Devices, North-Holland, Amsterdam, Oxford, New York, Tokyo 1989

- T.S. Moss (ed.) Handbook of Semiconductors, Elsevier, Amsterdam 1994- D.T.J. Hurle (ed.), Handbook of Crystal Growth, North-Holland, Amsterdam1993, Vol. 1-3

- S.M. Sze, Physics of Semiconductor Devices, John Wiley- R.K. Willardson, A.C. Beer, Semiconductors and Semi-metals, Book Series Aca-demic Press; g. Vol. 22, Vol. 24

- E. Rosencher, B. Vinter, Optoelectronics, Cambridge University Press 2002- K.J. Ebeling; Integrated optoelectronics : waveguide optics, photonics, semi-conductors Berlin ; Heidelberg [u.a.] : Springer, 1993

Basis for: keine Angaben

Modes of learningand teaching:

Lecture “Compound Semiconductors”, 3 SWS (V) ()Exercise “Compound Semiconductors”, 1 SWS (Ü) ()

Estimation ofeffort:

Preparation and Evaluation: 56 hActive Time: 74 hSelf-Study: 50 h

Sum: 180 h

Course assessmentand exams:

Participation in lectures and exercises, own seminar talk, typically oral exami-nation, otherwise written exam with duration of 120 min

Requirements(formal):

Grading: Result of oral or written exam.

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

30

Page 31: Masterstudiengang Communications Technology

13 Compressed Sensing - Effiziente Informationserfassung

Token / Number: 8822271472

German title: -

Credits: 5 ECTS

Semester hours: 3

Language: Deutsch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Dr. Dejan Lazich

Training staff: Dr. Dejan Lazich

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Optional Module, Communication and SystemTechnology

Electrical Engineering, M.Sc., Optional Module, Automation and EnergyTechnology

Electrical Engineering, M.Sc., Optional Module, General Electrical Engineering

Communications and Computer Engineering, M.Sc., Optional Module,Communications Technology, M.Sc., Optional Module,Computer Science and Media, M.Sc., Optional Module,

Requirements(contentual):

Grundkenntnisse in Signalverarbeitung und Systemtheorie Grundkenntnisse inLinearer Algebra, Wahrscheinlichkeitstheorie und Statistik

Learning objectives: Im Rahmen dieser Vorlesung werden die Studenten in die Lage versetztein neues und vielversprechendes Gebiet der Informationsverarbeitung, miteiner anspruchsvollen Betrachtungsweise einfach und verständlich darzustellen.Dabei werden die Studenten das Verfahren mit konventionellen Systemen ver-gleichen. Das zugrundeliegende Konzept von Compressed Sensing, welchesauf unterbestimmte lineare Gleichungssysteme beruht, kann von den Studen-ten nach Besuch dieser Vorlesung detailliert analysiert und diskutiert werden.Ebenso, werden die Studenten die wichtigsten Rekonstruktionsalgorithmen im-plementieren und nach verschiedenen Kriterien vergleichen können. Durch dieVorlesung wird es den Studenten ermöglicht komplexe Optimierungsansätzein höheren Dimensionen geometrisch zu interpretieren und damit werden siein die Lage versetzt auch eigene Ansätze zu synthetisieren. Zudem könneneine Vielzahl von Anwendungsmöglichkeiten von Compressed Sensing durch dieStudenten erläutert und neue Einsatzgebiete erkannt werden. Die Studentenwerden befähigt, mit der sehr fachspezifischen Literatur umzugehen und diesein den passenden Kontext einzuordnen.

31

Page 32: Masterstudiengang Communications Technology

Content: Vor einigen Jahren entstand ein vielversprechendes Gebiet der Informationsverar-beitung, das sogenannte Compressed Sensing, welches einen alternativen Ansatzzur konventionellen Bildaufnahme und Kompression ermöglichte. Dieses Gebietist auch unter dem Namen Compressive Sampling bekannt geworden, da esunter bestimmten Voraussetzungen eine verlustfreie Signalabtastung mit Ab-tastraten weit unter der Nyquist-Grenze erlaubt, was erhebliche Gewinne beider Erfassung und Kornpression von Information bringt. Allerdings ist die Sig-nalrekonstruktion aufwändiger als bei der klassischen Abtastung. Statt miteinfachen Techniken wie z. B. Tiefpassfilterung, wird bei Cornpressed Sensingdie Signalrekonstruktion mittels Optimierungsmethoden bezüglich der sogenan-nten L1-Metrik durchgeführt. Der Einsatz von solchen Optimierungsmethodenhat sich inzwischen explosionsartig in den unterschiedlichsten Bereichen derInformationsverarbeitung ausgebreitet.

Content (continued): Beispielsweise existieren zur Aufnahme und gleichzeitigen Kompression vonzwei- und dreidimensionalen Bildern allgemein, seien sie mit Licht, Radar oderanderen Wellen aufgenommen, bereits zahlreiche theoretische und praktischeErgebnisse. Auch in anderen Gebieten wie z. B. bei der Analyse sogenannterDNA-Microarrays, die eine parallele Analyse von in geringer Menge vorliegen-dem biologischen Probenmaterial erlaubt, ist die Anwendung von Methoden desCompressed Sensing schon vorgeschlagen worden. Leider sind die Grundlagendes Compressed Sensing nicht leicht aus der wissenschaftlichen Literatur zuersehen. Hier mischen sich verschiedene Aspekte und spezifische Sprachen un-terschiedlichster mathematischer Gebiete, wie etwa hochdimensionale Geome-trie der Euklidischen- und Banach-Räume, Zufallsmatrizen, lineare und kon-vexe Optimierung, harmonische Analyse, und Kombinatorik. Diese äußerstanspruchsvolle Betrachtungsweise von Compressed Sensing wird in dieser Vor-lesung möglichst einfach, anschaulich und anwendungsorientiert für Ingenieureaufbereitet. Das zugrundeliegende Prinzip des neuen Forschungsgebietes dieSuche (mittels Optimierungsmethoden) nach spezifischen Lösungen von unvoll-ständigen (unterbestimmten) linearen Gleichungssystemen wird systematischerklärt. Beim Einsatz dieser linearen Optimierungsmethoden im Bereich derKanalcodierung wurden kürzlich überraschend gute Ergebnisse berichtet. DieseErgebnisse sowie die Perspektiven des Ansatzes werden in der Vorlesung eben-falls diskutiert.

32

Page 33: Masterstudiengang Communications Technology

Content (continued): Die wichtigsten Themen der Vorlesung umfassen:

- Grundlagen der mehrdimensionalen Euklidischen Geometrie: lineare Räume undPolytope

- Rekapitulation der notwendigen Begriffe aus der linearen Algebra- Geometrische Interpretation von linearen Gleichungssystemen- Grundzüge der Funktionalanalysis: Algebraische Strukturen, Lineare Opera-toren, Normierte Räume, Banach-Räume, Innerprodukträume, Funktion- undIntegraltransformationen

- Rekapitulation der Fourier-Analyse und anderen anwendungswichtigen Integral-transformationen

- Shannon-Nyquist Abtasttheorem- Allgemeine Abtastung von wert- und zeitkontinuierlichen Signalen- Compressed Sensing - effiziente Erfassung von wert- und zeitkontinuierlichen(Abtastung mit Kompression) oder zeitdiskreten (nur Kompression) Signalen

- Einfache Erklärung der Prinzipien von Compressed Sensing mittels Begriffen dermehrdimensionalen Euklidischen Geometrie

- Theoretische Grenzen von Compressed Sensing- Robustheit von Compressed Sensing- Rekapitulation der Optimierungsmethoden lineare und konvexe Program-mierung

- Arten der Rekonstruktion-Algorithmen mit Optimierungsmethoden in Com-pressed Sensing

- Praktischer Einsatz von Compressed Sensing in Analog/Digital Wandlern- Praktischer Einsatz von Compressed Sensing in der Bildverarbeitung - Ein-Pixel-Kamera

- Einsatz von Compressed Sensing in der Kanalcodierung- Compressed Sensing bei DNA-Mikro-Arrays für biologische Experimente- Perspektiven von Compressed Sensing: Verbindung mit Kolmogorovs Superposi-tion Theorem - Grundlage für effiziente Erfassung von wert- und zeitkontinuier-lichen Signalen mit mehr als drei Argumenten

Literature: Es existiert bis dato noch kein einführendes Lehrbuch oder Skript zum ThemaCompressed Sensing. Daher werden, neben die Vorlesungsfolien, Übersichtsar-tikel empfohlen:

- Mehrere Übersichtsartikel aus dem IEEE Signal Processing Magazine (Speciallssue on Compressive Sampling), March 2008.

- Web-Seite für Compressed Sensing: http://dsp.rice.edu/cs

Basis for: Master-Arbeit

Modes of learningand teaching:

Lecture “Compressed Sensing - Effiziente Informationserfassung”, 2 SWS (V) ()Exercise “Compressed Sensing - Effiziente Informationserfassung”, 1 SWS (Ü)()

Estimation ofeffort:

Active Time: 44 hPreparation and Evaluation: 71 hSelf-Study: 35 h

Sum: 150 h

Course assessmentand exams:

In der Regelmündliche Prüfung von 30 Minuten Dauer

Requirements(formal):

Grading: Anhand der Ergebnisse der mündlichen Prüfung

33

Page 34: Masterstudiengang Communications Technology

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

34

Page 35: Masterstudiengang Communications Technology

14 Computer Networks

Token / Number: 8822270418

German title: Kommunikationsnetze

Credits: 4 ECTS

Semester hours: 3

Language: Englisch

Turn / Duration: sporadic (Winter Term) / 1 Semester

Module authority: Prof. Prof. Dr.-Ing. Stefan Wesner

Training staff: Prof. Prof. Dr.-Ing. Stefan Wesner

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesCommunications Technology, M.Sc., Optional Technical Module, Communica-tions Engineering

Requirements(contentual):

Basic comprehension of electrical engineering and information technology.

Learning objectives: After completing the lecture students will be able to name and describe themajor network protocols and technologies for building local and wide area net-works. They will be able to explain the fundamental architectural principles innetworks, such as the ISO/OSI model and the Internet protocol stack. Studentswill understand the challenges on each protocol layer and will be able to explainhow the covered protocols in the lecture address them. Students participating inthis lecture will be able to compare the different protocols as well to understandand explain their limitations. Participants of this lecture can name the differentnetwork topologies for date centre networks, describe the different protocols forinterconnects or storage networks and are able to assess and select appropriatetechnology under given technological and economic constraints. The studentswill ultimately be able to apply their knowledge by selecting the most appro-priate protocol for a given scenario and design and build network architectureson their own. In the corresponding seminar the students will learn how to findand research specific additional information for a selected related topic, how topresent the results and discuss their findings with the group.

35

Page 36: Masterstudiengang Communications Technology

Content: The lecture “Computer Networks” is an introduction to networks used with to-day’s computers. It deals mostly with the construction, the functionality andthe design of local networks and protocols. On the basis of the ISO/OSI Modelas a commonly used layered reference model, network and computer protocolsare discussed. Media Access Control protocols of the lower layer are discussedtogether with network topologies with respect to their medium access mecha-nism. Topics of discussion include classic technologies like Ethernet as well astechnologies used by internet service providers. On OSI Layer 3 and 4 (networkand transport layer), the commonly encountered TCP/IP protocol is introducedand covered in detail. This builds the basis for discussing a set of applicationprotocols based on TCP/IP such as RTP, HTTP or protocol patterns like REST.In addition, the lecture presents other specialised networks applied in manufac-turing or within cars such as CAN bus. The lecture is concluded by discussingdata centre networks such as Infiniband used in high performance computingdata centres and server farms and the corresponding storage networks like SRPand iSCSI.Seminar During the seminar component of the lecture, the students will learnhow to independently research and organise information on a given topic lyingwithin the scope of the lecture. Each group or student will prepare their materialwith modern presentation software and then present it to the class. Supervisorsare available in advance to provide discussion opportunities and advice.

Literature: - Kurose, Ross: Computer Networks, Pearson, 5th edition- George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair: DistributedSystems: Concepts and Design, 5th edition

- Comer, Douglas E.: Internetworking with TCP/IP. Principles, protocols, andarchitecture; London 1988

- Lawrenz, Wolfhard (Hrsg.): CAN - Controller Area Network. Grundlagen undPraxis; 2., vollständig überarbeitete und erweiterte Auflage; Heidelberg 1997

- Stevens, W. Richards: TCP/IP Illustrated, Volume 1. The Protocols; Reading(Massachusetts) 1994

- Tannenbaum: Computer Networks; Prentice Hall- Michel Dubois, Murali Annavaram, Per Stenström: Parallel Computer Organi-zation and Design, 2012

- Ulf Troppens, Rainer Erkens, Wolfgang Mueller-Friedt, Rainer Wolafka, NilsHaustein: Storage Networks Explained: Basics and Application of Fibre ChannelSAN, NAS, iSCSI, InfiniBand and FCoE, 2009

Basis for: Keine Angaben

Modes of learningand teaching:

Keine AngabenLecture “Computer Networks”, 2 SWS ()Seminar “Computer Networks”, 1 SWS ()

Estimation ofeffort:

Active Time: 45 hPreparation and Evaluation: 75 h

Sum: 120 h

Course assessmentand exams:

Keine Angaben

Requirements(formal):

Grading: Keine Angaben

Basierend auf Rev. 1069. Letzte Änderung am 30.07.2013 um 13:01 durch vpollex.

36

Page 37: Masterstudiengang Communications Technology

15 Cross-organizational distributed systems and Clouds

Token / Number: 8822272092

English title: Cross-organizational distributed systems and Clouds

Credits: 6 ECTS

Semester hours: 4

Language: englisch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Stefan Wesner

Training staff: Prof. Dr.-Ing. Stefan Wesner

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Optional Module, Engineering SciencesElectrical Engineering, M.Sc., Optional Module, Communication and SystemTechnology

Communications and Computer Engineering, M.Sc., Recommended OptionalModule,

Communications Technology, M.Sc., Optional Technical Module,

Requirements(contentual):

Basic knowledge of distributed systems and/or communication networks

Learning objectives: After this course students will have an in-depth understanding of the stateof the art of cross-organisational and Cloud-based systems and can name anddescribe the architectural principles from Infrastructure over Platform up toSoftware Service concepts. Students have an understanding of the differentcloud software stacks and solutions and are able to assess the advantages andlimitations of existing solutions. Additionally they understand the challengesand solution approaches to deliver Cloud-based services not only from a con-sumer but also from a Data Centre Operator viewpoint as well as how ServiceLevel Agreements support reliable outsourcing. Students will be also able toassess and compare Clouds and local systems from a financial/economic view-point. Students can describe the challenges addressed by the presented researchprojects.

Content: In the first part of this course the basics and specific challenges of cross-organisational distributed systems are discussed. Starting from approaches suchas Metacomputing and Grid Computing and virtualisation approaches, currentCloud-based solutions are introduced including the layer model (XaaS). Theconcept of Service Level Agreements is introduced and how a Data Centre canefficiently deliver Cloud services that are driven by performance and energy in-dicators. The economic aspects of centralized service provision as well as theirimpact on networks and their relation to Network Function Virtualization andSoftware Defined Networking are discussed. The course is concluded by selectedthemes from “Future Clouds” and current developments in commercial and re-search approaches. The course is amended as appropriate with guest speakersfrom collaborating institutions from academia and industry.

37

Page 38: Masterstudiengang Communications Technology

Literature: The future of Cloud Computing, http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf

- John Rhoton, Risto Haukioja, Cloud Computing Architected - Solution DesignHandbook

- Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, Cloud Computing:Principles and Paradigms

- Nicholas Carr, The Big Switch: Rewiring the World, from Edison to Google- Dimitrakos, Martrat, Wesner, Service Oriented Infrastructures and Cloud Ser-vice Platforms for the Enterprise: A selection of common capabilities validatedin real-life business trials by the BEinGRID consortium

- Bill Wilder, Cloud Architecture Patterns: Using Microsoft Azure

Basis for: Masterarbeit

Modes of learningand teaching:

Lecture “Cross-organizational distributed systems and Clouds”, 2 SWS ()Exercise “Cross-organizational distributed systems and Clouds”, 1 SWS (Ü) ()Seminar “Cross-organizational distributed systems and Clouds”, 1 SWS ()

Estimation ofeffort:

Active Time: 60 hPreparation and Evaluation: 40 hSelf-Study: 80 h

Sum: 180 h

Course assessmentand exams:

Oral Exam

Requirements(formal):

Grading: Oral Exam

Basierend auf Rev. 1106. Letzte Änderung am 13.09.2013 um 12:48 durch vpollex.

38

Page 39: Masterstudiengang Communications Technology

16 Cultural Crossroads

Token / Number: 8822271729

German title: -

Credits: 2 ECTS

Semester hours: 2

Language: Englisch

Turn / Duration: every Semester / 1 Semester

Module authority: Prof. Dr.-Ing. Hermann Schumacher

Training staff: Dr.rer.nat. Katrin Reimer

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesCommunications Technology, M.Sc., Optional Non-Technical Module,

Requirements(contentual):

- Basic skills in using presentation software (PowerPoint, Open Office Impress orsimilar)

- Good knowledge of English

Learning objectives: Students acquire basic presentation skills. The student selects relevant topicsabout his or her home country, recognizes aspects of general interest and re-searches on them, and prepares an oral presentation. Peculiarities of the ownhome culture will be identified, desribed and reflected. Students will practicediscussing issues and defending their own statements. Students acquire intercul-tural competence by relating to their peers of other countries in a multiculturalgroup.

Content: - Preparation of a presentation using guidelines- Oral presentation- Group discussion on content

Literature:

Basis for:

Modes of learningand teaching:

Seminar“Cultural Crossroads”, 2 SWS (V)

Estimation ofeffort:

Active Time: 26 hPreparation and Evaluation: 34 h

Sum: 60 h

Course assessmentand exams:

Participation in seminar compulsory (students may miss a maximum of twodates) seminar presentation (30 min)

Requirements(formal):

keine

Grading: Not graded (pass/fail)

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

39

Page 40: Masterstudiengang Communications Technology

17 Design Automation of Embedded Systems

Token / Number: 88222????? (Wird vom Dezernat 2 festgelegt)

English title: Design Automation of Embedded Systems

Credits: 6 ECTS

Semester hours: 4

Language: Englisch

Turn / Duration: sporadic (Winter Term) / 1 Semester

Module authority: Prof. Dr.-Ing. Frank Slomka

Training staff: Prof. Dr.-Ing. Frank Slomka

Integration of moduleinto courses of studies:

Embedded Systems, M.Sc., Core Subject, Embedded Systems EngineeringCommunications Technology, M.Sc., Optional Technical Module, Communica-tions Engineering

Requirements(contentual):

Architectures of Embedded Systems

Learning objectives: Students will describe the meodel based design process of embedded systems.They know different methods to analyze embedded systems. Students knowembedded systems computational models. The are familiar with algorithms toanalyze the behavior of tasks and systems. The could calculate the responsetime of real-time tasks on system level. Students could calculate the utilizationof processors and the can give formal proofs for real-time analyzis algorithms.They could use commercial and academic real-time analysis tools.

