73
MATH 3210: Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12) and Constructions with Hilbert’s Tools March 13, 2020 Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

  • Upload
    others

  • View
    18

  • Download
    1

Embed Size (px)

Citation preview

Page 1: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

MATH 3210:Euclidean and Non-Euclidean Geometry

Hilbert Planes:

Euclid’s Propositions (I.1)–(I.12) andConstructions with Hilbert’s Tools

March 13, 2020

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 2: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Interpreting Euclid’s Propositions in Hilbert Planes

We work in a Hilbert plane, i.e., in a geometry satisfying the axioms (I1)–(I3),(B1)–(B4), and (C1)–(C6).

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 3: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Interpreting Euclid’s Propositions in Hilbert Planes

We work in a Hilbert plane, i.e., in a geometry satisfying the axioms (I1)–(I3),(B1)–(B4), and (C1)–(C6).

Which propositions from Book I of the Elements are valid in any Hilbert plane?

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 4: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Interpreting Euclid’s Propositions in Hilbert Planes

We work in a Hilbert plane, i.e., in a geometry satisfying the axioms (I1)–(I3),(B1)–(B4), and (C1)–(C6).

Which propositions from Book I of the Elements are valid in any Hilbert plane?

What does ‘valid’ mean for Euclid’s two types of propositions:

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 5: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Interpreting Euclid’s Propositions in Hilbert Planes

We work in a Hilbert plane, i.e., in a geometry satisfying the axioms (I1)–(I3),(B1)–(B4), and (C1)–(C6).

Which propositions from Book I of the Elements are valid in any Hilbert plane?

What does ‘valid’ mean for Euclid’s two types of propositions:

• Universal statements [“For all..., if ... then ...”], e.g., (I.4)–(I.8):

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 6: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Interpreting Euclid’s Propositions in Hilbert Planes

We work in a Hilbert plane, i.e., in a geometry satisfying the axioms (I1)–(I3),(B1)–(B4), and (C1)–(C6).

Which propositions from Book I of the Elements are valid in any Hilbert plane?

What does ‘valid’ mean for Euclid’s two types of propositions:

• Universal statements [“For all..., if ... then ...”], e.g., (I.4)–(I.8):Do these statements follow from the axioms of a Hilbert plane?

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 7: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Interpreting Euclid’s Propositions in Hilbert Planes

We work in a Hilbert plane, i.e., in a geometry satisfying the axioms (I1)–(I3),(B1)–(B4), and (C1)–(C6).

Which propositions from Book I of the Elements are valid in any Hilbert plane?

What does ‘valid’ mean for Euclid’s two types of propositions:

• Universal statements [“For all..., if ... then ...”], e.g., (I.4)–(I.8):Do these statements follow from the axioms of a Hilbert plane?

• Constructions, e.g. (I.1)–(I.3), (I.9)–(I.12):

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 8: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Interpreting Euclid’s Propositions in Hilbert Planes

We work in a Hilbert plane, i.e., in a geometry satisfying the axioms (I1)–(I3),(B1)–(B4), and (C1)–(C6).

Which propositions from Book I of the Elements are valid in any Hilbert plane?

What does ‘valid’ mean for Euclid’s two types of propositions:

• Universal statements [“For all..., if ... then ...”], e.g., (I.4)–(I.8):Do these statements follow from the axioms of a Hilbert plane?

• Constructions, e.g. (I.1)–(I.3), (I.9)–(I.12):

� If interpreted as existential statements [“Given ..., there exists... s.t. ...”]:

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 9: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Interpreting Euclid’s Propositions in Hilbert Planes

We work in a Hilbert plane, i.e., in a geometry satisfying the axioms (I1)–(I3),(B1)–(B4), and (C1)–(C6).

Which propositions from Book I of the Elements are valid in any Hilbert plane?

What does ‘valid’ mean for Euclid’s two types of propositions:

• Universal statements [“For all..., if ... then ...”], e.g., (I.4)–(I.8):Do these statements follow from the axioms of a Hilbert plane?