Content: - Overview to Model Based Design of Embedded Systems- Real-Time and Real-Time Systems- Modelling: Event- and Taskmodels- Intrinsic Analysis of Real-Time Systems- Extrinsic Analysis of Real-Time Systems- Complexity and Approximation- Optimization and Design Space Exploration

Literature: - Jürgen Teich: Digitale Hardware-/Software Systeme, Springer 1996- Peter Liggesmeyer und Dieter Rombach: Software Engineering eingebetteterSysteme, Spektrum Akademischer Verlag 2005

- Jean J. Labrosse: Embedded Systems Building Blocks, CMP 2000- Peter Marwedel: Eingebette Systeme, Springer 2007- Zbigniew Michalewicz und David B. Fogel: Modern Heuristics, Springer, 2000

Basis for: –

Modes of learningand teaching:

Lecture Design Automation of Embedded Systems, 2 SWS (Prof. Dr.-Ing.Frank Slomka)Exercise Design Automation of Embedded Systems, 1 SWS (Dipl.-Ing. TobiasBund)Laboratory Design Automation of Embedded Systems, 1 SWS (Dipl.-Ing. To-bias Bund)

40

Page 41: Masterstudiengang Communications Technology

Estimation ofeffort:

Active Time: 60 hPreparation and Evaluation: 120 hSum: 180 h

Course assessmentand exams:

The examination for this module is done orally or written, depending on thenumber of attendees. The actual examination mode will be announced at thebeginning of the course.

Requirements(formal):

Keine

Grading: The module’s grades arise from the examination’s result.

Basierend auf Rev. 1086. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

41

Page 42: Masterstudiengang Communications Technology

18 Dialogue Systems

Token / Number: 8822270423

German title: -

Credits: 6 ECTS

Semester hours: 4

Language: deutsch

Turn / Duration: every Winter Term / 1 Semester

Module authority: Prof. Dr.-Ing. Dr. Wolfgang Minker

Training staff: Prof. Dr.-Ing. Dr. Wolfgang Minker

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesCommunications Technology, M.Sc., Optional Technical Module, Communica-tions Engineering

Requirements(contentual):

Bachelor. No prerequisites from other lectures required. Some basic knowledgein digital signal processing, computer science, cybernetics and statistics wouldbe helpful.

Learning objectives: The student should:- achieve a general theoretical knowldege in the domain of multimodal spokennatural language dialogue technology,

- understand the interdisciplinary character of the field,- achieve some practical knowledge through exercises with real systems and theircomponents at different levels of processing.

Content: The lecture provides an introduction into the area of multimodal spoken naturallanguage dialogue systems. A particular focus is placed on acoustic processing,speech signal analysis, recognition, spoken natural language understanding, dia-logue processing and speech synthesis. The topics will be illustrated throughoutpractical sessions and demonstrations of applications and products. Local com-panies working in the field of multimodal spoken natural language dialoguesystems will provide guest lectures.Topics:

- Human Communication. Speech communication, structure and properties ofspeech, speech production, and speech perception.

- Spoken Natural Language Dialogue Systems Overview. Disciplines of speechprocessing, history, speech coding, speech synthesis, speech recognition, speechidentification/verification, semantic analysis, dialogue modelling.

42

Page 43: Masterstudiengang Communications Technology

Content (continued): - Speech Synthesis. Relationship between phonetics and written language, speechsynthesis steps, phonetic inventory, speech signal production, speech synthesis(concatenation), linear prediction, prosody control.

- Acoustic Processing. Beamforming, spectral subtraction, noise reduction, echocompensation, GSM-coding, blind source separation.

- Speech Recognition. Overview over the most commonly used techniques inspeech recognition, such as feature extraction from speech, statistical modellingof speech, search and speaker adaptation techniques.

- Semantic Analysis and Dialogue Modelling. Theory of formal languages, Chom-sky hierarchy, word problem, finite automata, parsing, syntactic vs. semanticgrammars, rule-based vs. statistical approaches to semantic analysis, dialoguemodelling and application control.

- Systems Evaluation, Applications and Products. Evaluation of speech recog-nition and spoken language dialogue systems, overview on research projects,commercially available and research prototypes.Exercises and Practicals. Spo-ken natural language dialogue systems development with a focus on parsingand VoiceXML based dialogue management.

Literature: - copies of slides- J. Allen: Natural Language Understanding , The Benjamin/Cummings Publish-ing Company, Inc., 1988

- W. Minker, A. Waibel and J. Mariani: Stochastically-based semantic analysis ,The Kluwer International Series in Engineering and Computer Science, KluwerAcademic Publishers, Boston, 1999

- L.R. Rabiner and B.H. Juang: An introduction to Hidden Markov Models ,IEEE Transactions on Acoustics: Speech and Signal Processing , 3:1, pp. 4-16,1986

- S.J. Young, P.C. Woodland, and W. Byrne: Spontaneous Speech Recognitionfor the Credit Card Corpus Using the HTK Toolkit , IEEE Trans. Speech andAudio Processing, Vol 2, No 4, 1994

Basis for: keine Angaben

Modes of learningand teaching:

Lecture “Dialogue Systems”, 2 SWS ()Exercise “Dialogue Systems”, 2 SWS ()

Estimation ofeffort:

Active Time: 70 hPreparation and Evaluation: 70 hSelf-Study: 70 h

Sum: 210 h

Course assessmentand exams:

Teilnahme an den Vorlesungen und Übungen. In der Regel mündliche Prüfung,ansonsten schriftliche 90 minütige Prüfung.

Requirements(formal):

Voraussetzung für die Prüfungszulassung ist der Erwerb eines Übungsscheins,welcher die erfolgreiche Teilnahme an den Übungen bestätigt.

Grading: an Hand des Prüfungsergebnisses

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

43

Page 44: Masterstudiengang Communications Technology

19 Electronic System Design using C and SystemC

Token / Number: 8822270436

German title: -

Credits: 6 ECTS

Semester hours: 4

Language: englisch

Turn / Duration: every Winter Term / 1 Semester

Module authority: Prof. Dr.-Ing. Maurits Ortmanns

Training staff: Dr. Endric Schubert

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Elective Module, Communication and SystemTechnologyElectrical Engineering, M.Sc., Optional Module, Automation and Energy Tech-nologyCommunications and Computer Engineering, M.Sc., Elective Module, (Ing)Communications Technology, M.Sc., Optional Technical Module,Embedded Systems, M.Sc., Application Subject, Mixed Signal Systems

Requirements(contentual):

Bachelor

Learning objectives: In today’s world of short product cycles the design of electronic systems demandsconcurrent design of the hardware and software components. IEEE 1666 Sys-temC has evolved as the de-facto industry standard for modeling and validatinghardware and software components of electronic systems. SystemC builds uponthe powerful ANSI/ISO C++ computer software language and adds means formodeling concurrency (parallelism), communication mechanisms, reactivity forsynchronizing concurrent processing, and a concept of time. Thus SystemC canbe seens as a C++ class library plus an event-based simulation kernel. Studentswill learn the elements of the ANSI/ISO programming languages C and C++.Their knowledge and understanding of the syntax, semantics and programmingprinciples is applied to practical programming examples. Students reproducemodern techniques of generic programming using C++ templates and C++class inheritance. Students will analyze electronic system level designs basedon the IEEE 1666 SystemC language and the corresponding methodologies.This includes the design and validation of electronic systems by modeling time,concurrency (parallelism), reactivity, and communication. They apply theseconcepts by modifying and/or writing practical code examples. Students canidentify state-of-the-art Models of Computation, and can distinguish betweenmodeling concepts such as Untimed Functional Models (UFM), Timed Func-tional Models (TFM), Transaction-Level Modeling (TLM). Students will gaininsight into the underlying event-driven OSCI simulation kernel and, thereby,can apply methodologies for trading-off between accuracy, programming effortand simulation speed.

44

Page 45: Masterstudiengang Communications Technology

Content: In today’s world of short product cycles the design of electronic systems de-mands concurrent design of the hardware and software components. Over avery short time period SystemC has evolved as the de-facto industry standardfor modeling and validating hardware and software components of electronicsystems. SystemC builds upon the powerful ANSI C++ computer software lan-guage and adds means for modeling concurrency (parallelism), communicationmechanisms, reactivity for synchronizing concurrent processing, and a conceptof time. Thus SystemC can be seens as a C++ class library plus an event-basedsimulation kernel. After a refresher of the syntax of ANSI C++ and principlesof object-oriented programming, the syntax of SystemC is introduced. Modelsof Computation are presented that are commonly used to model at various lev-els of abstraction: Register-Transfer Level, Behavioral Level, Transaction Level,etc. SystemC models may differ in their accuracy in certain aspects: Pin-levelaccuracy, timing accuracy, structural accuracy, functional accuracy, communica-tion accuracy. The student will learn methods for trading-off fast developmentof a SystemC model vs. accuracy and simulation speed. Methods for refiningmodels to gain more accuray in certain areas are show, together with formalprocesses that have proven to be efficient. To complement the class many ex-amples of SystemC code will be shown during the lectures. Hands-on exerciseswill take those examples to the next level of understanding and will enable thestudent to develop, compile and debug own SystemC models.

Literature: - Ellis, Stroustrup, "The Annotated C++ Reference , Addison-Wesley- The manual pages for GNU gcc, GNU make, GNU gdb at www.gnu.org- Groetker et al., System Design with SystemC , Kluwer Academic Publishers,200 - 2

- The SystemC Language Reference Manual (LRM) from the Open SystemCInitiative at www.osci.org

Basis for: keine Angaben

Modes of learningand teaching:

Lecture “Electronic System Design using C and SystemC”, 2 SWS ()Exercise “Electronic System Design using C and SystemC”, 2 SWS ()

Estimation ofeffort:

Active Time: 56 hPreparation and Evaluation: 80 hSelf-Study: 44 h

Sum: 180 h

Course assessmentand exams:

attendance to lecture and exercises; the examination is normally a written ex-amination taking 120 minutes, otherwise oral exam

Requirements(formal):

Grading: mark of examination

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

45

Page 46: Masterstudiengang Communications Technology

20 Embedded Security - Informationssicherheit in eingebetteten Systemen

Token / Number: 8822271450

German title: -

Credits: 6 ECTS

Semester hours: 4

Language: Deutsch

Turn / Duration: every Winter Term / 1 Semester

Module authority: Dr.-Ing. Dejan Lazich

Training staff: Dr.-Ing. Dejan Lazich

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Optional Module, Communication and SystemTechnology

Electrical Engineering, M.Sc., Optional Module, Automation and EnergyTechnology

Electrical Engineering, M.Sc., Optional Module, General Electrical Engineering

Communications and Computer Engineering, M.Sc., Optional Module,Communications Technology, M.Sc., Optional Technical Module, Communica-tions EngineeringComputer Science, M.Sc., Core Subject, Technische und Systemnahe InformatikComputer Science, M.Sc., Specialization Subject, IT-SicherheitComputer Science and Media, M.Sc., Core Subject, Technische und SystemnaheInformatikComputer Science and Media, M.Sc., Specialization Subject, IT-SicherheitComputer Science, M.Sc., Specialization Subject, Eingebettete SystemeComputer Science and Media, M.Sc., Specialization Subject, Eingebettete Sys-teme

Requirements(contentual):

Elektrotechnik: Grundkenntnisse in Signalverarbeitung und Systemtheorie sowiein Schaltungs- und ProzessortechnikMathematik: Grundkenntnisse in algebraischen Strukturen, Wahrscheinlichkeit-stheorie und StatistikInformatik: Grundkenntnisse in Sicherheit von IT Systemen

Learning objectives: Die Studenten können nach der Vorlesung Kryptografische Verfahren undProtokolle für eingebettete Systeme vergleichen und anwenden. Implemen-tierungsaspekte von sicherheitskritischen Funktionseinheiten in eingebettetenSystemen können unterschieden und analysiert werden. Bekannten Schwach-stellen und entsprechende Angriffsmethoden können systematisch eingeordnetund beurteilt werden. Die Studenten werden wirkungsvolle Gegenmaßnahmenzu einzelnen Angriffsmethoden selektieren und evaluieren können. Beispielanal-ysen der Informationssicherheit in verschiedenen Arten von eingebetteten Syste-men können validiert und umfassend interpretiert werden. Die Studenten wer-den in die Lage versetzt sicherheitskritische Komponenten zu evaluieren undderen Zertifizierung vorzubereiten.

46

Page 47: Masterstudiengang Communications Technology

Content: Eingebettete Systeme sind Systeme zur Informationsverarbeitung mit festerFunktionalität, die in ein größeres technisches System eingebunden sind, undverrichten - weitestgehend unsichtbar für den Benutzer - ihren Dienst in einerVielzahl von All-tagsanwendungen. Embedded Security befasst sich mit derInformationssicherheit (IT-Sicherheit) der eingebetteten Systeme durch An-wendung von Maßnahmen gegen unbefugte Manipulationen bei der Beschaf-fung, Übertragung, Bearbeitung und Speicherung von Informationen. DieVerwendung von kryptografischen Methoden ist eine Grundvoraussetzung fürden Einsatz dieser Maßnahmen. In der Vergangenheit war der zivile Ein-satz von Kryptografie und IT-Sicherheit hauptsächlich auf das Bankwesen unddie sichere Kommunikation zwischen Regierungsstellen beschränkt. Heutzu-tage ist IT-Sicherheit durch das Aufkommen von eingebetteten Systemen ineiner weitaus größeren Zahl von Anwendungen notwendig. Durch die Vernet-zung entstehen Mehrwertdienste und Wertschöpfungspotentiale - etwa in derTelekommunikation, Logistik, Fahrzeugtechnik, Bürotechnik, Unterhaltungse-lektronik, Energieversorgung, Medizintechnik, usw.. Gleichzeitig ergeben sichaus dieser Vernetzung erhebliche Bedrohungen, welche die Ausfall- und Ma-nipulationssicherheit gefährden und damit zu erheblichen Sicherheitsrisikenführen. Aufgrund der leichten Zugänglichkeit auf die in der Regel zeitkri-tischen Komponenten von eingebetteten Systemen mit ihren eingeschränktenRessourcen ist die IT-Sicherheit in diesem Be-reich stark verbesserungsbedürftig,so dass ein erheblicher Forschungs- und Ent-wicklungsbedarf besteht. Für dieImplementierung kryptografischer Verfahren gibt es verschiedene technischeMöglichkeiten. Gegenwärtig werden diese Verfahren in eingebetteten Syste-men vorwiegend durch integrierten elektronischen Schaltungen (ICs) implemen-tiert. Seit den 1990er Jahren ist jedoch bekannt, dass es bei solchen Implemen-tierungen nicht ausreicht, wenn kryptografische Algorithmen lediglich mathe-matisch sicher sind. Beispielsweise kann der Stromverbrauch eines ProzessorsHinweise über die verarbeiteten sicherheitskritischen Daten liefern. Dies ist nurein eindrucksvolles Beispiel aus einer ganzen Reihe von neuen Angriffsmetho-den, welche die physikalischen und technischen Eigenschaften der implemen-tierten Kryptosysteme als Informationsquelle für unbefugte Manipulationen be-nutzen. Diese Implementierungsattacken sind eine sehr umfangreiche Gruppevon Angriffen auf kryptografische Anwendungen, die statt der mathematischenSchwächen der kryptografischen Methoden oder das Fehl-verhalten des Nutzers,die Schwachstellen der technischen Implementierung ausnutzen. In der Vor-lesung werden alle bekannten Implementierungsattacken systematisch eingeord-net und erklärt. Für jeden solchen Angriff werden mögliche Gegenmaßnahmenerarbeitet, diskutiert und bewertet. Einige besonders erfolgreiche Implemen-tierungsattacken werden praktisch mit Hilfe von speziell aufgebauten Gerätendemonstriert. Die wichtigsten Themen der Vorlesung umfassen:

47

Page 48: Masterstudiengang Communications Technology

Content (continued): Die wichtigsten Themen der Vorlesung umfassen:- Kryptografische Protokolle, Techniken und Algorithmen- Implementierungsformen von kryptografischen Algorithmen- Schwachstellen der Implementierungen, Arten von Implementierungsattackenund entsprechende Gegenmaßnahmen

- Seitenkanalangriffe und geeignete Gegenmaßnahmen- Sicherheitsarchitekturen von ICs- Sicherheitsrelevante Module in ICs- Zufallszahlengeneratoren und Zufallstests in eingebetteten Systemen- Physikalisch nicht klonbare Funktionen (PUF)- Arithmetische Module für kryptografische Anwendungen- Modulare Arithmetik und Arithmetik der Elliptischen Kurven- Montgomery-Arithmetik- Speicherung von sicherheitskritischen Daten auf ICs- Schutz vor unbefugten Manipulation von Firmware und Software- Real life- and time-conditions- Anwendungen von Lightweight Cryptography- Digital Rights Management (DRM) and Copyright- Biometrie und Embedded Security- Beispiele für sicherheitsrelevante Anwendungen: Chipkarten, RFID- Systeme,Zugangs- und Bezahlsysteme, Pay-TV-Geräte und Set-Top- Boxen, ElectronicControl Units (ECUs) in Fahrzeugen, Tachometer und Tachografen, Car Info-tainment, Produktpiraterie

- Evaluierung und Zertifizierung von eingebetteten kryptografischen Modulen- Forschung, Entwicklung und Patentwesen in Embedded Security- Regulierungsgremien, Unternehmen und Informationsquellen

Literature: Es existiert bis dato noch kein umfassendes Lehrbuch zum Thema EmbeddedSecurity. Daher sind die Vorlesungen und Übungen mit ausführlichen Folienbegleitet, die als Downloads zu Verfügung stehen. Zusätzliches Lehrmaterialzur Ergänzung von einzelnen Themen wird auch als Download bereitgestellt.Außerdem, werden ausgewählte Kapitel aus folgenden Büchern als Hauptliter-atur empfohlen:

- Lemke, Paar, Wolf (Editors): ”Embedded Security in Cars“, Springer 2006, Part111

- Cetin Kaya Koc (Editor): ”Cryptographic Engineering“, Springer 2009, Kapitel1-6Als weiterführende Literatur werden die folgenden Bücher empfohlen:

- Mangard, Oswald, Pop: ”Power Analysis Attacks“, Springer 2007- Anderson: ”Security Engineering“, Willey, 2001, Kapitel 14 und 15- Schöning: ”Kryptologie-Kompendium“, für die Vorlesung Kryptologie, Fakultätfür Ingenieurwissenschaften und Informatik, Universität Ulm, Version 2010

- Schneier: ”Angewandte Kryptographie“, Pearson Studium, 2006- Schmeh: ”Kryptographie“, dpunkt.verlag, 2006

Basis for: Master-Arbeit

Modes of learningand teaching:

Lecture Embedded Security - Informationssicherheit in eingebetteten Systemen,3 SWS (V) ()Exercise Embedded Security - Informationssicherheit in eingebetteten Systemen,1 SWS (Ü) ()

Estimation ofeffort:

Active Time: 60 hPreparation and Evaluation: 120 hSum: 180 h

48

Page 49: Masterstudiengang Communications Technology

Course assessmentand exams:

In der Regel mündliche Prüfung von 30 Minuten Dauer

Requirements(formal):

Grading: Anhand der Ergebnisse der mündlichen Prüfung

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

49

Page 50: Masterstudiengang Communications Technology

21 German as a Foreign Language I

Token / Number: 8822271739

German title: Deutsch als Fremdsprache I

Credits: 4 ECTS

Semester hours: 4

Language: German

Turn / Duration: every Summer Term / 1 Semester

Module authority: M.A. Katrin Husemann

Training staff: M.A. Katrin Husemann

Integration of moduleinto courses of studies:

Communications Technology, M.Sc., Compulsory Subject Module,

Requirements(contentual):

participation in intensive course March/April

Learning objectives: Development of the language skills “listening, speaking, reading, writing”.Level A1 (CEFR): Can understand and use familiar, everyday expressions andvery simple sentences, which relate to the satisfying of concrete needs. Canintroduce him/herself and others as well as ask others about themselves – e.g.where they live, who they know and what they own – and can respond toquestions of this nature. Can communicate in a simple manner if the personthey are speaking to speaks slowly and clearly and is willing to help.

Content: - vocabulary training- grammar training- development of communication skills

Literature: Delfin (Hueber)

Basis for:

Modes of learningand teaching:

Lecture “German as a foreign language I”, 4 SWS (V) ()

Estimation ofeffort:

Active Time: 60 hPreparation and Evaluation: 120 h

Sum: 180 h

Course assessmentand exams:

Course assessment and exams: written exam at the end of the term

Requirements(formal):

regular attendance and participation in class activities, written exam of 60 min-utes duration

Grading: Module grade is equal to grade of written exam

Basierend auf Rev. 1088. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

50

Page 51: Masterstudiengang Communications Technology

22 German as a Foreign Language II

Token / Number: 8822271739

German title: Deutsch als Fremdsprache II

Credits: 4 ECTS

Semester hours: 4

Language: German

Turn / Duration: every Winter Term / 1 Semester

Module authority: M.A. Katrin Husemann

Training staff: M.A. Katrin Husemann

Integration of moduleinto courses of studies:

Communications Technology, M.Sc., Compulsory Subject Module,

Requirements(contentual):

German as a Foreign Language I

Learning objectives: Development of the language skills “listening, speaking, reading, writing”.Level A2 (CEFR): Can understand sentences and commonly used expressionsassociated with topics directly related to his/her direct circumstances (e.g. per-sonal information or information about his/her family, shopping, work, immedi-ate surroundings). Can make him/herself understood in simple, routine situa-tions dealing with a simple and direct exchange of information on familiar andcommon topics. Can describe his/her background and education, immediatesurroundings and other things associated with immediate needs in a simple way.

Content: - vocabulary training- grammar training- development of communication skills

Literature: - Delfin (Hueber)

Basis for:

Modes of learningand teaching:

Lecture “German as a foreign language II”, 4 SWS (V) ()

Estimation ofeffort:

Active Time: 60 hPreparation and Evaluation: 120 h

Sum: 180 h

Course assessmentand exams:

Course assessment and exams: written exam at the end of the term

Requirements(formal):

regular attendance and participation in class activities, written exam of 60 min-utes duration

Grading: Module grade is equal to grade of written exam

Basierend auf Rev. 1088. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

51

Page 52: Masterstudiengang Communications Technology

23 Industrial Internship

Token / Number: 8822285000

English title: Industrial Internship

Credits: 9 ECTS

Semester hours:

Language: english

Turn / Duration: every Semester/ 1 Semester

Module authority: Prof. Dr.-Ing. Dr. Wolfgang Minker

Training staff: Prof. Dr.-Ing. Dr. Wolfgang Minker

Integration of moduleinto courses of studies:

Communications Technology, M.Sc., Optional Lab Course,

Requirements(contentual):

Approval by the Industrtial Internship office

Learning objectives: The Industrtial Internship aims at gathering subject knowledge and experiencein a private company. Furthermore, the Industrtial Internship conveys insightsinto workaday life and prepares the student for entering his/her professionalcareer.

Content: The Industrtial Internship comprises activities in the engineering field, notablyin the area of Electronics Systems Engineering, Information and Communi-cation Technology as well as at the margin between Computer Science andEngineering Sciences.

Literature:

Basis for:

Modes of learningand teaching:

Practical Course External internship in a private company, seminar with presen-tations. ()

Estimation ofeffort:

9 weeks of practical activities10 minutes seminar presentationParticipation in two additional seminar meetingsShort report 15 pages maximum

Course assessmentand exams:

The Accomplishment of the Industrtial Internship is certified by a testimonial.Refer to the Industrtial Internship guidelines for more information.

Requirements(formal):

Grading:

Basierend auf Rev. 1106. Letzte Änderung am 13.09.2013 um 12:48 durch vpollex.

52

Page 53: Masterstudiengang Communications Technology

24 Information Theory and Biology

Token / Number: 8822272076

German title: -

Credits: 5 ECTS

Semester hours: 4

Language: Englisch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Martin BossertDr.-Ing. Steffen Schober

Training staff: Dr.-Ing. Steffen Schober

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Optional Module, Engineering SciencesCommunications and Computer Engineering, M.Sc., Optional Module,

Communications Technology, M.Sc., Optional Module,

Requirements(contentual):

Bachelor, Basic Probability Theory

Learning objectives: After this lecture the students can explain and understand the fundamental con-cepts of information theory and apply them to analyse and synthesise methodsto solve problems in Bioinformatics and to explain biological phenomena. Inparticular they can analyse and apply methods based on compression algorithmsto classify DNA text and can apply and compare methods for the inference ofgene networks based on the estimation of mutual information. The studentsare able to describe the main experimental principles of modern DNA and RNAsequencing and can describe and prove the shortcomings of these techniques.They can apply coding theoretic techniques to improve sequencing experimentsand are able to choose between different techniques for different sequencingplatforms. They further can apply information theoretical techniques to anal-yse discrete system models of molecular systems, which are used to explainfundamental limits of information processing in these systems.

53

Page 54: Masterstudiengang Communications Technology

Content: This lecture focuses on models and methods used in information theory andtheir application to real world problems at the example of molecular biology(but not restricted to). Therefore we study problems from statistics such as toestimate the entropy of discrete distributions, further, compression distances toreveal text similarities (for example between DNA sequences or texts writtenin English). The design and decoding of short codes and codes capable of cor-recting Indels (insertion/deletions) is discussed and how to apply it to improvemodern experimental techniques (high-throughput sequencing). Further, theanalysis of communications systems based on discrete point processes is ad-dressed providing insights into the fundamental limits of information processingin these systems (such as biochemical networks or system communicating viaphoton counting).

- Fundamentals of information theory– Entropy– Mutual information– Source and channel coding theorem- Fundamentals of molecular biology– Information storage in DNA– Gene expression / regulation- Estimation of the density of discrete distributions, entropy, and mutual infor-mation

– Compression distances for discovering text (DNA) similarities– Estimation∗ Maximum likelihood and∗ Bayesian techniques- DNA and RNA sequencing– DNA Sequencing: Capacity– RNA Sequencing: Amplification noise and barcoding– Barcodes for Indel correction- Stochastic models of biochemical networks– Gene expression noise– Noise suppression limits– Noise sensitivity/stability of input functionsn

Literature: - Information theory: Cover T., Thomas J., Elements of Information Theory,Wiley, 2009

- Systems Biology: Alon U., An Introduction to Systems Biology, Chapman andHall, 2007

- Biology: Albers et al, Molcular Biology of the Cell, Garland Science Taylor &Francis, 2008

- Coding Theory: Bossert, Channel coding for Telecommunications - Wiley, 1999

Basis for: keine Angaben

Modes of learningand teaching:

Lecture Information Theory and Biology, 2 SWS (V) ()Exercise Information Theory and Biology, 1 SWS (Ü) ()Project Information Theory and Biology, 1 SWS (P) ()

Estimation ofeffort:

Active Time: 40 hPreparation and Evaluation: 40 hSelf-Study: 40 h Project30

Sum: 150 h

Course assessmentand exams:

oral exam (english or german)

Requirements(formal):

keine

Grading: Module mark is identical to exam mark.

54

Page 55: Masterstudiengang Communications Technology

Basierend auf Rev. 1106. Letzte Änderung am 13.09.2013 um 12:48 durch vpollex.

55

Page 56: Masterstudiengang Communications Technology

25 Integrated Microwave Circuits

Token / Number: 8822270464

German title: Integrierte Mikrowellenschaltungen

Credits: 4 ECTS

Semester hours: 3

Language: englisch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Wolfgang Menzel

Training staff: Prof. Dr.-Ing. Wolfgang MenzelProf. Dr.-Ing. Christian WaldschmidtDr.-Ing. Frank Bögelsack

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Optional Module, Communication and SystemTechnology

Electrical Engineering, M.Sc., Optional Module, Microelectronics

Electrical Engineering, M.Sc., Optional Module, Automation and EnergyTechnology

Electrical Engineering, M.Sc., Optional Module, General Electrical Engineering

Communications Technology, M.Sc., Optional Technical Module, Microelec-tronics

Requirements(contentual):

- basics of electromagnetic field theory- knowledge of the content of the lectures „Einführung in die Hochfrequenztech-nik“ or “RF & Microwave Engineering”

Learning objectives: After successful completion of lecture and exercises, the students are familiarwith the basics of planar transmission line techniques. They are capable todesign simple planar components and circuits and are able to familiarize them-selves quickly with the design of more complex circuit arrangements. In addition,they know the state-of-the-art interconnect and packaging techniques as wellas technologies and methods to fabricate microwave circuits.

56

Page 57: Masterstudiengang Communications Technology

Content: Today, microwave circuits are realized, to a great extent, as planar circuitsprinted on a dilectric substrate material, in specialized form, even in mono-lithic form on semiconductor material together with respective semiconductordevices (MIC or MMIC). In its first part, the lecture therefore deals with theused planar transmission lines. In addition to a general overview, formulas andcomputational procedures are presented to calculate the respective transmissionline parameters. As an example for a field theoretical computation method tocalculate such parameters, the spectral domain method is presented in detail.To realize complete circuits, quasi-lumped devices, transmission line segments,as well as semiconductor devices are necessary which are dealt with in the fol-lowing sections. Another section presents planar integrated antennas. Finally,two chapters introduce packaging and interconnect techniques and fabricationmethods for (hybrid) integrated planar circuits. In the exercises, the knowledgeof this lecture is deepened, and the application of the methods is practiced.This includes – at about half the time period – the field theoretical calculationof a simple transmission line structure, and towards the end, some circuit designdone with a CAD system at a computer; the circuits finally are realized andtested experimentally.

Literature: - I. Wolff: Einführung in die Mikrostrip-Leitungstechnik , Verlag Henning Wolff,Aachen (presently not available in bookstores)

- K.C. Gupta, R. Garg, I.J. Bahl: Microstrip lines and slotlines , ArtechHouse,1979

- K.C. Gupta, R. Garg, R. Chadha: Computer-Aided Design of Microwave Cir-cuits. Artech House, Norwood, 1981

- T. Edwards: Foundations for microstrip circuit design , Wiley, 1991- T. Itoh: Numercal techniques for microwave and millimeter-wave passive struc-tures , Wiley, 1989

- J.R. James, P.S. Hall: Handbook of microstrip antennas , IEE ElektromagneticWaves Series 28, Peregrinus

- B. Bhat, S. Koul: Stripline-like transmission lines for Microwave IntegratedCircuits , Wiley, New York, 1989

- K. Chang: Handbook of Microwave and Optical Components. Volume 1: Mi-crowave passive and Antenna Components , Wiley, New York, 1989

- K. Chang: Handbook of Microwave and Optical Components. Volume 2: Mi-crowave Solid-State Components , Wiley, New York, 1989

- Helszjan, J.: Microwave and planar passive circuits and filters , Wiley, 1993- I. Kneppo, J. Fabian: Microwave Integrated Circuits, Chapman & Hall, London,1994

Basis for:

Modes of learningand teaching:

Lecture “Integrated Microwave Circuits”, 2 SWS ()Exercise “Integrated Microwave Circuits”, 1 SWS ()

Estimation ofeffort:

Active Time: 45 hPreparation and Evaluation: 30 hSelf-Study: 45 h

Sum: 120 h

Course assessmentand exams:

generally as oral exam

Requirements(formal):

Grading: score of exam

57

Page 58: Masterstudiengang Communications Technology

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

58

Page 59: Masterstudiengang Communications Technology

26 Iterative Methods for Wireless Communications

Token / Number: 8822270055

German title: -

Credits: 4 ECTS

Semester hours: 3

Language: Englisch

Turn / Duration: every Winter Term / 1 Semester

Module authority: Dr. Werner Teich

Training staff: Dr. Werner Teich

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesCommunications and Computer Engineering, M.Sc., Optional Module,Communications Technology, M.Sc., Optional Technical Module, Communica-tions EngineeringElectrical Engineering, M.Sc., Optional Module, Communication and SystemTechnology

Requirements(contentual):

Signale und Systeme, Einführung in die Nachrichtentechnik, CommunicationsEngineering

Learning objectives: The students can describe the basic principle of iterative methods, analyzeconvergence properties and give examples for the main areas of application.Based on the fix-point equation they are able to graphically illustrate and an-alyze an iterative method. The students can describe and discuss the blockdiagram of a vector-valued transmission model. They can design different vec-tor equalization schemes (maximum-likelihood equalizer, block linear equalizer,block decision-feedback equalizer, multistage detector, recurrent neural networkbased equalizer) and they are able to analyze them with respect to performanceand to computational complexity. The students are able to employ the probabil-ity theory for iterative decoding and analyze as well as create the Tanner graphfor a specified linear code. They can discuss the fundamental properties of low-density parity check codes and convolutional self-orthogonal codes. They canillustrate the basic principles of turbo codes and joint de-mapping, equalization,and decoding (turbo equalization).

59

Page 60: Masterstudiengang Communications Technology

Content: Iterative methods are motivated by considering two classical examples: Newtonsmethod to find the roots of nonlinear functions and the Jacobi- and Gauss-Seidelmethod to solve large systems of linear equations. Based on these examplesconvergence and convergence rates of iterative methods are discussed. Theconcept of the fix point iteration is used to provide a graphical interpretationof iterative processes. In chapter two the concept of vector-valued transmis-sion is introduced. Based on this, we derive the optimum receiver structure forgeneral linear modulation methods. Besides the optimum vector equalizer alsovarious suboptimum methods (block linear equalizer, block decision feedbackequalizer, multistage detector) are discussed. Furthermore iterative equalizerare introduced and the relation to recurrent neural networks is described. Chap-ter three first introduces the basic concepts for iterative decoding: maximum aposteriori decoding, probability theory for iterative decoding and tanner graphsas a means to graphically represent iterative decoding. As applications we con-sider low density parity check codes and convolutional self-orthogonal codes. Inchapter four iterative methods for concatenated systems are considered. Thisincludes a discussion of classical turbo codes as well as receiver concepts basedon a joint demapping, equalization and decoding (turbo equalization). As a fur-ther example we consider the basic principle of interleave division multiplexing.The iterative methods are analysed using EXIT charts.

Literature: - J. Lindner, “Informationsübertragung - Grundlagen der Kommunikationstech-nik”, Springer-Verlag, Berlin 2005

- S. Haykin, “Neural Networks – A Comprehensive Foundation”, Prentice Hall1999

- S.J. Johnson, “Iterative Error Correction – Turbo, Low-Density Parity-Checkand Repeat-Accumulate Codes”, Cambridge University Press 2007

Basis for: keine Angaben

Modes of learningand teaching:

Lecture “Iterative Methods for Wireless Communications”, 2 SWS (V) ()Exercise “Iterative Methods for Wireless Communications”, 1 SWS (Ü) ()

Estimation ofeffort:

Active Time: 45 hPreparation and Evaluation: 75 hSum: 120 h

Course assessmentand exams:

Usually oral exam, otherwise written exam of 90 minutes duration

Requirements(formal):

Grading: Module mark is identical to exam mark. In case of successful participation inthe Matlab project a bonus to the exam mark will be given (§15 Abs. (5) ofthe exam regulations for the bachelor and master courses in Electrical Engi-neering (Elektrotechnik) and Computer Systems Engineering (Informationssys-temtechnik) resp. §14 Abs. (2) of the exam regulations for the master courseCommunications Technology).

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

60

Page 61: Masterstudiengang Communications Technology

27 Kommunikationsnetze

Token / Number: 8822270418

English title: Computor Networks

Credits: 4 ECTS

Semester hours: 3

Language: deutsch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr. Hans Peter Großmann

Training staff: Prof. Prof. Dr.-Ing. Stefan Wesner

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Elective Module, Automation and EnergyTechnology

Electrical Engineering, M.Sc., Optional Module, Communication and SystemTechnology

Communications and Computer Engineering, M.Sc., Optional Module,

Communications Technology, M.Sc., Recommended Optional Module,

Requirements(contentual):

Grundlegendes Verständnis von Elektrotechnik und Kommunikations- und Infor-mationstechnik.

Learning objectives: Nach Abschluss dieser Vorlesung sind Studenten in der Lage, die wichtigstenNetzprotokolle und -technologien für Lokale und Weitverkehrsnetze zu benen-nen und zu beschreiben. Sie sind in der Lage, die grundlegenden Architektur-prinzipien von Netzen anhand des ISO/OSI Modells und des Internet ProtokollStacks zu erklären. Die Studenten verstehen die Herausforderungen und Auf-gaben der einzelnen Protokollschichten und sind in der Lage, für die in derVorlesung behandelten Protokolle deren Einschränkungen zu verstehen und zuerklären. Teilnehmer an dieser Vorlesung können darüber hinaus die verschiede-nen in Rechenzentren eingesetzten Netztopologien und Technologien benennenund sie unter vorgegebenen technischen und ökonomischen Rahmenbedingun-gen vergleichen. Gegen Ende der Veranstaltung sind die Studenten in der Lage,ihr Wissen für die Auswahl geeigneter Protokolle für verschiedene Szenarienanzuwenden und darauf aufbauen, selbständig Netze auszulegen. Im zuge-hörigen Seminar lernen Studenten, wie gezielt Detailinformationen zu den Pro-tokollen ermittelt werden können, lernen die Präsentation von Ergebnissen undEntwürfen und diskutieren die Ergebnisse in der Gruppe.