• Constructions, e.g. (I.1)–(I.3), (I.9)–(I.12):

� If interpreted as existential statements [“Given ..., there exists... s.t. ...”]:Do these statements follow from the axioms of a Hilbert plane?

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 10: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Interpreting Euclid’s Propositions in Hilbert Planes

We work in a Hilbert plane, i.e., in a geometry satisfying the axioms (I1)–(I3),(B1)–(B4), and (C1)–(C6).

Which propositions from Book I of the Elements are valid in any Hilbert plane?

What does ‘valid’ mean for Euclid’s two types of propositions:

• Universal statements [“For all..., if ... then ...”], e.g., (I.4)–(I.8):Do these statements follow from the axioms of a Hilbert plane?

• Constructions, e.g. (I.1)–(I.3), (I.9)–(I.12):

� If interpreted as existential statements [“Given ..., there exists... s.t. ...”]:Do these statements follow from the axioms of a Hilbert plane?

� May also be interpreted as construction problems if we think of applications ofaxioms (I1), (C1), (C4) as construction tools:

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 11: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Interpreting Euclid’s Propositions in Hilbert Planes

We work in a Hilbert plane, i.e., in a geometry satisfying the axioms (I1)–(I3),(B1)–(B4), and (C1)–(C6).

Which propositions from Book I of the Elements are valid in any Hilbert plane?

What does ‘valid’ mean for Euclid’s two types of propositions:

• Universal statements [“For all..., if ... then ...”], e.g., (I.4)–(I.8):Do these statements follow from the axioms of a Hilbert plane?

• Constructions, e.g. (I.1)–(I.3), (I.9)–(I.12):

� If interpreted as existential statements [“Given ..., there exists... s.t. ...”]:Do these statements follow from the axioms of a Hilbert plane?

� May also be interpreted as construction problems if we think of applications ofaxioms (I1), (C1), (C4) as construction tools:− (I1): ruler, to draw the unique line through two distinct points;

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 12: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Interpreting Euclid’s Propositions in Hilbert Planes

We work in a Hilbert plane, i.e., in a geometry satisfying the axioms (I1)–(I3),(B1)–(B4), and (C1)–(C6).

Which propositions from Book I of the Elements are valid in any Hilbert plane?

What does ‘valid’ mean for Euclid’s two types of propositions:

• Universal statements [“For all..., if ... then ...”], e.g., (I.4)–(I.8):Do these statements follow from the axioms of a Hilbert plane?

• Constructions, e.g. (I.1)–(I.3), (I.9)–(I.12):

� If interpreted as existential statements [“Given ..., there exists... s.t. ...”]:Do these statements follow from the axioms of a Hilbert plane?

� May also be interpreted as construction problems if we think of applications ofaxioms (I1), (C1), (C4) as construction tools:− (I1): ruler, to draw the unique line through two distinct points;− (C1): transporter of line segments, to get the unique point D on a ray

−→CX

such that CD is congruent to a given segment;

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 13: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Interpreting Euclid’s Propositions in Hilbert Planes

We work in a Hilbert plane, i.e., in a geometry satisfying the axioms (I1)–(I3),(B1)–(B4), and (C1)–(C6).

Which propositions from Book I of the Elements are valid in any Hilbert plane?

What does ‘valid’ mean for Euclid’s two types of propositions:

• Universal statements [“For all..., if ... then ...”], e.g., (I.4)–(I.8):Do these statements follow from the axioms of a Hilbert plane?

• Constructions, e.g. (I.1)–(I.3), (I.9)–(I.12):

� If interpreted as existential statements [“Given ..., there exists... s.t. ...”]:Do these statements follow from the axioms of a Hilbert plane?

� May also be interpreted as construction problems if we think of applications ofaxioms (I1), (C1), (C4) as construction tools:− (I1): ruler, to draw the unique line through two distinct points;− (C1): transporter of line segments, to get the unique point D on a ray

−→CX

such that CD is congruent to a given segment;− (C4): transporter of angles, to get the unique ray

−→DE on a specified side of a

line DF such that ∠EDF is congruent to a given angle.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 14: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Interpreting Euclid’s Propositions in Hilbert Planes

We work in a Hilbert plane, i.e., in a geometry satisfying the axioms (I1)–(I3),(B1)–(B4), and (C1)–(C6).