61

Page 62: Masterstudiengang Communications Technology

Content: Die Vorlesung Kommunikationsnetze ist eine Einführung in Netze, die heute fürdie Kommunikation zwischen Rechnern eingesetzt werden. Der Schwerpunktliegt dabei auf der Architektur, Funktionalität und Entwurf für lokale Netzeund Protokolle. Es wird dabei das ISO/OSI Modell vorgestellt und der Grund-satz von Schichtenmodellen besprochen. Ein weiterer Schwerpunkt liegt aufProtokollen für den Zugriff auf gemeinsam genutzte Medien ("MAC Layer").Insbesondere wird dabei auf das Ethernet Protokoll eingegangen aber auchauf weitere Protokolle aus dem Bereich der Produktionsanlagen. Auf den OSISchichten 3 und 4 (Netz und Transportschicht) wird das im Internet üblicheProtokoll TCP/IP eingeführt und im Detail besprochen. Das bildet die Basis fürweitere Protokolle auf der Anwendungsschicht auf Basis von TCP/IP wie RTPHTTP oder darauf aufbauende Ansätze wie REST. Darüber hinaus wird in derVorlesung auch auf spezialisierte Netze aus dem Bereich der Produktion oderin Fahrzeugen eingegangen wie dem CAN bus. Die Vorlesung schließt mit einerÜbersicht von Protokollen und Netzen aus dem Bereich der Rechenzentren unddem Höchstleistungsrechnen wie Infiniband oder Protokolle für Speichersystemewie SRP und iSCSI.Seminar In dem begleitenden Seminar lernen die Studenten, wie sie selbständigInformationen zu Protokollen und Standards erhalten. In Gruppen oder einzelnlernen Studenten zu ausgewählten Themen und Fragestellungen Ausarbeitungenzu erstellen und diese der Gruppe vorzustellen und zu diskutieren.

Literature: - Kurose, Ross: Computer Networks, Pearson, 5th edition- George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair: DistributedSystems: Concepts and Design, 5th edition

- Comer, Douglas E.: Internetworking with TCP/IP. Principles, protocols, andarchitecture; London 1988

- Lawrenz, Wolfhard (Hrsg.): CAN - Controller Area Network. Grundlagen undPraxis; 2., vollständig überarbeitete und erweiterte Auflage; Heidelberg 1997

- Stevens, W. Richards: TCP/IP Illustrated, Volume 1. The Protocols; Reading(Massachusetts) 1994

- Tannenbaum: Computer Networks; Prentice Hall- Michel Dubois, Murali Annavaram, Per Stenström: Parallel Computer Organi-zation and Design, 2012

- Ulf Troppens, Rainer Erkens, Wolfgang Mueller-Friedt, Rainer Wolafka, NilsHaustein: Storage Networks Explained: Basics and Application of Fibre ChannelSAN, NAS, iSCSI, InfiniBand and FCoE, 2009

Basis for: keine Angaben

Modes of learningand teaching:

Lecture “Kommunikationsnetze”, 1 SWS ()Seminar “Kommunikationsnetze”, 2 SWS ()

Estimation ofeffort:

Active Time: 26 hPreparation and Evaluation: 42 hSelf-Study: 50 h

Sum: 120 h

Course assessmentand exams:

Leistungsnachweis für die erfolgreiche Teilnahme am Seminar (Ausarbeitungund Vortrag) Dieser Leistungsnachweis ist Voraussetzung für die benotete Prü-fung, die in der Regel mündlich abgehalten wird.

Requirements(formal):

Grading: Note der Prüfung

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

62

Page 63: Masterstudiengang Communications Technology

28 Lab - Laboratory Automation

Token / Number: 8822271731

German title: -

Credits: 5 ECTS

Semester hours: 4

Language: englisch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Dr.-Ing. Andreas Trasser

Training staff: Dr.-Ing. Andreas TrasserDr. Václav Valenta

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesCommunications Technology, M.Sc., Optional Lab Course, Microelectronics

Requirements(contentual):

Fundamental knowledge of:- Physics of semiconductor devices- RF engineering and twoport parameters- Programming (structuring problems and implementation in a programming lan-guage)

Learning objectives: Students recognize and describe the electrical and logical principles of operationof the GPIB bus. The are able to develop simple programs to control measure-ment equipment, and to assist in the interpretation of measurement resuts.Students discover the functional principles of sampling oscilloscopes throughexperiments, and use it to conduct measurements on transmission lines. Theyidentify the operational concepts of ve tor network analyzers, including errorcorrection techniques, measure scattering parameters of microwave transistors,and discriminate the results from those obtained from an equivalent circuit.Students recognize fundamental noise measurement techniques, apply them toactive devices in the frequency domain, and interpret them, interpreting differ-ences between their measurements and theoretical models.

Content: Students will get a practical view of special aspects of laboratory character-ization techniques, with an application emphasis on the characterization ofsemiconductor devices. The experiments treat the DC characterization ofsemiconductor devices using source measure-units and GPIB control, noise pa-rameter measurements, scattering parameter characterization, equivalent-timesampling oscillography, and time-domain reflectometry.

Literature: Script describing experiments including theoretical background

Basis for: Master thesis research involving electrical characterization techniques, especiallyrelated to semiconductor devices and active microwave components

Modes of learningand teaching:

Laboratory “Laboratory Automation”, 4 SWS ()

Estimation ofeffort:

Active Time: 26 hPreparation and Evaluation: 124 h

Sum: 150 h

63

Page 64: Masterstudiengang Communications Technology

Course assessmentand exams:

Oral colloquium at start of each lab exercise (students may be excluded ifinsufficiently prepared; active participation in experiment; evaluation of writtenreport for each experiment.

Requirements(formal):

Grading: The course is not graded. Successful completion requiresSufficient preparation for each experiment (colloquium at start of each experi-ment)Active participation in each experimentSubmission and acceptance of report documenting each experiment (1 pergroup)

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

64

Page 65: Masterstudiengang Communications Technology

29 Lab - Microcomputers

Token / Number: 8822272066

English title: Lab - Microcomputers

Credits: 5 ECTS

Semester hours: 4

Language: english

Turn / Duration: every Semester / 1 Semester

Module authority: Prof. Prof. Dr.-Ing. Stefan Wesner

Training staff: Prof. Prof. Dr.-Ing. Stefan Wesner

Integration of moduleinto courses of studies:

Communications Technology, M.Sc., Optional Lab Course,

Requirements(contentual):

General knowledge of electrical engineering, digital technology, programming.

Learning objectives: The students are able to analyze the given task by means of a project speci-fication. They can identify the different functional units of a specified micro-controller based control module, subdivide and convert them into a schematicusing analog and digital circuitry. They also design a printed circuit boardlayout using a CAD tool and assemble the board themselves. During the de-sign phase they also examine datasheets and choose several electronic parts fortheir circuit. Additional to the hardware design and assembly the students canseparate their software design into a hardware abstraction layer (HAL) and amain program logic and illustrate it in a model by choosing suitable diagramsand state-charts. The students can write software using the programming lan-guage ’C’. Programming and testing the board is done by operating a specialintegrated development environment (IDE) and a software tool for testing theCAN-Bus communication. The students solve errors in hardware and softwareby iteratively modifying and testing their code using a debugger tool and de-vices like multimeters and oscilloscopes. At the end of the lab the studentsdemonstrate their working module and finally write a complete documentationthat describes all work that has been done.

65

Page 66: Masterstudiengang Communications Technology

Content: This lab course introduces the student to various applications of microcomputersand to the challenges faced in realizing those applications. The focus is onembedded systems, different kinds of microcontrollers, sensors and actuators,and on bus communication. The students work on a common project, to whicheach team contributes an almost independently working module. The projectitself is a sorting facility consisting of 10 motors and about 30 primarily digitalsensors, like push-button switches or light barriers. The sorting facility classifiespackages of different shapes, colors and heights and sorts them according auser’s request. Finally, a robot takes the sorted packages and stacks them up.The sorting facility is constructed with Fischertechnik elements. It is provided ina fully operational state, with wired actuators and sensors, but without electriccontrol. The latter must be designed and implemented by the students.To each team a module within the overall system is assigned. The modulesconsist of an actuator, several sensors, a microcontroller, a CAN controller andother electronic parts needed to realize the board. With the help of the CADsoftware EAGLE, a circuit diagram and board layout have to be developed. Afterassembling the board and testing it, the team programs the microcontroller witha C program. Communication between modules and the main control unit iscarried out by the field bus Controller Area Network (CAN). To enable userinputs and to display status information, an embedded web-server and a web-client are used. The main control unit and the web-server are on separateboards provided by the course staff.

Literature: Background information and documentation provided in the course booklet.

Basis for: -

Modes of learningand teaching:

Laboratory “Microcomputers”, 4 SWS ()

Estimation ofeffort:

Active Time: 120 hPreparation and Evaluation: 30 h

Sum: 150 h

Course assessmentand exams:

-

Requirements(formal):

Grading: -

Basierend auf Rev. 1100. Letzte Änderung am 06.09.2013 um 10:29 durch ograssl.

66

Page 67: Masterstudiengang Communications Technology

30 Lab - Optoelectronics

Token / Number: 8822270444

German title: Labor Optoelektronik

Credits: 5 ECTS

Semester hours: 4

Language: English / deutsch (für deutschsprachige Gruppen)

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr. Peter Unger

Training staff: Prof. Dr. Ferdinand ScholzProf. Dr. Peter Ungerapl. Prof. Dr.-Ing. habil. Rainer Michalzik

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesCommunications Technology, M.Sc., Optional Lab Course, MicroelectronicsElectrical Engineering, M.Sc., Compulsory Subject Module, MicroelectronicsElectrical Engineering, M.Sc., Optional Module, Automation and Energy Tech-nology

Requirements(contentual):

Bachelor Modules “Optical Communications” or “Einführung in die Optoelek-tronik”

Learning objectives: The students are able to explain the physics of commonly used optoelectronicdevices and systems like optical waveguides, optical couplers, photodiodes, semi-conductor lasers, tunable laser diodes, optical fibers, and optical data transmis-sion systems. They are able to prepare experiments to measure the basic deviceand system characteristics. They can extract the relevant data describing thedevice or system performance. The students are able to critically interpret theirmeasurements and to write a scientifically profound illustrated report on theirmeasurements and their interpretation.

Content: The laboratory course gives students an excellent opportunity to explore theexciting microworld of laser diodes, optical fibers, photodetectors, and opticaltransmission systems. Seven half-day experiments are performed, which dealwith the following topics:

- Optical waveguides- Optical couplers- Photodiodes- Semiconductor lasers- Tunable laser diodes- Optical fiber characterization- Optical data transmission

Literature: For each experiment, a detailed manuscript is provided which describes thetheoretical background and guides through the experimental part.

Basis for:

Modes of learningand teaching:

Laboratory “Optoelectronics”, 4 hours per week ()

67

Page 68: Masterstudiengang Communications Technology

Estimation ofeffort:

Active Time: 28 hPreparation and Evaluation: 84 hSelf-Study: 38 h

Sum: 150 h

Course assessmentand exams:

Certificate after fulfillment of the following criteria: successful participation inall seven experiments, active discussion during the colloquium, preparation undpossible correction of the protocols.

Requirements(formal):

Grading: None

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

68

Page 69: Masterstudiengang Communications Technology

31 Lab - RF Engineering

Token / Number: 8822271735

German title: Praktikum Hochfrequenztechnik

Credits: 5 ECTS

Semester hours: 4

Language: English

Turn / Duration: every Summer Term / 1 Semester

Module authority: Dr.-Ing. Frank Boegelsack

Training staff: Prof. Dr.-Ing. Wolfgang MenzelProf. Dr.-Ing. Christian WaldschmidtDr.-Ing. Frank Bögelsack

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesCommunications Technology, M.Sc., Optional Lab Course,

Requirements(contentual):

Participation at the lecture “RF & Microwave Engineering”.

Learning objectives: The students are familiar with the most important measurement equipment andmethods of the RF & microwave techniques including antenna measurements,electromagnetic compatibility and microwave CAD.

Content: The experiments deal with:1. Waves on transmission lines

- Characterization of unknown complex impedances by determination of the volt-ages distribution on a TEM transmission line2. Modulation

- Basics of amplitude, frequency, and phase modulation3. CAD (Analysis and optimization of linear circuits)

- Analysis and optimization of passive and active circuits using an up-to-datecommercial microwave CAD tool (HPEESOF ADS)4. Scalar scattering parameter measurements (coaxial)

- Introduction to coaxial measurement techniques, filters, impedance transform-ers5. Planar circuits

- Characterization of glass fiber reinforced Teflon (PTFE) substrates by measure-ment of planar resonators, 4-port coupler6. RF semiconductor devices

- Introduction to vector network analysis by characterization of active devices(transistors, diodes), small signal equivalent circuits7. Electromagnetic Compatibility (EMC)

- EMC receiver, magnetic field sensors, coupling, equivalent circuits of real reac-tance and resistive elements8. Antenna measurements

- Measurements of the radiation diagrams of a K-band horn antenna, a parabolicantenna, a phased array antenna are done and a network analyser

Literature: Will be given in the written handouts of each experiment

Basis for: -

69

Page 70: Masterstudiengang Communications Technology

Modes of learningand teaching:

Laboratory “RF Engineering”, 4 SWS (P) ()

Estimation ofeffort:

Preparation and Evaluation: 110 hActive Time: 40 h

Sum: 150 h

Course assessmentand exams:

Proof of sufficient preparation and successful performance of the lab experi-ments. No examination.

Requirements(formal):

Grading:

Basierend auf Rev. 1093. Letzte Änderung am 14.08.2013 um 08:17 durch ograssl.

70

Page 71: Masterstudiengang Communications Technology

32 Lab - Semiconductor Technology

Token / Number: 8822270446

German title: -

Credits: 5 ECTS

Semester hours: 4

Language: English

Turn / Duration: every Semester / 1 Semester

Module authority: Jun.-Prof. Dr.-Ing. Steffen Strehle

Training staff: Dr. Wolfgang EbertJun.-Prof. Dr.-Ing. Steffen Strehle

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesCommunications Technology, M.Sc., Optional Lab Course, Microelectronics

Requirements(contentual):

Lecture Semiconductor Technology

Learning objectives: Students discover how to work under clean-room conditions, recognizing howdifferent technology steps may be combined to produce electron devices.Furthermore, they practice to operate complex semiconductor-technology-equipment. Participants modify the surface of semiconductor wafers employingthermal evaporation of different metals like Aluminum and Gold. They createmicrostructured contacts by photo-lithography. Test structures, diodes, andtransistors are evaluated using fundamental current-voltage and capacitance-voltage measurements. The students evaluate the influence of scaling param-eters (geometry, size) on the electrical behaviour of the devices (output- andtransfer-characteristics).

Content: Aim of this lab course is the fabrication of field-effect-transistors (GaAs-MESFET’s) and their electrical characterization. The lab course takes place ina cleanroom facility specifically equipped for education.

Main focuses this lab course are:- deposition of metals by evaporation- patterning of contacts by optical lithography- patterning of contacts by wet etching- manufacturing of ohmic- and Schottky contacts- electrical characterization of the fabricated devices

Literature: - Jackson, K. A. / Schröter, W. (Hrsg.) Handbook of Semiconductor Technology,2000 ISBN-13: 978-3-527-29970-6 - Wiley-VCH, Weinheim

- Pierret, R.F.: Field Effect Devices, (Modular Series on Solid State Devices, Vol.4), Addison- Wesley Reading, 1983

- Zambuto, M.: Semiconductor Devices, McGraw Hill New York, 1989- C. Y. Chang, F. Kai: GaAs High-Speed Devices: Physics, Technology, andCircuit Applications Wiley, 1994

Basis for: -

Modes of learningand teaching:

Laboratory “Semiconductor Technology”, 4 SWS ()

71

Page 72: Masterstudiengang Communications Technology

Estimation ofeffort:

Active Time: 28 hPreparation and Evaluation: 122 h

Sum: 150 h

Course assessmentand exams:

Successful completion requires fulfillment of the following criteria: successfulparticipation in the lab, active participation during the colloquium, submissionand correction (where applicable) of the experiment notes.

Requirements(formal):

Grading: None

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

72

Page 73: Masterstudiengang Communications Technology

33 Lab - Vector Network Analysis

Token / Number: 8822271737

German title: -

Credits: 5 ECTS

Semester hours: 3

Language: Englisch

Turn / Duration: every Winter Term / 1 Semester

Module authority: Prof. Dr.-Ing. Hermann Schumacher

Training staff: Prof. Dr.-Ing. Hermann SchumacherDr.-Ing. Andreas TrasserDr.-Ing. Václav Valenta

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesCommunications Technology, M.Sc., Optional Lab Course,Communications and Computer Engineering, M.Sc., Optional Lab Course,

Requirements(contentual):

Basic knowledge of RF engineering

Learning objectives: Students describe the most important concepts of vectorial measurements atradio frequencies and assess key tradeoffs between diverse measurement tech-niques, choice of measurement parameters and error correction procedures. Stu-dents employ accurate calibration techniques and operate a vector networkanalyzer, distinguishing between frequency and time domain characterizationtechniques. They demonstrate time domain reflectometry using vector networkanalysis. Measurement results are interpreted and used to prepare equivalentcircuit models of the measured components or to carry out deembeding of testfixtures of active devices.

Content: Vector Network Analyzers (VNAs) are indispensable instruments in every RFlaboratory as they provide the most common way to characterize network param-eters (e.g. scattering parameters, impedance or admittance parameters, etc.)of electrical networks (power amplifiers, filters and other n-port networks). As aresult, understanding the fundamental principles of VNA measurements belongsto the essential knowledge of an RF engineer. The main goal of this laboratorycourse is to introduce students the fundamental RF VNA measurement tech-niques, principles, manipulations and measurement procedures. Throughout dif-ferent measurement exercises, this course will provide students firm grasp andvalidation of the common theory gained in previous electro-technical courses.List of experiments:

- R, L, C measurements- Measurements on a bias tee (RF/DC coupler)- Measurements on a radio frequency filter- Measurements on a semiconductor diode- De-embedding procedures and measurements of FET and BJT transistors in atest fixture

- Measurements on coaxial cables (dielectric constant, length)- Time domain reflectometry: measurements on passive components, localiza-tions of faults in transmission linesTime domain reflectometry: measurementson passive

- Introduction to the time gating as a deembedding technique

73

Page 74: Masterstudiengang Communications Technology

Literature: Scattering parameter tutorial (Prof. Schumacher, provided online); detaileddescriptions for each experiment

Basis for: Master thesis with topics requiring vector network analysis

Modes of learningand teaching:

Laboratory “Vector Network Analysis”, 3 SWS ()

Estimation ofeffort:

Active Time: 29 hPreparation and Evaluation: 121 h

Sum: 150 h

Course assessmentand exams:

Requirements(formal):

keine

Grading: The course is not graded. Successful completion requires (a) Sufficient prepa-ration for each experiment (colloquium at start of each experiment) (b) Activeparticipation in each experiment. (c) Submission and acceptance of reportdocumenting each experiment (1 per group)

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

74

Page 75: Masterstudiengang Communications Technology

34 Lab Excercise Embedded Systems

Token / Number: 88222????? (Wird vom Dezernat 2 festgelegt)

English title: Lab Excercise Embedded Systems

Credits: 6 ECTS

Semester hours: 5

Language: Englisch

Turn / Duration: sporadic (Winter Term) / 1 Semester

Module authority: Prof. Dr.-Ing. Frank Slomka

Training staff: Prof. Dr.-Ing. Frank Slomka

Integration of moduleinto courses of studies:

Embedded Systems, M.Sc., Core Subject, Embedded SystemsCommunications Technology, M.Sc., Optional Technical Module, Communica-tions Engineering

Requirements(contentual):

Architecture of Embedded Systems

Learning objectives: Students could develop the hardware and software of embedded systems. Thecould programm FPGAs. The have basic knowlege about the programming ofreal-time operating systems. The know how to use hard- and software compo-nent from development libraries and how to integrate them in their design. Thecould develop embedded controller based on programmable chips.

Content: - Hardware Design of Embedded Systems using VHDL- Softcoreprocessors on FPGAs- Software Design of Embedded Systems using C- Device Driver Development- System on a Programmable Chip (SOPC)- Debugging of mixed Hardware/Software Systems- Real-Time Kernel- Application: Control of en electrical engine

Literature: - Jürgen Teich, Digitale Hardware/Software Systeme, Springer 1997- Jean J. Labrosse, Embedded Systems Building Blocks, Second Edition, CMP2000

- Jürgen Reichardt, Bernd Schwarz, VHDL-Synthese, 4. Auflage, Oldenbourg2006

- Giovanni De Micheli, Synthesis and Optimization of Digital Circuits, MCGraw-Hill, Inc. 1994

Basis for:

Modes of learningand teaching:

Laboratory Embedded Systems (Prof. Dr.-Ing. Frank Slomka)

Estimation ofeffort:

Active Time: 75 hPreparation and Evaluation: 105 hSum: 180 h

Course assessmentand exams:

Design presentations

75

Page 76: Masterstudiengang Communications Technology

Requirements(formal):

Keine

Grading: The module’s grades arise from the presentation’s result.

Basierend auf Rev. 1106. Letzte Änderung am 13.09.2013 um 12:48 durch vpollex.

76

Page 77: Masterstudiengang Communications Technology

35 Master’s Thesis

Token / Number: 8822280000

German title: -

Credits: 30 ECTS

Semester hours: 0

Language: English

Turn / Duration: every Semester / 1 Semester

Module authority: Prof. Dr.-Ing. Maurits Ortmanns (Dean of Student Affairs)

Training staff: Primary supervisor of thesis

Integration of moduleinto courses of studies:

Communications Technology, M.Sc., Thesis, Master’s Thesis

Requirements(contentual):

Desired: specialized elective modules in the scientific area of the thesis

Learning objectives: Acquisition and demonstration of the following competencies:- Independent treatment of complex problems, using the skills acquired in theMaster’s program as well as established scientific methods and knowledge,within a pre-set time frame

- Setup of a project plan for the Master’s thesis, including assessment of progressusing a continuously updated milestone plan

- Compilation of a thesis in compliance with the established principles of scientificwriting

- Presentation of scientific results in comprehensible form before an audience ofpeers, including scientific discussion

Content: dependent on topic

Literature: dependent on topic

Modes of learningand teaching:

Master’s Thesis Selection of a suitable topic at one of the institutes of thefaculty, or exceptionally also outside of the faculty (requires permission of theExamination Committee); research of scientific literature, design work and/orexperimental work dependent on topic; consultation with the guiding assistantsand the primary supervisor ()

Estimation ofeffort:

Active Time: 10 hPreparation and Evaluation: 890 hSum: 900 h

Course assessmentand exams:

Written thesis and final presentation

Requirements(formal):

Having obtained 80 credits, successful completion of all general and track-specific compulsory modules

Grading: Grading of results obtained, written thesis, and final presentations by two re-viewers in accordance with rules and regulations

77

Page 78: Masterstudiengang Communications Technology

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

78

Page 79: Masterstudiengang Communications Technology

36 Mixed-Signal CMOS Chip Design

Token / Number: 8822271045

German title: -

Credits: 4 ECTS

Semester hours: 2.5

Language: English (german upon verbal agreement)

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Maurits Ortmanns

Training staff: Dr.-Ing. Joachim BeckerProf. Dr.-Ing. Maurits Ortmanns

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Elective Module, Communication and SystemTechnology

Electrical Engineering, M.Sc., Elective Module, Microelectronics

Electrical Engineering, M.Sc., Optional Module, Automation and EnergyTechnology

Communications Technology, M.Sc., Optional Technical Module, Microelec-tronicsEmbedded Systems, M.Sc., Application Subject, Mixed Signal Systems

Requirements(contentual):

Basic knowledge of semiconductor devices, analog circuits, control theory andsignal processing

79

Page 80: Masterstudiengang Communications Technology

Learning objectives: This lecture goes along with the analog and digital CMOS circuit design lec-tures offered by the institute of microelectronics. In contrast to these moretheoretical lectures on circuit design techniques, this lecture is focused on theimplementation issues of application specific integrated circuits (ASICs). Af-ter successful pass of this course, students understand the working principlesof analog and digital circuit simulation techniques. They are able to set up anode admittance matrix from a given circuit and know the working principlesand applications of the three main analog simulation types: DC, AC, and tran-sient. They understand linearization of device models and Newton-Raphsonintegration for solution of differential equations, update and residue criteria,and equilibrium points. Furthermore, they understand process variation anddevice mismatch and their influence on CMOS circuits and are able to useworst case corner modeling and statistical evaluation methods like Monte Carloanalysis for yield optimization and design centering. They can elaborate thedifference between cycle-based and event-driven digital simulation techniques,including half-step simulation and time-wheel scheduling. They are able to usesetup- and hold-time constraints as well as contamination- and propagation-delays for calculation of slack times in a static timing analysis and can explainthe effect of clock skew and jitter on synchronous circuits. They can elab-orate how table-based models and circuit-partitioning is able to significantlyspeed up simulations and enables mixed-signal verification. They can estimatethe tradeoff between manual modeling, compiled-model interface, and coupledco-simulation for mixed-mode analyses. They understand synthesis of combi-national and synchronous behavioral hardware description into generic gates.Furthermore, they are able to use the stuck-at fault-model and the D-algorithmin order to analyze testability and include boundary-scan Flip-Flops for improvedtestability. They know principles of placement and routing of standard-cells in-cluding min-cut algorithm, maze- and channel-routing, and layout compaction,as well as design-rule-check and layout-versus-schematic-check. They are ableto build a clock-distribution network and make use of timing aware placement,as well as build a power-grid and apply I/O-cells in order to improve the re-liability of digital circuits. Finally, they know various bonding-techniques andprinted-circuit-board design practices in order to connect the final ASIC to otherchips and measurement equipment. There is a strong emphasis on the computeraided design (CAD) support and algorithms, which are integral part of todayschip implementation. The exercises will be used to give hands-on experiencewith industry-standart CAD design tools.

Content: - analog simulation- digital simulation- mixed-signal and co-simulation- design for reliability- design for testability- CMOS layout, floorplanning, standart-cells- layout parasitic extraction and verification- packaging and board design

Literature: - Baker - CMOS : Circuit design, layout, and simulation- Razavi - Design of Analog CMOS Integrated Circuits- Allen, Holberg - CMOS Analog Circuit Designl- Sedra, Smith - Microelectronic Circuits

Basis for: Wahlpflichtmodule mit entsprechender Ausrichtung, Master-Thesis

Modes of learningand teaching:

Lecture “Mixed-Signal CMOS Circuit Design”, 2 SWS (V) ()Exercise “Mixed-Signal CMOS Circuit Design”, 0.5 SWS (Ü) ()

80

Page 81: Masterstudiengang Communications Technology

Estimation ofeffort:

Active Time: 38 hPreparation and Evaluation: 82 h

Sum: 120 h

Course assessmentand exams:

Teilnahme an Vorlesungen und Übungen, in der Regel mündliche Prüfungen.

Requirements(formal):

keine

Grading: Anhand des Ergebnisses der Prüfung

Basierend auf Rev. 1106. Letzte Änderung am 13.09.2013 um 12:48 durch vpollex.

81

Page 82: Masterstudiengang Communications Technology

37 Mobilkommunikation

Token / Number: 8822271813

English title: Mobile Communications

Credits: 6 ECTS

Semester hours: 4

Language: English

Turn / Duration: every Winter Term / 1 Semester

Module authority: Prof. Dr. Frank Kargl

Training staff: Prof. Dr. Frank Kargl

Integration of moduleinto courses of studies:

Computer Science, M.Sc., Core Subject, Technische und Systemnahe InformatikComputer Science and Media, M.Sc., Core Subject, Technische und SystemnaheInformatikComputer Science, M.Sc., Specialization Subject, Verteilte SystemeComputer Science and Media, M.Sc., Specialization Subject, Verteilte SystemeCommunications and Computer Engineering, M.Sc., Elective Course, (Inf)Communications Technology, M.Sc., Optional Technical Module,Computer Science, Lehramt, Optional Course,

Requirements(contentual):

Grundlagen der Rechnernetze, Fortgeschrittene Konzepte der Rechnernetze

Learning objectives: By successfully attending this module, students achieve a deeper understandingof specific challenges and security solutions in the area of mobile communicationsystems that advances their level of understanding significantly beyond thelectures "‘Grundlagen der Rechnernetze"’ and "‘Fortgeschrittene Konzepte derRechnernetze"’.Recent research topics in mobile communications are discussed based on currentscientific publications and by that the course also introduces students into theskills required to work with and discuss about scientific literature.The lab recapitulates the topics of the lecture with a more practical approachand also verifies learned knowledge in more theoretical assignments. At the sametime, the lab also includes practical hands-on exercises where students havethe opportunity to apply the learned knowledge on real mobile communicationsystems.

Content: The lecture is composed of three major blocks. Part one introduces importantfoundations of wireless communication including radio wave characteristics, fun-damental laws like Nyquist and Shannon-Hartley, but also basics of modulationand encoding. Part two discusses architecture and protocols of established wire-less communication systems such as WLAN, cellular networks (GSM, 3G, LTE),Bluetooth, or RFID. Finally, part three provides insights into recent researchtopics in mobile communication, e.g., VANETs or Wireless Sensor Networks.

Literature: - Schiller, Mobile Communications, 2nd ed., Addison Wesley- Mischa Schwartz, Mobile Wireless Communications, Cambridge UniversityPress

- Martin Sauter, Grundkurs Mobile Kommunikationssysteme, Vieweg+Teubner

Modes of learningand teaching:

Lecture Mobile Communications, 3 SWS (Prof. Dr. Frank Kargl)Exercise Mobile Communications, 1 SWS (N.N.)

82

Page 83: Masterstudiengang Communications Technology

Estimation ofeffort:

Active Time: 60 hPreparation and Evaluation: 120 hSum: 180 h

Course assessmentand exams:

Oral (in case of many participants written) exam at the end of the semester;no further course assessment; grade bonus if lab passed successfully

Requirements(formal):

None

Grading: Grade of the module exam

Basierend auf Rev. 1106. Letzte Änderung am 13.09.2013 um 12:48 durch vpollex.

83

Page 84: Masterstudiengang Communications Technology

38 Modern Semiconductor Devices

Token / Number: 8822271228

German title: -

Credits: 4 ECTS

Semester hours: 3

Language: English

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Hermann Schumacher

Training staff: Prof. Dr.-Ing. Hermann Schumacher

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Elective Module, Microelectronics

Electrical Engineering, M.Sc., Optional Module, Automation and EnergyTechnology

Communications Technology, M.Sc., Compulsory Subject Module, Microelec-tronics

Requirements(contentual):

- Basic knowledge of solid-state physics: semiconductors; band structure in realand in k-space; drift and diffusive transport

Learning objectives: Students recognize the importance of energy band diagrams for the analysis andappraisal of advanced electronic devices. They then discover how doping varia-tions and heterostructures are used in current semiconductor devices to controlthe distribution and motion of free charge carriers. Relevant transistor struc-tures are differentiated according to their charge control mechanism. Studentsthen identify large signal and small signal equivalent circuits, and discuss howintrinsic physical mechanisms are reflected at the component and circuit level.They relate geometrical constraints of high speed transistor families to theireconomic importance, and briefly review important microfabrication techniques.

Content: Semiconductor Fundamentals:- Energy band diagrams- Doping- MOS-, pn- and Schottky junctions- Semiconductor HeterostructuresElectronic semiconductor devices:

- MOSFET- MESFET- HEMT- BJT- HBTApplication aspects of semiconductor devices in RF/microwave communication-systems:

- Performance parameters- System requirements- Economical issues

84

Page 85: Masterstudiengang Communications Technology

Literature: - Simon Sze, Physics of Semiconductor Devices- S. Prasad, H. Schumacher, A. Gopinath, High Speed Electronics and Optoelec-tronics (Chapter 1 and 2)

- Full set of slides, video sequences on e-learning platform

Basis for: Microfabrication lab (compulsory prerequisite)Monolithic Microwave ICs in High-Speed Systems (recommended)

Modes of learningand teaching:

Lecture “Modern Semiconductor Devices”, 2 SWS ()Exercise “Modern Semiconductor Devices”, 1 SWS ()Laboratory “Modern Semiconductor Devices”, 1x2 hours (one event) ()

Estimation ofeffort:

Active Time: 36 hPreparation and Evaluation: 84 h

Sum: 120 h

Course assessmentand exams:

written exam, 2h duration, alternatively oral exam

Requirements(formal):

None

Grading: Module grade is equal to grade of written exam

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

85

Page 86: Masterstudiengang Communications Technology

39 Monolithic Microwave ICs in High-Speed Systems

Token / Number: 8822270457

German title: -

Credits: 6 ECTS

Semester hours: 4

Language: englisch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Hermann Schumacher

Training staff: Prof. Dr.-Ing. Hermann SchumacherProf. Dr.-Ing. Heinrich DämbkesDr. Vaclav Valenta

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Elective Module, Microelectronics

Electrical Engineering, M.Sc., Optional Module, Automation and EnergyTechnology

Communications Technology, M.Sc., Compulsory Subject Module, Microelec-tronics

Requirements(contentual):

Undergraduate knowledge of analog circuit design and RF engineering principles

Learning objectives: Students recognize the impact of system level requirements on circuit designapproaches. They then discuss key building blocks of radio frequency subsys-tems and circuits, identifying important circuit design concepts for high-speedwireless systems. They then apply these concepts, generating and designingkey circuit blocks in lab exercises. Students also recognize key properties of theindustry-standard CAD tool ADS, and practice its use in their designs.

Content: Building blocks of a satellite receiving system and their characteristic specifica-tions.Microwave circuit components:

- Passive components and their equivalent circuits- CAD models for III-V FETs, MOSFETs and hetero-bipolar transistors- Transmission lines- Micro-electro-mechanical structures for RF applications- Realization of reactances and impedance converters using transmission linesCircuit realization of building blocks:

- Low-noise amplifiers- Active and passive mixers- Microwave oscillators- Wide-band intermediate frequency amplifiers- Multi-functional MMICs- Packaging aspects and high-frecquency microsystems

86

Page 87: Masterstudiengang Communications Technology

Literature: - D.M. Pozar: Microwave Engineering , Addison-Wesley, 1990- G.D. Vendelin, A.M. Pavio, U.L.Rohde: Microwave Circuit Design Using Linearand Nonlinear Techniques , Wiley, 1990

- R.E. Collin: Foundation for Microwave Engineering , McGraw-Hill, 1992- R.S. Elliott: An Introduction to Guided Waves and Microwave Circuits ,Prentice- Hall, 1993

- G.Matthaei, L. Young & E. Jones: Microwave Filters, Impedance-MatchingNetworks & Coupling Structures , Artech House, 1980

- C.G. Montgomery, R.H. Dicke and E.M. Purcell: Principles of Microwave Cir-cuits (reprint of Radiation Laboratory volume 8 ) , IEEE Press, 1987

- F.E.Gardiol: Introduction to Microwaves , Artech House, 1984- Bahl and P. Bhartia: Microwave Solid-State Circuit Design , Wiley, 1988- S. Prasad, H. Schumacher, A. Gopinath, High Speed Electronics and Optoelec-tronics (Chapter 5)

Basis for: Master thesis on microwave IC design

Modes of learningand teaching:

Lecture “Monolithic Microwave ICs in High-Speed Systems”, 2 SWS ()Exercise “Monolithic Microwave ICs in High-Speed Systems”, 1 SWS ()Laboratory “Simulation Lab”, 1 SWS ()Tutorium : Online Tutorials on microwave CAD techniques ()

Estimation ofeffort:

Active Time: 60 hPreparation and Evaluation: 120 h

Sum: 180 h

Course assessmentand exams:

Admission to exam requires participation in at least 6 out of 9 exercise sessions(in class and laboratory).Oral exam composed of an oral presentation on an MMIC journal paper and aquestion and answer session (45 minutes)

Requirements(formal):

Grading: Grade of module is equal to grade of the oral exam

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

87

Page 88: Masterstudiengang Communications Technology

40 Multiuser Communications and MIMO Systems

Token / Number: 8822271727

German title: -

Credits: 6 ECTS

Semester hours: 4

Language: Deutsch oder Englisch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Robert Fischer

Training staff: Prof. Dr.-Ing. Robert Fischer

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Elective Module, Communication and SystemTechnology

Communications and Computer Engineering, M.Sc., Elective Module, (Ing)

Communications Technology, M.Sc., Optional Technical Module, Communica-tions Engineering

Requirements(contentual):

Module “Einführung in die Nachrichtentechnik”, “Communications Engineering”und “Signale und Systeme”.

Learning objectives: The students will be able to assess, compare, and design digital transmissionsystems where a number of users/signals are treated jointly. They can dis-tinguish the different performance measures and explain the trade-off betweenthem. Equalization and pre-equalization schemes can be assessed and designedaccording to pre-described criteria. The role of lattices in the present contextcan be outlined. Advanced state-of-the-art precoding approaches can be ap-praised. The information-theoretical foundation of multiuser communicationscan be described and applied for their evaluation. The role of interference insuch schemes can be illustrated.

Content: Introduction into the field of multiuser communications and multiple-input/multiple-output systems. Both, practical transmission schemes, as wellas fundamental limits from information theory are covered.

- Introduction- MIMO Communications- Introduction to Lattices- Lattice Decoding and the “Sphere Decoder”- Equalization via Lattice Reduction- “Writing on Dirty Paper”- Multiuser Communications- Advanced Transmitter-Side Techniques- Interference Channel

88

Page 89: Masterstudiengang Communications Technology

Literature: - D. Tse, P. Viswanath: Fundamentals of Wireless Communication. CambridgeUniversity Press,May 2005.

- A. Goldsmith: Wireless Communications. Cambridge University Press, August2005.

- T.M. Cover, J.A. Thomas: Elements of Information Theory. John Wiley &Sons, second edition, Sept. 2006.

- J.G. Proakis, M. Salehi: Digital Communications. Mcgraw-Hill Publ. Comp.,fifth edition, Nov. 2007.

- A. Paulraj, R. Nabar, D. Gore: Introduction to Space-Time Wireless Communi-cations.Cambridge University Press, May 2003.