Which propositions from Book I of the Elements are valid in any Hilbert plane?

What does ‘valid’ mean for Euclid’s two types of propositions:

• Universal statements [“For all..., if ... then ...”], e.g., (I.4)–(I.8):Do these statements follow from the axioms of a Hilbert plane?

• Constructions, e.g. (I.1)–(I.3), (I.9)–(I.12):

� If interpreted as existential statements [“Given ..., there exists... s.t. ...”]:Do these statements follow from the axioms of a Hilbert plane?

� May also be interpreted as construction problems if we think of applications ofaxioms (I1), (C1), (C4) as construction tools:− (I1): ruler, to draw the unique line through two distinct points;− (C1): transporter of line segments, to get the unique point D on a ray

−→CX

such that CD is congruent to a given segment;− (C4): transporter of angles, to get the unique ray

−→DE on a specified side of a

line DF such that ∠EDF is congruent to a given angle.These three tools are referred to as Hilbert’s tools.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 15: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Interpreting Euclid’s Propositions in Hilbert Planes

We work in a Hilbert plane, i.e., in a geometry satisfying the axioms (I1)–(I3),(B1)–(B4), and (C1)–(C6).

Which propositions from Book I of the Elements are valid in any Hilbert plane?

What does ‘valid’ mean for Euclid’s two types of propositions:

• Universal statements [“For all..., if ... then ...”], e.g., (I.4)–(I.8):Do these statements follow from the axioms of a Hilbert plane?

• Constructions, e.g. (I.1)–(I.3), (I.9)–(I.12):

� If interpreted as existential statements [“Given ..., there exists... s.t. ...”]:Do these statements follow from the axioms of a Hilbert plane?

� May also be interpreted as construction problems if we think of applications ofaxioms (I1), (C1), (C4) as construction tools:− (I1): ruler, to draw the unique line through two distinct points;− (C1): transporter of line segments, to get the unique point D on a ray

−→CX

such that CD is congruent to a given segment;− (C4): transporter of angles, to get the unique ray

−→DE on a specified side of a

line DF such that ∠EDF is congruent to a given angle.These three tools are referred to as Hilbert’s tools.Note: (I2), (I3), (B2) allow us to pick points in certain ways;

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 16: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Interpreting Euclid’s Propositions in Hilbert Planes

We work in a Hilbert plane, i.e., in a geometry satisfying the axioms (I1)–(I3),(B1)–(B4), and (C1)–(C6).

Which propositions from Book I of the Elements are valid in any Hilbert plane?

What does ‘valid’ mean for Euclid’s two types of propositions:

• Universal statements [“For all..., if ... then ...”], e.g., (I.4)–(I.8):Do these statements follow from the axioms of a Hilbert plane?

• Constructions, e.g. (I.1)–(I.3), (I.9)–(I.12):

� If interpreted as existential statements [“Given ..., there exists... s.t. ...”]:Do these statements follow from the axioms of a Hilbert plane?

� May also be interpreted as construction problems if we think of applications ofaxioms (I1), (C1), (C4) as construction tools:− (I1): ruler, to draw the unique line through two distinct points;− (C1): transporter of line segments, to get the unique point D on a ray

−→CX

such that CD is congruent to a given segment;− (C4): transporter of angles, to get the unique ray

−→DE on a specified side of a

line DF such that ∠EDF is congruent to a given angle.These three tools are referred to as Hilbert’s tools.Note: (I2), (I3), (B2) allow us to pick points in certain ways;

Counting steps: Each use of a tool is one step.(Picking points, marking points of intersection are not separate steps.)