- E. Biglieri, R. Calderbank, A. Constantinides, A. Goldsmith, A. Paulraj, H.V.Poor: MIMO Wireless Communications. Cambridge University Press, Jan.2007.

- H. Bölcskei, D. Gesbert, C.B. Papadias, A.-J. van der Veen (editors): Space-Time Wireless Systems: From Array Processing to MIMO ommunications. Cam-bridge University Press, June 2006.

- E.G. Larsson, P. Stoica: Space-Time Block Coding for Wireless Communica-tions. Cambridge University Press, May 2003.

- A.B. Gershman, N.D. Sidiropoulos: Space-Time Processing for MIMO Commu-nications. John Wiley & Sons, 2005.

Basis for: keine Angaben

Modes of learningand teaching:

Lecture “Multiuser Communications and MIMO Systems”, 3 SWS (V) ()Exercise “Multiuser Communications and MIMO Systems”, 1 SWS (Ü) ()

Estimation ofeffort:

Active Time: 60 hPreparation and Evaluation: 120 hSum: 180 h

Course assessmentand exams:

Usually oral exam, otherwise written exam of 120 minutes duration

Requirements(formal):

Grading: Module mark is identical to exam mark

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

89

Page 90: Masterstudiengang Communications Technology

41 Neural Networks and Pattern Classification

Token / Number: 8822270439

German title: -

Credits: 4 ECTS

Semester hours: 3

Language: englisch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Klaus Dietmayer

Training staff: Dr.-Ing. Ulrich Kreßel

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Optional Module, Communication and SystemTechnology

Electrical Engineering, M.Sc., Optional Module, Automation and EnergyTechnology

Electrical Engineering, M.Sc., Optional Module, General Electrical Engineering

Communications and Computer Engineering, M.Sc., Optional Module,

Communications Technology, M.Sc., Optional Technical Module, Communica-tions Engineering

Requirements(contentual):

- Basics of Stochastic- Basics of Linear Algebra- Basics of Digital Signal Processing

Learning objectives: The students are able to analyze a real world pattern recognition problem, totransform the problem into a schematic processing chain of recognition andto identify the main steps: data acquisition, segmentation, feature extraction,classification and context based interpretation.They know in detail the three basic theories: decision, approximation, andlearning theory, and can explain, how these mathematical theories support theengineering approach to pattern recognition.The students also can distinguish between different approaches to functionapproximation, such as polynomial classifier, multilayer perceptron, and radialbasis functions, can apply all of them, select the most appropriate one for agiven problem and design (structure) and adapt (parameters) them accordingly.They also know further concepts of classification, such as cluster analysis, nor-mal distribution hypothesis, support vector machine and cascade classifiers, inorder to differentiate them from each other and also to argue, where and whento use them.The students know, how to collect data for a pattern recognition task, and howto compose, evaluate and compare different approaches. They are able to applythese data bases to real world classification problems

90

Page 91: Masterstudiengang Communications Technology

Content: Processing chain for pattern recognition as data acquisition, segmentation, fea-ture extraction, classification and context based Interpretation, feature defini-tion, classes, learning from examples, generalization, function approximationsFundamental Theories: Decision Theory, Approximation Theory and LearningTheoryGeneral Algorithms: Bayes Classifier and Least Mean Squares Approach, Poly-nomial Classifier, Multilayer Perceptron:Multi References Classifiers: Radial Basis Functions, Nearest Neighbor Classi-fier Cluster Analysis: K-Means, Vector Quantization, Divisive Clustering NormalDistribution Hypothesis: Quadratic and Linear Decision Boundaries, MatchedFilter Support Vector Machine: Risk Minimization, Optimal Margin Classifier,Pairwise Classification Cascade Classifiers: Viola Jones, Adaptive Boosting,Random Trees Practical Examples: Digit Recognition, Traffic Sign Recognition,Pedestrian Detection

Literature: - Richard O. Duda, Peter E. Hart, and David G. Stork: Pattern Classification(2nd Edition), Wiley-Interscience, 2001

- Jürgen Schürmann: Pattern Classification: A Unified View of Statistical andNeural Approaches, Wiley-Interscience, 1996

Basis for: keine Angaben

Modes of learningand teaching:

Lecture “Neural Networks and Pattern Classification”, 2 SWS ()Exercise “Neural Networks and Pattern Classification”, 1 SWS ()

Estimation ofeffort:

Active Time: 39 hPreparation and Evaluation: 50 hSelf-Study: 40 h

Sum: 129 h

Course assessmentand exams:

In der Regel mündliche Prüfungen

Requirements(formal):

Grading: Note der Prüfung

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

91

Page 92: Masterstudiengang Communications Technology

42 Optical Communications

Token / Number: 8822271723

German title: -

Credits: 6 ECTS

Semester hours: 4

Language: english

Turn / Duration: every Summer Term / 1 Semester

Module authority: apl. Prof. Dr.-Ing. habil. Rainer Michalzik

Training staff: apl. Prof. Dr.-Ing. habil. Rainer Michalzik

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesCommunications Technology, M.Sc., Compulsory Subject Module,

Requirements(contentual):

Bachelor. No prerequisites from other modules required. Some basic knowledgeof semiconductor physics and devices would be helpful.

Learning objectives: The students are able to summarize the benefits of optical versus electricaldata transmission. They can employ a ray-optical model to describe the lightpropagation in optical waveguides and can identify situations where a wave-optical model is needed. The students can name and sketch different kinds ofoptical fibers as well as discuss the associated dispersion mechanisms which leadto bandwidth limitations. Origins of loss in optical fibers can be listed and fiberfabrication be outlined. They can state boundary conditions of field variablesto formulate characteristic equations for waveguide problems. The studentscan describe the structure of common semiconductor crystals as well as thecomposition dependence of parameters required to model the wave propagation.Appropriate semiconductor material systems for particular applications can beselected and interband transition mechanisms be sketched. They are able toexplain the operation of a light emitting diode and rate their use in fiber-basedoptical communication systems. The students can illustrate the function ofa laser diode and name the contributions to the laser rate equations. Theymaster to solve the rate equations for static and dynamic operating conditions.The students can discuss the role of a pn-junction for light detection. Factorsinfluencing the efficiency and the bandwidth of a photodiode can be pointed out.They can relate the current noise in a photoreceiver to the measured bit errorratio of a digital optical communication link. The optical power budget can becalculated. The students are able to list and discuss multiplexing techniques forincreasing the data throughput of an optical communication system. The basicfunction of optical (de-)multiplexing devices can be stated. They can moreoversketch the building blocks of an optical repeater and explain the operation ofan optical fiber amplifier.

92

Page 93: Masterstudiengang Communications Technology

Content: This module provides a solid basis for understanding fiber-optic data transmis-sion systems. Important components like the silica optical fiber as transmissionmedium, light emitting diode or laser diode transmitters, optical amplifiers, aswell as photodiode receivers are discussed in some detail. The entire system ischaracterized in terms of its bit error ratio performance and its power budget.The following topics are addressed:

- Properties of optical communication systems- Optical fibers: ray-optical model, step-index and graded-index fibers, wave-optical model, chromatic dispersion

- Wave propagation in planar waveguides- Loss in optical fibers: absorption and scattering- Fabrication of fibers- Semiconductor materials: crystal lattices, direct and indirect bandgaps, mixedcompound semiconductors, absorption and refractive index, emission and ab-sorption

- Light-emitting diodes for communications- Laser diodes- Photodiodes- Optical communication systems: detection sensitivity for digital signals, opticalpower budget

- Signal multiplexing: electrical time division multiplexing (ETDM), dense andcoarse wavelength division multiplexing (WDM), optical (de-)multiplexing de-vices, space division multiplexing (SDM)

- Signal restoration: electronic repeater, erbium-doped fiber amplifier (EDFA),alternative optical amplifiers

Literature: A comprehensive english written manuscript is provided

Basis for: Lectures “Advanced Optoelectronic Communication Systems” and “Optoelec-tronic Devices”, Laboratory “Optoelectronics”

Modes of learningand teaching:

Lecture “Optical Communications”, 3 hours per week ()Seminar “Optical Communications”, 1 hours per week ()

Estimation ofeffort:

Active Time: 49 hPreparation and Evaluation: 56 hSelf-Study: 75 h

Sum: 180 h

Course assessmentand exams:

Usually written exam of 120 minutes duration, otherwise oral exam

Requirements(formal):

None

Grading: Module mark is identical to exam mark

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

93

Page 94: Masterstudiengang Communications Technology

43 Optoelectronic Devices

Token / Number: 8822272065

English title: Optoelectronic Devices

Credits: 4 ECTS

Semester hours: 3

Language: English

Turn / Duration: every Summer Term / 1 Semester

Module authority: apl. Prof. Dr.-Ing. habil. Rainer Michalzik

Training staff: apl. Prof. Dr.-Ing. habil. Rainer Michalzik

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Elective Module, Microelectronics

Electrical Engineering, M.Sc., Elective Module, Communication and SystemTechnology

Electrical Engineering, M.Sc., Optional Module, Automation and EnergyTechnology

Communications and Computer Engineering, M.Sc., Optional Module,

Communications Technology, M.Sc., Optional Module,

Requirements(contentual):

Bachelor. Modules “Einführung in die Optoelektronik” or “Optical Communica-tions”

Learning objectives: The students are able to describe the modal properties of laser diodes in all threespatial directions and can summarize the temperature-related effects. They candistinguish between gain and index guiding and can relate optical near- and far-fields. The students can describe the origin of parasitic frequency modulationand explain the influence of spontaneous emission noise. They can expressthe motivation and practical implementation of mirror coatings. They are ableto design Bragg mirrors for use in edge-emitting distributed feedback (DFB)and distributed Bragg reflector (DBR) laser diodes as well as for vertical-cavitysurface-emitting lasers (VCSELs). They can sketch the layer structures of thesethree laser diode types and select their layout to achieve dynamic single-modeemission. The students can name the mechanisms of wavelength tuning oflaser diodes and illustrate suitable device implementations. They are able todiscuss the designs and operating principles of various types of photodetectorsand to identify strengths and weaknesses for their use in optical communicationsystems. The students can moreover list and describe physical effects that areemployed to realize optical phase and amplitude modulators with high opera-tion bandwidth. Corresponding devices can be sketched and their function beexplained. The students are able to show how phase modulation is convertedinto amplitude modulation in a Mach–Zehnder interferometer configuration.They master to employ such devices for the generation of higher-order opticalmodulation formats.

94

Page 95: Masterstudiengang Communications Technology

Content: - Edge-emitting semiconductor lasers: longitudinal multimode, lateral and trans-verse mode behavior, temperature effects, optical near- and far-fields, frequencymodulation, mirror coatings, laser noise, high-power lasers, DBR and DFB lasersfor use in telecommunications, tunable laser diodes

- Vertical-cavity surface-emitting lasers (VCSELs): principles and applications- Photodetectors: PIN-type, avalanche photodiode (APD),metal–semiconductor–metal (MSM), resonant-cavity-enhanced, waveguide-type, high-speed designs

- Optical modulators: physical effects (plasma, electroabsorption(Franz–Keldysh), quantum-confined Stark (QCSE), electro-optic (Pock-els)), phase modulators, Mach–Zehnder interferometer (MZI) modulators,absorption modulators

Literature: A comprehensive English written manuscript is provided

Basis for:

Modes of learningand teaching:

Lecture “Optoelectronic Devices”, 3 SWS (V) ()

Estimation ofeffort:

Active Time: 42 hPreparation and Evaluation: 42 hSelf-Study: 36 hSum: 120 h

Course assessmentand exams:

Usually oral exam, otherwise written exam of 90 minutes duration

Requirements(formal):

None

Grading: Module mark is identical to exam mark

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

95

Page 96: Masterstudiengang Communications Technology

44 Praktikum - Halbleitertechnologie

Token / Number: 8822270446

English title: Semiconductor Technology Lab

Credits: 5 ECTS

Semester hours: 4

Language: deutsch

Turn / Duration: every Semester / 1 Semester

Module authority: Dr. Wolfgang Ebert

Training staff: Dr. Wolfgang Ebert

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Compulsory Subject Module, MicroelectronicsElectrical Engineering, M.Sc., Optional Module, Automation and Energy Tech-nologyCommunications Technology, M.Sc., Recommended Optional Module,

Requirements(contentual):

Vorlesung "MOS-Halbleitertechnik" oder "Modern Semiconductor Devices"

Learning objectives: Nach der erfolgreichen Absolvierung des Halbleitertechnologie-Praktikums sinddie Teilnehmer praktisch befähigt, unter Reinraumbedingungen zu experimen-tieren und dabei komplexe Anlagen der Halbleitertechnologie zu bedienen. Siemodifizieren Halbleiteroberflächen durch thermische Abscheidung von Met-allen wie Gold und Aluminium, um anschließend unter Verwendung dieserdünnen Metallschichten mittels Kontaklithografie mikrostrukturierte Metallkon-takte zu generieren. Die Teilnehmer analysieren Teststrukturen, Dioden undTransistoren unter Anwendung elementarer elektrischer Charakterisierungsver-fahren und evaluieren, wie sich äußere (Geometrie) - und innere Einflußgrößen(Dotierung, intrinsische Widerstände, Idealitätsfaktor) auf die Kennlinien derBauelemente auswirken.

Content: Ziel das Praktikums ist es, voll funktionstüchtige Feldeffekttransistoren (GaAs-MESFET‘s) herzustellen und elektrisch zu charakterisieren. Das Praktikumfindet in einem eigens dafür ausgestattetem Reinraum statt und vermittelt de-shalb auch wichtige Erkenntnisse über die Tätigkeiten, technischen Anlagensowie Verhaltensweisen in Reinräumen.Schwerpunkte des Praktikums sind:

- Abscheidung von Metallen im Vakuum- Strukturierung der Bauelemente mittels optischen Lithographieverfahren imMikrometerbereich

- Metallätzverfahren- Herstellung von sperrfreien und sperrenden Kontakten- Elektrische Charakterisierung der Bauelemente

Literature: - H. Beneking: "Halbleitertechnologie", Teubner, Stuttgart- D. Widmann, H. Mader, H. Friedrich: "Technologie hochintegrierter Schaltun-gen", Halbleiterelektronik Bd. 19, Springer

- W. Kellner, H. Kniekamp: "GaAs-Feldeffekttransistoren", Springer

Basis for: Masterarbeit im Bereich Mikrofabrikation

96

Page 97: Masterstudiengang Communications Technology

Modes of learningand teaching:

Practical Course “Halbleitertechnologie”, 4 SWS ()

Estimation ofeffort:

Active Time: 35 hPreparation and Evaluation: 115 h

Sum: 150 h

Course assessmentand exams:

Testat bei Erfüllung folgender Kriterien: erfolgreiche Teilnahme am Praktikum,aktive Diskussion während des Kolloquiums, Abgabe und evtl. Korrektur desVersuchsprotokolls

Requirements(formal):

Grading: Unbenotete Veranstaltung (Leistungsnachweis)

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

97

Page 98: Masterstudiengang Communications Technology

45 Project - Analog CMOS Circuit Design

Token / Number: 8822271090

German title: Projekt - Entwurf analoger CMOS Schaltungen

Credits: 6 ECTS

Semester hours: 5

Language: Englisch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Maurits Ortmanns

Training staff: Prof. Dr.-Ing. Maurits Ortmanns

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module,Electrical Engineering, M.Sc., Elective Module, Communication and SystemTechnology

Electrical Engineering, M.Sc., Elective Module, Microelectronics

Electrical Engineering, M.Sc., Optional Module, Automation and EnergyTechnology

Communications and Computer Engineering, M.Sc., Elective Module,

Communications Technology, M.Sc., Optional Lab Course, MicroelectronicsEmbedded Systems, M.Sc., Application Subject, Mixed Signal Systems

Requirements(contentual):

Course and exam in Analog CMOS Circuit Design or proven equivalent knowl-edge. Written application for the project.

Learning objectives: The students are able to describe the overall flow of the design of integratedcircuits in deep-submicron CMOS technologies. They can accurately operatea complex circuit simulator tool. The students are able to apply hand calcula-tion to extract basic design specifications for the operating point and transistorscaling. They compose and model toplevel system design and are able to setupdc, ac, transient and monte carlo simulations. They can give examples for var-ious structures for operating point generation and are able to compare them.The students can distinguish differential amplifier structures and explain theirbehaviour and operation. They can further design, simulate and evaluate differ-ential amplifier structures. The students are able to explain a electronic system,subdivide into and analyze the functionality of the subblocks, and theoreticallyas well as experimentally explain the transistor level design.

Content: Yearly design project including- Design of Biasing Networks- Design of multistage Differential Amplifier- Design of bandgap reference circuits- Design of high-speed comparators- Design of a Switched Capacitor Integrator- Design of an Analog-Digital-Converter- Toplevel design- Layout of the modules

98

Page 99: Masterstudiengang Communications Technology

Literature: - Handouts for the various modules of the project and multimedia learning toolfor the design environment

- Allen P.E., Holberg, D.R. “CMOS Analog Circuit Design”, Oxford UniversityPress

- Baker, R.J. “CMOS Circuit Design, Layout, and Simulation”, Wiley- Razavi, B. “Design of Analog CMOS Integrated Circuits”, McGraw-Hill- Johns, D. “Analog Integrated Circuit Design”, Wiley

Basis for: keine Angaben

Modes of learningand teaching:

Project “Analog CMOS Circuit Design”, 5 SWS (P) ()

Estimation ofeffort:

Active Time: 60 hPreparation and Evaluation: 120 h

Sum: 180 h

Course assessmentand exams:

Certificate after fulfilment of the following criteria: Participation in all compul-sory classes, successful completion of all given design and layout tasks

Requirements(formal):

Successful exam in "Analog CMOS Circuit Design" with above average resultor similar qualification.

Grading: n.a.

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

99

Page 100: Masterstudiengang Communications Technology

46 Project - Design of Integrated Systems

Token / Number: 8822270428

German title: Projekt - Entwurf integrierter Systeme

Credits: 6 ECTS

Semester hours: 5

Language: English (German upon verbal agreement)

Turn / Duration: every Semester / 1 Semester

Module authority: Prof. Dr.-Ing. Maurits Ortmanns

Training staff: Prof. Dr.-Ing. Maurits OrtmannsProf. Dr.-Ing. Joachim Becker

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Elective Module, Communication and SystemTechnologyElectrical Engineering, M.Sc., Elective Module, MicroelectronicsElectrical Engineering, M.Sc., Optional Module, Automation and Energy Tech-nologyCommunications and Computer Engineering, M.Sc., Elective Module, (Ing)Communications Technology, M.Sc., Optional Lab Course,

Requirements(contentual):

- very good programing skills in one programming language- background in binary number systems, especially two’s complement (BK2) num-ber system

- representation of fractional numbers with BK2- binary addition, binary subtraction, binary multiplication (integer and fractionalnumbers)

- pipelining- digital logic gates (transistor level is not required)- functionality of registers, multiplexers- functionality of adders, comparators, counters- basic knowledge of UNIX/Linux commands

Learning objectives: The students are able to describe the overall design flow integrated digital cir-cuits and perform the task based on a functional description towards a hardwarerealization on programmable logic devices. They are able to analyse a circuitspecification and to realize this as a hierarchical model on basis of hardwaredescription language verilog or VHDL. They are able to program the verilog orVHDL code, such that the hierarchical model is met. The students are ableto operate a simulator for VHDL or verilog code, to set up a simulation fortheir code, to run such simultions and to evaluate the results. The studentsunderstand how to debug their code upon the simulation results. The studentscan subdivide the task into subblocks, are able to perform a task schedule andto fulfill the workpackages upon such schedule.