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 17: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.1)–(I.6)

Euclid’s proposition In Hilbert planes:

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 18: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.1)–(I.6)

Euclid’s proposition In Hilbert planes:

(I.1) To construct an equilateral triangleon a given segment.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 19: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.1)–(I.6)

Euclid’s proposition In Hilbert planes:

(I.1) To construct an equilateral triangleon a given segment.

There are Hilbert planes inwhich there is no equilateraltriangle on some segments.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 20: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.1)–(I.6)

Euclid’s proposition In Hilbert planes:

(I.1) To construct an equilateral triangleon a given segment.

There are Hilbert planes inwhich there is no equilateraltriangle on some segments.

(I.2)

(I.3)

To draw a segment equal to a givensegment at a given point.To cut off a smaller segment froma larger segment.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 21: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.1)–(I.6)

Euclid’s proposition In Hilbert planes:

(I.1) To construct an equilateral triangleon a given segment.

There are Hilbert planes inwhich there is no equilateraltriangle on some segments.

(I.2)

(I.3)

To draw a segment equal to a givensegment at a given point.To cut off a smaller segment froma larger segment.

Replaced by axiom (C1).Construction can be done withHilbert’s tools.(Transportation of segments.)

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 22: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.1)–(I.6)

Euclid’s proposition In Hilbert planes:

(I.1) To construct an equilateral triangleon a given segment.

There are Hilbert planes inwhich there is no equilateraltriangle on some segments.

(I.2)

(I.3)

To draw a segment equal to a givensegment at a given point.To cut off a smaller segment froma larger segment.

Replaced by axiom (C1).Construction can be done withHilbert’s tools.(Transportation of segments.)

(I.4) SAS criterion for congruence of triangles.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 23: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.1)–(I.6)

Euclid’s proposition In Hilbert planes:

(I.1) To construct an equilateral triangleon a given segment.

There are Hilbert planes inwhich there is no equilateraltriangle on some segments.

(I.2)

(I.3)

To draw a segment equal to a givensegment at a given point.To cut off a smaller segment froma larger segment.

Replaced by axiom (C1).Construction can be done withHilbert’s tools.(Transportation of segments.)

(I.4) SAS criterion for congruence of triangles. Axiom (C6).

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 24: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.1)–(I.6)

Euclid’s proposition In Hilbert planes:

(I.1) To construct an equilateral triangleon a given segment.

There are Hilbert planes inwhich there is no equilateraltriangle on some segments.

(I.2)

(I.3)

To draw a segment equal to a givensegment at a given point.To cut off a smaller segment froma larger segment.

Replaced by axiom (C1).Construction can be done withHilbert’s tools.(Transportation of segments.)

(I.4) SAS criterion for congruence of triangles. Axiom (C6).

(I.5) The base angles of an isoscelestriangle are equal.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 25: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.1)–(I.6)

Euclid’s proposition In Hilbert planes:

(I.1) To construct an equilateral triangleon a given segment.

There are Hilbert planes inwhich there is no equilateraltriangle on some segments.

(I.2)

(I.3)

To draw a segment equal to a givensegment at a given point.To cut off a smaller segment froma larger segment.

Replaced by axiom (C1).Construction can be done withHilbert’s tools.(Transportation of segments.)

(I.4) SAS criterion for congruence of triangles. Axiom (C6).

(I.5) The base angles of an isoscelestriangle are equal.

True. Every step of Euclid’sproof can be justified.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 26: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.1)–(I.6)

Euclid’s proposition In Hilbert planes:

(I.1) To construct an equilateral triangleon a given segment.

There are Hilbert planes inwhich there is no equilateraltriangle on some segments.

(I.2)

(I.3)

To draw a segment equal to a givensegment at a given point.To cut off a smaller segment froma larger segment.

Replaced by axiom (C1).Construction can be done withHilbert’s tools.(Transportation of segments.)

(I.4) SAS criterion for congruence of triangles. Axiom (C6).

(I.5) The base angles of an isoscelestriangle are equal.

True. Every step of Euclid’sproof can be justified.

(I.6) If the base angles of a triangle areequal, the triangle is isosceles.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 27: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.1)–(I.6)

Euclid’s proposition In Hilbert planes:

(I.1) To construct an equilateral triangleon a given segment.

There are Hilbert planes inwhich there is no equilateraltriangle on some segments.

(I.2)

(I.3)

To draw a segment equal to a givensegment at a given point.To cut off a smaller segment froma larger segment.

Replaced by axiom (C1).Construction can be done withHilbert’s tools.(Transportation of segments.)

(I.4) SAS criterion for congruence of triangles. Axiom (C6).

(I.5) The base angles of an isoscelestriangle are equal.

True. Every step of Euclid’sproof can be justified.

(I.6) If the base angles of a triangle areequal, the triangle is isosceles.

True. Last step of Euclid’s proofrequires proper justification.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 28: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.7)–(I.8)

Euclid’s proposition In Hilbert planes:

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 29: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.7)–(I.8)

Euclid’s proposition In Hilbert planes:

(I.7)It is not possible to put two triangleswith equal sides on the same sideof a segment.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 30: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.7)–(I.8)

Euclid’s proposition In Hilbert planes:

(I.7)It is not possible to put two triangleswith equal sides on the same sideof a segment.

True. Steps of Euclid’s proofcan be justified.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 31: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.7)–(I.8)

Euclid’s proposition In Hilbert planes:

(I.7)It is not possible to put two triangleswith equal sides on the same sideof a segment.

True. Steps of Euclid’s proofcan be justified.

(I.8) SSS criterion for congruence oftriangles.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 32: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.7)–(I.8)

Euclid’s proposition In Hilbert planes:

(I.7)It is not possible to put two triangleswith equal sides on the same sideof a segment.

True. Steps of Euclid’s proofcan be justified.

(I.8) SSS criterion for congruence oftriangles.

True. New proof needed, becauseEuclid used Method of Superpos.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 33: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.7)–(I.8)

Euclid’s proposition In Hilbert planes:

(I.7)It is not possible to put two triangleswith equal sides on the same sideof a segment.

True. Steps of Euclid’s proofcan be justified.

(I.8) SSS criterion for congruence oftriangles.

True. New proof needed, becauseEuclid used Method of Superpos.

The Method of Superposition works in all Hilbert planes:

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 34: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.7)–(I.8)

Euclid’s proposition In Hilbert planes:

(I.7)It is not possible to put two triangleswith equal sides on the same sideof a segment.

True. Steps of Euclid’s proofcan be justified.

(I.8) SSS criterion for congruence oftriangles.

True. New proof needed, becauseEuclid used Method of Superpos.

The Method of Superposition works in all Hilbert planes:

Theorem. The following holds in every Hilbert plane:

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 35: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.7)–(I.8)

Euclid’s proposition In Hilbert planes:

(I.7)It is not possible to put two triangleswith equal sides on the same sideof a segment.

True. Steps of Euclid’s proofcan be justified.

(I.8) SSS criterion for congruence oftriangles.

True. New proof needed, becauseEuclid used Method of Superpos.

The Method of Superposition works in all Hilbert planes:

Theorem. The following holds in every Hilbert plane:(MoS) For any triangle �DEF , for any ray

−→AX , and for each side of

the line AX ,

A

X

D F

E

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 36: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.7)–(I.8)

Euclid’s proposition In Hilbert planes:

(I.7)It is not possible to put two triangleswith equal sides on the same sideof a segment.

True. Steps of Euclid’s proofcan be justified.

(I.8) SSS criterion for congruence oftriangles.

True. New proof needed, becauseEuclid used Method of Superpos.

The Method of Superposition works in all Hilbert planes:

Theorem. The following holds in every Hilbert plane:(MoS) For any triangle �DEF , for any ray

−→AX , and for each side of

the line AX , there exists a triangle �AE �F � such that

A

X

D F

E

E �

F �

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 37: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.7)–(I.8)

Euclid’s proposition In Hilbert planes:

(I.7)It is not possible to put two triangleswith equal sides on the same sideof a segment.