Content: - basic knowledge of the hardware description language Verilog- synthesizable subset of Verilog- design rules for synthesizable Verilog- complete design flow from specification to hardware realizationThe contents are imparted using a small example project. This project has tobe completed by the students by the end of the semester.

100

Page 101: Masterstudiengang Communications Technology

Literature: Documents covering software and Verilog are provided.

Basis for: n.a.

Modes of learningand teaching:

Project “Design of Integrated Circuits”, 5 SWS (P) ()

Estimation ofeffort:

Active Time: 15 hSelf-Study: 10 hPreparation and Evaluation: 95 hGroup Work: 60 h

Sum: 180 h

Course assessmentand exams:

Certificate after fulfillment of the following criteria: Participation in all compul-sory exercises, successfull completion of all given tasks.

Requirements(formal):

none

Grading: n.a.

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

101

Page 102: Masterstudiengang Communications Technology

47 Project - Dialogue Systems

Token / Number: 8822270435

German title: -

Credits: 8 ECTS

Semester hours: 6

Language: englisch und deutsch

Turn / Duration: every Semester / 1 Semester

Module authority: Prof. Dr.-Ing. Dr. Wolfgang Minker

Training staff: Prof. Dr.-Ing. Dr. Wolfgang Minker

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Optional Module, Communication and SystemTechnologyElectrical Engineering, M.Sc., Optional Module, Automation and Energy Tech-nologyElectrical Engineering, M.Sc., Optional Module, General Electrical EngineeringCommunications and Computer Engineering, M.Sc., Optional Module,Communications Technology, M.Sc., Optional Lab Course, CommunicationsEngineeringComputer Science and Media, B.Sc., Application Subject, SprachdialogischeBenutzerschnittstellenComputer Science and Media, M.Sc., Projekt,Computer Science and Media, M.Sc., Application Subject, Dialogue Systems

Requirements(contentual):

No prerequisites from other lectures required. Some programming(C/C++,Java) and operating systems (Unix/Linux) knowledge would be help-ful.

Learning objectives: The student shows a practical understanding of multimodal spoken dialoguesystems technology. He is aware of the the interdisciplinarity of the researchfield. He applies his acquired knowledge through project-oriented practical work.

Content: Research in multimodal spoken language dialogue systems is performed onthe basis of end-to-end systems including components for acoustic processing,speech signal analysis, recognition, spoken natural language understanding,dialogue processing and speech synthesis. In the framework of this componentdevelopment several individual topics are proposed as practical studies. Theymay depend on the current development status of the prototype systemdemonstrator of the Dialogue Systems Group.

Literature: To be distributed during the project

Basis for: Graduate theses in the area of spoken dialogue systems technology

Modes of learningand teaching:

Project “Dialogue Systems”, 6 SWS ()

Estimation ofeffort:

Active Time: 192 hPreparation and Evaluation: 48 h

Sum: 240 h

102

Page 103: Masterstudiengang Communications Technology

Course assessmentand exams:

Certificate after fulfillment of the following criteria: at least three meetingswith the supervisor to discuss progress of work; final presentation (demo) anddiscussion; short description and illustration (max. 10 pages); submission of thefinal version (hard/software and documentation) of the project to the supervisor.

Requirements(formal):

Grading: keine

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

103

Page 104: Masterstudiengang Communications Technology

48 Project - Radio Frequency Electronics

Token / Number: 8822271563

German title: -

Credits: 5 ECTS

Semester hours: 3

Language: Englisch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Hermann SchumacherDr.-Ing. Andreas Trasser

Training staff: Prof. Dr.-Ing. Hermann Schumacher

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesCommunications Technology, M.Sc., Optional Lab Course,

Requirements(contentual):

Radio Frequency Engineering; recommended additionally: High Frequency Mi-crosystems or Monolithic Microwave ICs in High-Speed Systems

Learning objectives: Students analyze an initially incomplete set of technical requirements. Theydiscuss the requirements, identifying missing information and break down theproject into individual tasks. Recognizing the necessary radio frequency elec-tronics concepts to be employed, they sketch a solutionn path and design thenecessary components using off-the-shelf components, appraising issues likeavailability and bill of materials. A prototype is finally fully developed, con-structed and assessed. Along the way, common pitfalls of working in projects,and proven project management issues are reviewed.

Content: This project will realize a different radio frequency subsystem each year. Thedocents will describe a set of requirements, students will then set out to de-velop a system concept, research suitable off-the-shelf components, performthe complete design, and finally build and characterize a prototype. A writtenreport describing design decisions, all data relevant to replicate the prototype,and characterization results will finalize the project. Docents will act as designconsultants; additionally, short lectures will introduce important project manage-ment approaches such as Scrum, students will use simple project managementtechniques during the design and implementation phases.

Literature: - M. Hoffmann, Hochfrequenztechnik -ein systemtheoretischer Zugang (in Ger-man)

- Lecture notes for RF Engineering- David Rutledge, The Electronics of Radio- S. Prasad/H. Schumacher/A. Gopinath, High-Speed Electronics and Optoelec-tronics (Chapter 5)

Basis for: Master thesis with radio frequency electronics content

Modes of learningand teaching:

Project“Radio Frequency Electronics”, Introductory lectures, 1 SWS (V)Project“Radio Frequency Electronics” , design consulting sessions; guided designexercises; guided characterization exercises, 2 SWS (P)

104

Page 105: Masterstudiengang Communications Technology

Estimation ofeffort:

Active Time: 60 hPreparation and Evaluation: 60 hSelf-Study: 30 h

Sum: 150 h

Course assessmentand exams:

Continuous evaluation of progress during design consulting contact sessions;written design report, oral presentation of individual work contributions.

Requirements(formal):

Grading: ungraded course

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

105

Page 106: Masterstudiengang Communications Technology

49 RF & Microwave Communication Systems

Token / Number: 8822271725

German title: Hochfrequenzübertragungstechnik

Credits: 4 ECTS

Semester hours: 3

Language: english

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Christian Waldschmidt

Training staff: Prof. Dr.-Ing. Christian WaldschmidtDr.-Ing. Frank Bögelsack

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesCommunications Technology, M.Sc., Compulsory Subject Module,

Requirements(contentual):

Module ”RF & Microwave Engineering“

Learning objectives: After successful completion of this module, students are able to describe prin-ciples of radio communications and of propagation of radio waves. They knowhow to apply methods of RF & microwave engineering to design and metro-logically verify systems used in radio communications. They are able to designsimplified microwave systems.

Content: This lecture introduces students into various aspects of radio communications.Wireless systems are decomposed into subsystems as transmitters, radio chan-nels, and receivers. These systems are systematically analyzed and subdividedinto further subsystems. The objective of this lecture is to mediate all necessarytools for successfully analyzing existing radio-communication systems, and fordesigning new ones. The lecture covers in particular system aspects of:

- signal generation,- frequency conversion,- modulation,- power amplification,- large signal behavior and intermodulation,- antennas,- propagation of radio waves,- power link budgets,- signal perturbations by mixer noise,- fading,- receiver structures.

Literature: - Lecture handoutText books:

- Collin, Robert E.: Antennas and Radiowave Propagation. McGraw-Hill, Singa-pore 1985

- Rappaport, Theodore A. : Wireless Communications. IEEE Press / PrenticeHall, New York 1996

- Smith, Albert A.: Radio Frequency Principles and Applications. IEEEPress/Chapman & Hall, New York 1998

106

Page 107: Masterstudiengang Communications Technology

Basis for:

Modes of learningand teaching:

Lecture “RF & Microwave Communication Systems”, 2 SWS ()Exercise “RF & Microwave Communication Systems”, 1 SWS ()

Estimation ofeffort:

Active Time: 45 hPreparation and Evaluation: 45 hSelf-Study: 30 h

Sum: 120 h

Course assessmentand exams:

The examination is normally a written examination of 120 minutes.

Requirements(formal):

Bachelor Degree in a subject closely related to or similar to CommunicationsEngineering

Grading: Mark of examination

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

107

Page 108: Masterstudiengang Communications Technology

50 RF & Microwave Engineering

Token / Number: 8822271724

German title: Hochfrequenztechnik

Credits: 6 ECTS

Semester hours: 4

Language: english

Turn / Duration: every Winter Term / 1 Semester

Module authority: Prof. Dr.-Ing. Wolfgang Menzel

Training staff: Prof. Dr.-Ing. Wolfgang MenzelProf. Dr.-Ing. Christian WaldschmidtDr.-Ing. Frank Bögelsack

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesCommunications Technology, M.Sc., Compulsory Subject Module,

Requirements(contentual):

Learning objectives: After successful completion of this module, students are able to identify andto describe important properties of components used in RF & microwave engi-neering. They know to apply basic methods for analyzing and designing RF &microwave circuits and systems. They are capable to find new approaches forunknown problems in RF & microwave engineering area.

Content: This lecture introduces students into basic linear systems of RF & microwaveapplications. Information and power is transported in these systems by means ofelectromagnetic waves. Consequently, the introduction of mathematical toolsto describe waves on lines and their effects to components and systems is themain subject of this lecture. The module covers in particular the followingsubjects:

- current and voltage waves on (TEM-) lines, power waves,- relations of these waves to field-waves, skin-effect,- reflection of waves at line-terminations, Smith-chart,- impedance transformation by lines and by other components,- realistic components,- description of linear time-invariant wave-N-ports by scattering parameters,- signal flow-graphs,- transfer functions, various definitions of power gain, linear distortions,- filters, couplers, amplifiers,- electronic noise,- basics of antennas,- introduction into problems of electromagnetic compatibility.

108

Page 109: Masterstudiengang Communications Technology

Literature: - Lecture handoutText books:

- Hoffmann, M.: Hochfrequenztechnik–Ein systemtheoretischer Zugang, SpringerVerlag (in german)

- Collin, Robert E.: Foundations for Microwave Engineering. Singapore: McGraw-Hill, 1992

- Matthaei, Young, Jones: Microwave Filters, Impedance-Matching Networks,And Coupling Structures. Artech House (Kap. 2)

- Pengelly: Microwave Field-Effect Transistors – Theory, Design and Applications.Research Studies Press/Jon Wiley & Sons (Kap. 7, 8)

- Peter A. Rizzi, Microwave Engineering, Passive Circuits. Prentice Hall, Engle-wood Cliffs, New Jersey, 1988,

- Saad: Microwave Engineers Handbook, Vol. I, II, Artech House (Kap. 1, 2)- Sander: Microwave Components and Systems. Addison-Wesley PublishingCompany

- Vendelin, Pavio, Rohde: Microwave Circuit Design. John Wiley & Sons (Kap.5–8)

- R. J. Weber: Introduction to Microwave Circuits : Radio Frequency and DesignApplications. New York: Wiley, 2001,

Basis for: This module is a prerequisite for the modules:RF & Microwave Communication Systems, Lab RF Engineering

Modes of learningand teaching:

Lecture “RF & Microwave Engineering”, 3 SWS ()Exercise “RF & Microwave Engineering”, 1 SWS ()

Estimation ofeffort:

Active Time: 60 hPreparation and Evaluation: 60 hSelf-Study: 60 h

Sum: 180 h

Course assessmentand exams:

The examination is normally a written examination of 120 minutes.

Requirements(formal):

Bachelor Degree in a subject closely related to or similar to CommunicationsEngineering

Grading: Mark of examination

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

109

Page 110: Masterstudiengang Communications Technology

51 Radio Frequency Power Amplifier Design

Token / Number: 8822272075

German title: Hochfrequenz-Leitungsverstärker-Entwurf

Credits: 4 ECTS

Semester hours: 3

Language: Englisch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Hermann SchumacherDr.-Ing. Christoph Bromberger

Training staff: Dr.-Ing. Christoph Bromberger

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Optional Module, Engineering SciencesCommunications Technology, M.Sc., Optional Module,Communications and Computer Engineering, M.Sc., Optional Module,

Requirements(contentual):

Bachelor-Level Analog Design Skills Some understanding of S-parameters ishelpful

Learning objectives: After the first half of the lecture, the students identify the requirements frommobile communication systems for power amplifier design. Attendees recog-nize potential challenges in applying HF measurement equipment and employtechniques to circumvent them. Students differentiate between small- and large-signal operation and examine the respective strengths and limitations of time-domain and of S-parameter methods. They appraise for the real-world limita-tions to PA design, HF bandwidth and signal bandwidth. After the second half,participants discriminate different efficiency enhancement concepts and applyload modulation amplifier design techniques.

Content: - Data encoding, signal statistics and consequences for power amplifiers- Measuring power devices- Small-signal vs. large-signal operation, LF vs. HF behavior- Matching power devices using measurement and small-signal tools- Some nasty shortcomings of nice theoretical approaches- The Doherty amplifier and it’s design- Outphasing, pre-distortion, feed-forward and switching mode Pas- In the exercises, students engross in the concepts by applying them with thehelp of ADS to real-world designs.

Literature: - Steve Cripps, RF Power Amplifiers

Basis for: Master thesis with radio frequency electronics content

Modes of learningand teaching:

Project“Radio Frequency Electronics”, Introductory lectures, 1 SWS (V)Project“Radio Frequency Electronics” , design consulting sessions; guided designexercises; guided characterization exercises, 2 SWS (P)

Estimation ofeffort:

Active Time: 39 hSelf-Study: 25 hPreparation and Evaluation: 26 hSelf-Study: 30 h

Sum: 120 h

110

Page 111: Masterstudiengang Communications Technology

Course assessmentand exams:

Usually written exam of 120 minutes, otherwise oral exam; pre-requisite forparticipating in the exam: 60 per cent of the credits from the exercises

Requirements(formal):

Grading: Module mark is equal to exam mark.

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

111

Page 112: Masterstudiengang Communications Technology

52 Satellite Communications and Navigation

Token / Number: 8822270441

German title: -

Credits: 4 ECTS

Semester hours: 3

Language: englisch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Uwe-Carsten Fiebig

Training staff: Prof. Dr.-Ing. Uwe-Carsten Fiebig

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Optional Module, Communication and SystemTechnology

Electrical Engineering, M.Sc., Optional Module, Automation and EnergyTechnology

Electrical Engineering, M.Sc., Optional Module, General Electrical Engineering

Communications and Computer Engineering, M.Sc., Optional Module,

Communications Technology, M.Sc., Optional Technical Module,

Requirements(contentual):

Communications Engineering

Learning objectives: The students are able to understand the various types of satellite orbits: fromthe Earth-satellite geometry the students can determine all parameters whichare relevant for satellite communications such as coverage, distance, visibilityof the satellite, elevation angle, and Doppler effects.The students get an idea about satellite installation, space conditions, and or-bital perturbations and, thus, understand all major differences between satellitecommunications and terrestrial mobile radio.Link budgets are in the very focus of the lecture. The students are able tocalculate complete link budgets for satellite communications for both uplinkand downlink, for station-to-station links and also for interplanetary links. Thestudents assess the findings of link budgets; they can design satellite commu-nications systems encompassing transmit power, antenna size, bit rate con-straints, frequency issues, link margins and the like. The students analyse theinfluence of communication parameters on the link budget and point out theconsequences on the system design if the requirements on the communicationslink are changed.Operational satellite communication systems are treated in the lecture. The stu-dents understand their basic concepts and are able to identify their advantagesand drawbacks.The final subject is satellite navigation. The students understand the basic con-cept of satellite navigation. They can describe the challenges satellite navigationis faced with and apply methods and techniques to cope with this challenges.The students can explain the various components of satellite navigation systemsand understand concepts to further improve the performance of such systems.

112

Page 113: Masterstudiengang Communications Technology

Content: The lecture treats both communication aspects of modern satellite communica-tions systems and satellite navigation. The topics are: Satellite orbits (Kepler’slaws, Earth-satellite geometry, types of orbits), satellite installation into thetarget orbit, space conditions, satellite communications payload, modulationand multiple access for satellite communications, adjacent channel interference,intermodulation, satellite channel (frequency bands, atmospheric effects, fademargin design), link budgets (description of all parameters which are requiredto calculate the signal-to-noise ratio at the receiver; examples of link budgets),mobile satellite communication systems (Iridium, Globalstar) and satellite nav-igation (principle, navigation equation, error budget, GPS, Galileo)

Literature: - G. Maral and M. Bousquet: Satellite Communications System, Wiley

Basis for: keine Angaben

Modes of learningand teaching:

Lecture “Satellite Communications”, 2 SWS ()Exercise “Satellite Communications”, 1 SWS ()

Estimation ofeffort:

Active Time: 36 hPreparation and Evaluation: 36 hSelf-Study: 48 h

Sum: 120 h

Course assessmentand exams:

Attendance to lecture and exercises. In general the examination is a writtenexam with a duration of 90 minutes, otherwise oral exam.

Requirements(formal):

Grading: Module mark is identical to exam mark.

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

113

Page 114: Masterstudiengang Communications Technology

53 Semiconductor Sensors

Token / Number: 8822270450

German title: Halbleitersensoren

Credits: 5 ECTS

Semester hours: 4

Language: Englisch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Hermann Schumacher

Training staff: Dr. Alberto Pasquarelli

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Compulsory Subject Module, MicroelectronicsElectrical Engineering, M.Sc., Optional Module, Automation and Energy Tech-nologyCommunications Technology, M.Sc., Optional Technical Module, Microelec-tronicsEmbedded Systems, M.Sc., Application Subject, Mixed Signal Systems

Requirements(contentual):

Halbleiterbauelemente

Learning objectives: Learning objectives:The advances in microelectronics and micro electro-mechanical systems(MEMS) have revolutionized the scenario of sensor technology. Thanks tonew mateials and processes, traditional bulky, slow and expensive sensor sys-tems could be replaced by miniaturized and integrated smart sensors based onsemiconductors. With the help of semiconductor sensors various applicationareas have been developed. In everyday life we encounter them, for examplein the form of navigation and control systems in vehicles or as microphones,accelerometers, compass and cameras in mobile phones and tablets. In addi-tion to the automotive industry and the mobile communications, semiconductorsensors are used in many other areas, for example in health care to record theblood pressure or body temperature in real time.The students describe and classify principles of operation, technological im-plementations and application areas of different sensors. They recognize anddiscuss the various physical phenomena in semiconductors, which are used forthe detection of physical quantities and their conversion to electrical signals.They know various semiconductor materials suitable for the production of sen-sors, analyze the peculiarities of each one, explain and predict their responseunder different conditions and can calculate sensor examples for different mea-surement needs. The students can design a semiconductor sensor choosing theright material among several semiconductors. They are able to analyze a mea-surement problem, compare appropriate sensing techniques and develop theirown solution. Doing this they can properly dimension the sensor unit to meetthe design specifications.

114

Page 115: Masterstudiengang Communications Technology

Content: Semiconductor-based detection methods for:- radiation (ionizing and non-ionizing)- magnetic fields- mechanical forces- temperatureBasics on operational amplifiers Basics on MST (micro system technology)Basics on MEMS (micro electro-mechanical systems)

Literature: - Sze, S.M.: Semiconductor sensors, John Wiley & Sons, 1994- Middelhoek S., Audet S.A., Silicon Sensors, Academic Press 1989- EPopovic R.S., Hall effect Devices, Adam Hilger, 1991- Lecture Notes

Basis for: Master thesis in the area of semiconductor sensors.

Modes of learningand teaching:

Lecture “Semiconductor Sensors”, 3 SWS (V) ()Exercise “Semiconductor Sensors”, 1 SWS (Ü) ()

Estimation ofeffort:

Active Time: 48 hPreparation and Evaluation: 102 hSum: 150 h

Course assessmentand exams:

Written exam of 120 minutes duration.

Requirements(formal):

Grading: Module mark is identical to exam mark.

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

115

Page 116: Masterstudiengang Communications Technology

54 Sicherheit und Privacy in Mobilen Systemen

Token / Number: 8822271824

English title: Security and Privacy in Mobile Systems

Credits: 6 ECTS

Semester hours: 4

Language: English

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr. Frank Kargl

Training staff: Prof. Dr. Frank Kargl

Integration of moduleinto courses of studies:

Computer Science, M.Sc., Core Subject, Technische und Systemnahe InformatikComputer Science, M.Sc., Specialization Subject, IT-SicherheitComputer Science, M.Sc., Specialization Subject, Verteilte SystemeComputer Science and Media, M.Sc., Core Subject, Technische und SystemnaheInformatikComputer Science and Media, M.Sc., Specialization Subject, IT-SicherheitComputer Science and Media, M.Sc., Specialization Subject, Verteilte SystemeCommunications and Computer Engineering, M.Sc., Elective Module, (Inf)Communications Technology, M.Sc., Optional Technical Module,Computer Science, Lehramt, Optional Course,Embedded Systems, M.Sc., Application Subject, Mobile Systems

Requirements(contentual):

Mobile Communications and Sicherheit in IT-Systemen.

Learning objectives: Participants know the major threats to security and privacy in mobile systemsand know how to select and design suitable security mechanisms to protect fromthem. They are capable of analyzing the security of mobile communicationsystems and wireless networks on all layers. They can identify and analyzeweaknesses and understand the presented attacks. Furthermore, students canpropose and discuss possible security solutions to protect systems appropriately.Beyond, they understand the role and importance of location privacy and dataprotection in mobile systems and are familiar with the most important privacyenhancing technologies.Recent research topics in mobile systems security and privacy are discussedbased on current scientific publications and by that the course also introducesstudents into the skills required to work with and discuss about scientific liter-ature.The lab recapitulates the topics of the lecture with a more practical approachand also verifies learned knowledge in more theoretical assignments. At the sametime, the lab also includes practical hands-on exercises where students havethe opportunity to apply the learned knowledge on real mobile communicationsystems.

Content: The course provides a deepened discussion of security and privacy for mobilesystems. After an introduction into the specifics of mobile systems, the coursecontinues with discussing specific security and privacy requirements. The lectureis composed of two main blocks. The first block introduces and discussessecurity issues and security mechanisms of established mobile communicationsystems such as WLAN, cellular networks, Bluetooth, or RFID. In the secondpart, the lecture provides an introduction to current research topics related tomobile security and privacy, e.g., in the areas of mobile ad-hoc networks orVANETs.

116

Page 117: Masterstudiengang Communications Technology

Literature: - Selected literature and online resources.

Modes of learningand teaching:

Lecture Security and Privacy in Mobile Systems, 3 SWS (Prof. Dr. FrankKargl)Exercise Security and Privacy in Mobile Systems, 1 SWS (N.N.)

Estimation ofeffort:

Active Time: 60 hPreparation and Evaluation: 120 hSum: 180 h

Course assessmentand exams:

Oral (in case of many participants written) exam at the end of the semester;no further course assessment; grade bonus if lab passed successfully

Requirements(formal):

none

Grading: Grade of the module exam

Basierend auf Rev. 1106. Letzte Änderung am 13.09.2013 um 12:48 durch vpollex.

117

Page 118: Masterstudiengang Communications Technology

55 Statistical Signal Processing

Token / Number: 8822271176

German title: -

Credits: 6 ECTS

Semester hours: 4

Language: Deutsch oder Englisch

Turn / Duration: every Winter Term / 1 Semester

Module authority: Prof. Dr.-Ing. Robert Fischer

Training staff: Prof. Dr.-Ing. Robert Fischer

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Optional Module, Communication and SystemTechnologyCommunications Technology, M.Sc., Optional Technical Module, Communica-tions Engineering

Requirements(contentual):

Module “Einführung in die Nachrichtentechnik”, “Communications Engineering”und “Signale und Systeme”

Learning objectives: Stochastic processes and statistical signal processing are very important con-cepts in communications. The students will be able to classify and characterizestochastic processes and calculate their characteristic quantities. The action ofprocessing random signals can be evaluated and explained. The students willbe able to assess and design prediction and filtering tasks. The relevant math-ematical concepts can be applied to solve current and future problems. Therelevance of information theoretical quantities in the field of stochastic signalscan be described. Existence bounds can be calculated.

Content: This class is a compressed course covering the following subjects- Probability for Electrical Engineering and Computer Science Review of basicprobability and random variables; Axioms, basic laws, conditional probability,Bayes rule, independence; probability mass function, cumulative distributionfunction, probability density; function,joint, marginal and conditionaldistribu-tions; mean, variance, covariance, correlation; Markov and Chebyshew inequali-ties; mean-square error estimation; hypothesis testing; Random vectors; Covari-ance matrix, Gaussian random vectors; laws of large numbers

- Random processesDiscrete and continuous random processes, Wiener, Karhunen-Loeve, Neyman-Pearson; IID, Gauss-Markov, random walk; stationarity, autocorrelation func-tion; power spectral density, White noise, bandlimited processes

- Detection and Estimation TheorySufficient Statistics, Cramer-Rao Bound, Stein’s lemma, parameter estimationand Fisher-Information; hypothesis test; relative entropy; mutual informationand MMSE; Filtering Noise

118

Page 119: Masterstudiengang Communications Technology

Literature: - R.M. Gray, L.D. Davisson: An Introduction to Statistical Signal Processing.Cambridge University Press, Feb. 2010.

- A. Papoulis, S.U. Pillai: Probability, Random Variables and Stochastic Pro-cesses. Mcgraw-Hill. 4Th ed. 2002

- T. Kailath, A.H. Sayed, B. Hassibi: Linear Estimation. Prentice Hall, NJ, 2000.- H. Stark, J.W. Woods: Probability and Random Processes, with Applicationsto Signal Processing. Prentice-Hall, 3rd ed., 2001.

- H.L. Van Trees: Detection, Estimation and Modulation Theory, Parts I and III,Wiley, 1968/2001.

- S. Kay: Fundamentals of Statistical Signal Processing, Vol. I — EstimationTheory. Prentice Hall, 1993.

- S. Kay: Fundamentals of Statistical Signal Processing, Vol. II — DetectionTheory. Prentice Hall, 1998.

- S. Kay: Intuitive Probability and Random Processes Using MATLAB. Springer,2005.

Basis for: keine Angaben

Modes of learningand teaching:

Lecture “Statistical Signal Processing”, 3 SWS (V) ()Exercise “Statistical Signal Processing”, 1 SWS (Ü) ()

Estimation ofeffort:

Active Time: 56 hPreparation and Evaluation: 66 hSelf-Study: 58 h

Sum: 180 h

Course assessmentand exams:

Usually oral exam, otherwise written exam of 120 minutes duration

Requirements(formal):

Grading: Module mark is identical to exam mark

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

119

Page 120: Masterstudiengang Communications Technology

56 Technical Presentation Skills

Token / Number: 8822271730

German title: -

Credits: 2 ECTS

Semester hours: 2

Language: englisch

Turn / Duration: every Winter Term / 1 Semester

Module authority: Prof. Dr.-Ing. Hermann Schumacher

Training staff: Prof. Dr.-Ing. Hermann Schumacher

Integration of moduleinto courses of studies:

Communications Technology, M.Sc., Optional Non-Technical Module,

Requirements(contentual):

Basic knowledge of presentation software (e.g. PowerPoint, LibreOffice Impress)Bachelor-level engineering background.

Learning objectives: Students recognize proven techniques for technical oral presentations supportedby visual aids. In the preparation of their presentation, they distinguish differ-ent target audiences and devise their presentation strategy accordingly. Theydifferentiate between different forms of presentation (oral, written, web-based)and develop suitable communication strategies. Students create an oral presen-tation on a topic of their choice within an annually changing topical framework,defend their ideas in front of their peers, and summarize their presentation ina two-page written report.

Content: - Presentation quality criteria- Researching a subject- Structuring oral presentations- Visual aids preparation- Multimedia techniques- Public speaking- Handling questions and critique- Written presentations:

1. Research reports

2. Journal arcticles

3. Theses

- Presenting technical matters on the web- Seminar trial presentations

Literature: keine Angaben

Basis for:

Modes of learningand teaching:

Lecture “Technical Presentation Skills”, 1 SWS ()Seminar “Technical Presentation Skills”, 1 SWS ()

120

Page 121: Masterstudiengang Communications Technology

Estimation ofeffort:

Active Time: 30 hPreparation and Evaluation: 30 h

Sum: 60 h

Course assessmentand exams:

Participation in lectures and seminars (student can miss a maximum of threedates) Public seminar presentation Two-page written abstract

Requirements(formal):

Grading: non-graded

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

121

Page 122: Masterstudiengang Communications Technology

57 Technology for Micro- and Nanostructures

Token / Number: 8822270458

German title: -

Credits: 4 ECTS

Semester hours: 3

Language: English

Turn / Duration: every Winter Term / 1 Semester

Module authority: Prof. Dr. Peter Unger

Training staff: Prof. Dr. Peter Unger

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Elective Module, Microelectronics

Electrical Engineering, M.Sc., Optional Module, Automation and EnergyTechnology

Communications Technology, M.Sc., Compulsory Subject Module, Microelec-tronics

Requirements(contentual):

- Bachelor- Vordiplom

Learning objectives: The students can describe and explain the different lithography methods likeoptical, e-beam, and x-ray lithography. For a given lithographic problem, theyare able to select a suitable exposure process and to choose a proper resistmaterial. The students understand the physics of low-pressure non-equilibriumgas discharges, can give examples of commonly used process techniques usingthese type of plasmas, and are able to sketch the construction of typical plasma-etching and plasma-deposition systems. The students are able to explain thephysics of dry-etching and vacuum deposition processes used in semiconductorand thin-film technology.

122

Page 123: Masterstudiengang Communications Technology

Content: At the beginning of the course, the basic technological processes for lithographyand pattern transfer techniques are discussed.As applications of these technologies, fabrication processes are presentedlike CMOS and III-V technology, micromechanics, magnetic thin-film heads,flat-panel displays, micro optics, x-ray optics and quantum-effect electronicdevices.The lectures are accompanied by exercises, where important original publica-tions will be discussed and hands-on experiments in the clean room will beperformed.

Main Topics:- Resists- Optical Lithography- Electron-Beam Lithography- X-Ray Lithography- Wet-Chemical and Dry Etching Techniques- Film Deposition Processes- Micromechanics- Thin-Film Technology- Nanometer Structures Technology

Literature: - Marc J. Madou, Fundamentals of Microfabrication, 2nd edition, CRC Press,Bota Raton, 2002

- Henry I. Smith, Submicron- and nanometer-structures technology, 2nd edition,NanoStructures Press, 437 Peakham Road, Sudbury, MA 01776, USA, 1994

- L.F. Thompson, C.G. Willson, and M.J. Bowden, Introduction to Microlithogra-phy, 2nd edition, ACS Professional Reference Book, American Chemical Society,1994

- Brian Chapman, Glow Discharge Processes – Sputtering and Plasma Etching,John Wiley and Sons, New York, 1980, ISBN 0-471-07828-X

- R.J. Shul, S.J. Pearton (Editors), Handbook of Advanced Plasma ProcessingTechniques, Springer-Verlag, Heidelberg, 2000, ISBN 3-540-66772-5

Basis for:

Modes of learningand teaching:

Lecture “Technology for Micro- and Nanostructures”, 2 SWS (V) ()Exercise “Technology for Micro- and Nanostructures”, 1 SWS (Ü) ()

Estimation ofeffort:

Preparation and Evaluation: 45 hActive Time: 75 h

Sum: 120 h

Course assessmentand exams:

Written examination with a duration of 120 minutes, otherwise oral examina-tion.

Requirements(formal):

none

Grading: Module grade is identical with examination result.

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

123

Page 124: Masterstudiengang Communications Technology

58 Theory of Digital Networks

Token / Number: 8822270429

German title: -

Credits: 8 ECTS

Semester hours: 6

Language: Englisch

Turn / Duration: every Summer Term / 1 Semester

Module authority: Prof. Dr.-Ing. Martin Bossert

Training staff: Prof. Dr.-Ing. Martin Bossert

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesElectrical Engineering, M.Sc., Elective Module, Communication and SystemTechnologyElectrical Engineering, M.Sc., Optional Module, Automation and Energy Tech-nologyCommunications and Computer Engineering, M.Sc., Elective Module,Communications Technology, M.Sc., Compulsory Subject Module, Communica-tions EngineeringEmbedded Systems, M.Sc., Application Subject, Communication

Requirements(contentual):

Bachelor

Learning objectives: Digital systems consist of various protocols based on elementary functions formultiple access (free for all, perfectly scheduled), reliable data transmission(automatic repeat request, ARQ), routing, and queueing theory. After the lec-ture, the students are able to analyze and compare multiple access protocolsand determine their main parameters like throughput and average waiting time.These methods can be used by the students to evaluate novel protocols evennot treated in this module and design and evaluate stabilization and collisionresolution methods. Also for protocols for reliable data transmission the param-eters throughput and average delay (latency) can be derived and categorized.Understanding and applying the mathematical tools for the analysis of Markovchains allows the students to classify queueing systems and derive and explainthe corresponding performance parameters. Students are enabled to computethe shortest paths on graphs for given network toplogies using the Bellman-Fordalgorithm as well as the Dijkstra algorithm. Furthermore, they can explain thedifferences.

124

Page 125: Masterstudiengang Communications Technology

Content: The lecture describes and analyzes the basic functions of protocols and explainsthe most important algorithms and methods, which are used in communica-tion systems. The exercises complement the lecture by applying the theoreticknowledge to special problems.

- Concepts and definitions of digital communication networks- Hierarchical layer structure of networks- Peer-to-peer layer communication and pimitives for inter layer communication- Data transmission from point-to-point- Synchronization aspects (bit, frame, tranings sequence, preamble, etc.)- Multi-access protocols- ALOHA protocols (slotted, unslotted) stabilization and collision resolutionstrategies

- Carrier-Sensing (with and without collision detection)- Techniques for reliable data transmission (ARQ- and hybrid-ARQ techniques)througput and latency

- Routing algorithms, flowgraphs, shortest path routing- Markov-chains- Queuing theory with Kendal notation M/M/1, M/M/m and the according losssystems

- Erlang B and C formulas- Lossless and lossy queuing systems- Project orientated lab: ARQ, simulation of queuing systems (Markov Chains)

Literature: - Bossert, M., Breitbach, M., Digitale Netze, Teubner Verlag, 1999- Bertsekas, D., Gallager, R., Data Networks, Prentice Hall, 1992- Tanenbaum, A., Computer Networks, Pearson, 2011

Basis for: keine Angaben

Modes of learningand teaching:

Lecture “Theory of Digital Networks”, 3 SWS (V) ()Exercise “Theory of Digital Networks”, 2 SWS (Ü) ()Project “Theory of Digital Networks”, 1 SWS (P) ()

Estimation ofeffort:

Active Time: 90 hPreparation and Evaluation: 80 hSelf-Study: 70 h

Sum: 240 h

Course assessmentand exams:

Usually written exam of 120 minutes duration, otherwise oral exam.

Requirements(formal):

keine

Grading: Module mark is identical to exam mark.

Basierend auf Rev. 1087. Letzte Änderung am 06.08.2013 um 12:38 durch vpollex.

125

Page 126: Masterstudiengang Communications Technology

59 Using the Advanced Design System (ADS) in Electronic Design

Token / Number: 88222?????

German title: Einführung in das Advanced Design System (ADS)

Credits: 4 ECTS

Semester hours: 3

Language: English

Turn / Duration: every Winter Term / 1 Semester

Module authority: Dr.-Ing. Christoph Bromberger

Training staff: Dr.-Ing. Christoph Bromberger

Integration of moduleinto courses of studies:

Electrical Engineering, M.Sc., Elective Module, Engineering SciencesCommunications and Computer Engineering, M.Sc., Elective Module, Engineer-ing SciencesElectrical Engineering, M.Sc., Optional Module, General Electrical EngineeringElectrical Engineering, M.Sc., Optional Module, Communication and SystemTechnologyCommunications Technology, M.Sc., Elective Module, Microelectronics

Requirements(contentual):

Bachelor-Level Analog Design Skills Some understanding of S-parameters ishelpful

Learning objectives: The students gain an in-depth understanding of a significant analog simulationtool. They demonstrate their abilities to set up as well as to stream-line circuitsimulations. Attendees employ ADS in high-frequency layout. They are usedto ADS data structures and recognize ways to fully exploit their composition.Participants regularly scrutinize and critically judge their simulation results.

Content: - The ADS project structure- Setting up, performing and simplifying schematics simulations- Using the data display- Understanding ADS data structures- Measurement Equations- Optimizing circuits with the help of ADS- (Semi-) automatic layout generation- 2d electromagnetic simulation- Exporting the layout

Literature: - ADS handbooks and tutorials- http://edownload.soco.agilent.com/eedl/ads/2012_08/zip/ADS2012PDF.zip- A script is available for this lecture

Basis for: Masters Thesis in the area of biosensors.

Modes of learningand teaching:

Lecture “Using the Advanced Design System (ADS) in Electronic Design”, lec-ture , 2 SWS (V) ()Exercise “Using the Advanced Design System (ADS) in Electronic Design”, sem-inar, 1 SWS (V) ()

126

Page 127: Masterstudiengang Communications Technology

Estimation ofeffort:

Active Time: 39 hPreparation and Evaluation: 56 hSelf-Study: 25 h

Sum: 120 h

Course assessmentand exams:

Usually written exam of 120 minutes, otherwise oral exam; pre-requisite forparticipating in the exam: 60 per cent of the credits from the exercises

Requirements(formal):

keine

Grading: Module mark is identical to exam mark.

Basierend auf Rev. 1106. Letzte Änderung am 13.09.2013 um 12:48 durch vpollex.

127