True. Steps of Euclid’s proofcan be justified.

(I.8) SSS criterion for congruence oftriangles.

True. New proof needed, becauseEuclid used Method of Superpos.

The Method of Superposition works in all Hilbert planes:

Theorem. The following holds in every Hilbert plane:(MoS) For any triangle �DEF , for any ray

−→AX , and for each side of

the line AX , there exists a triangle �AE �F � such that(i) �AE �F � ∼= �DEF ,(ii) E � is on the ray

−→AX , and

(iii) F � is on the specified side of line AX .

A

X

D F

E

E �

F �

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 38: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.7)–(I.8)

Euclid’s proposition In Hilbert planes:

(I.7)It is not possible to put two triangleswith equal sides on the same sideof a segment.

True. Steps of Euclid’s proofcan be justified.

(I.8) SSS criterion for congruence oftriangles.

True. New proof needed, becauseEuclid used Method of Superpos.

The Method of Superposition works in all Hilbert planes:

Theorem. The following holds in every Hilbert plane:(MoS) For any triangle �DEF , for any ray

−→AX , and for each side of

the line AX , there exists a triangle �AE �F � such that(i) �AE �F � ∼= �DEF ,(ii) E � is on the ray

−→AX , and

(iii) F � is on the specified side of line AX .

A

X

D F

E

E �

F �

Proof.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 39: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.7)–(I.8)

Euclid’s proposition In Hilbert planes:

(I.7)It is not possible to put two triangleswith equal sides on the same sideof a segment.

True. Steps of Euclid’s proofcan be justified.

(I.8) SSS criterion for congruence oftriangles.

True. New proof needed, becauseEuclid used Method of Superpos.

The Method of Superposition works in all Hilbert planes:

Theorem. The following holds in every Hilbert plane:(MoS) For any triangle �DEF , for any ray

−→AX , and for each side of

the line AX , there exists a triangle �AE �F � such that(i) �AE �F � ∼= �DEF ,(ii) E � is on the ray

−→AX , and

(iii) F � is on the specified side of line AX .

A

X

D F

E

E �

F �

Proof.• Use (C1) to get E � such that (ii) and AE � ∼= DE .

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 40: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.7)–(I.8)

Euclid’s proposition In Hilbert planes:

(I.7)It is not possible to put two triangleswith equal sides on the same sideof a segment.

True. Steps of Euclid’s proofcan be justified.

(I.8) SSS criterion for congruence oftriangles.

True. New proof needed, becauseEuclid used Method of Superpos.

The Method of Superposition works in all Hilbert planes:

Theorem. The following holds in every Hilbert plane:(MoS) For any triangle �DEF , for any ray

−→AX , and for each side of

the line AX , there exists a triangle �AE �F � such that(i) �AE �F � ∼= �DEF ,(ii) E � is on the ray

−→AX , and

(iii) F � is on the specified side of line AX .

A

X

D F

E

E �

F �

Proof.• Use (C1) to get E � such that (ii) and AE � ∼= DE .• Use (C4) and (C1) to get F � s.t. (iii), ∠E �AF � ∼= ∠EDF , and AF � ∼= DF .

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 41: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.7)–(I.8)

Euclid’s proposition In Hilbert planes:

(I.7)It is not possible to put two triangleswith equal sides on the same sideof a segment.

True. Steps of Euclid’s proofcan be justified.

(I.8) SSS criterion for congruence oftriangles.

True. New proof needed, becauseEuclid used Method of Superpos.

The Method of Superposition works in all Hilbert planes:

Theorem. The following holds in every Hilbert plane:(MoS) For any triangle �DEF , for any ray

−→AX , and for each side of

the line AX , there exists a triangle �AE �F � such that(i) �AE �F � ∼= �DEF ,(ii) E � is on the ray

−→AX , and

(iii) F � is on the specified side of line AX .

A

X

D F

E

E �

F �

Proof.• Use (C1) to get E � such that (ii) and AE � ∼= DE .• Use (C4) and (C1) to get F � s.t. (iii), ∠E �AF � ∼= ∠EDF , and AF � ∼= DF .• Apply (C6) [SAS] to conclude that (i) holds.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 42: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.7)–(I.8)

Euclid’s proposition In Hilbert planes:

(I.7)It is not possible to put two triangleswith equal sides on the same sideof a segment.

True. Steps of Euclid’s proofcan be justified.

(I.8) SSS criterion for congruence oftriangles.

True. New proof needed, becauseEuclid used Method of Superpos.

The Method of Superposition works in all Hilbert planes:

Theorem. The following holds in every Hilbert plane:(MoS) For any triangle �DEF , for any ray

−→AX , and for each side of

the line AX , there exists a triangle �AE �F � such that(i) �AE �F � ∼= �DEF ,(ii) E � is on the ray

−→AX , and

(iii) F � is on the specified side of line AX .

A

X

D F

E

E �

F �

Proof.• Use (C1) to get E � such that (ii) and AE � ∼= DE .• Use (C4) and (C1) to get F � s.t. (iii), ∠E �AF � ∼= ∠EDF , and AF � ∼= DF .• Apply (C6) [SAS] to conclude that (i) holds.

Now (I.8) follows either using (I.7) or Hilbert’s alternative proof (see book).

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 43: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

A Replacement For (I.1)

In (I.9)–(I.12) Euclid uses (I.1). To carry over these propositions to Hilbert planes, wewill have to replace (I.1) by a weaker statement that is true in all Hilbert planes.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 44: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

A Replacement For (I.1)

In (I.9)–(I.12) Euclid uses (I.1). To carry over these propositions to Hilbert planes, wewill have to replace (I.1) by a weaker statement that is true in all Hilbert planes.

Theorem. (Existence of isosceles triangles)Given a line segment AB, there exists an isosceles triangle with baseAB; in fact, such a triangle is constructible with Hilbert’s tools.

A B

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 45: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

A Replacement For (I.1)

In (I.9)–(I.12) Euclid uses (I.1). To carry over these propositions to Hilbert planes, wewill have to replace (I.1) by a weaker statement that is true in all Hilbert planes.

Theorem. (Existence of isosceles triangles)Given a line segment AB, there exists an isosceles triangle with baseAB; in fact, such a triangle is constructible with Hilbert’s tools.

Proof.• (I3) ⇒ there is a point C not on line AB.

A B

C

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 46: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

A Replacement For (I.1)

In (I.9)–(I.12) Euclid uses (I.1). To carry over these propositions to Hilbert planes, wewill have to replace (I.1) by a weaker statement that is true in all Hilbert planes.

Theorem. (Existence of isosceles triangles)Given a line segment AB, there exists an isosceles triangle with baseAB; in fact, such a triangle is constructible with Hilbert’s tools.

Proof.• (I3) ⇒ there is a point C not on line AB.• If ∠CAB ∼= ∠CBA, then �ABC is isosceles, by (I.6).

A B

C

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 47: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

A Replacement For (I.1)

In (I.9)–(I.12) Euclid uses (I.1). To carry over these propositions to Hilbert planes, wewill have to replace (I.1) by a weaker statement that is true in all Hilbert planes.

Theorem. (Existence of isosceles triangles)Given a line segment AB, there exists an isosceles triangle with baseAB; in fact, such a triangle is constructible with Hilbert’s tools.

Proof.• (I3) ⇒ there is a point C not on line AB.• If ∠CAB ∼= ∠CBA, then �ABC is isosceles, by (I.6).• Suppose ∠CAB �∼= ∠CBA.

A B

C

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 48: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

A Replacement For (I.1)

In (I.9)–(I.12) Euclid uses (I.1). To carry over these propositions to Hilbert planes, wewill have to replace (I.1) by a weaker statement that is true in all Hilbert planes.

Theorem. (Existence of isosceles triangles)Given a line segment AB, there exists an isosceles triangle with baseAB; in fact, such a triangle is constructible with Hilbert’s tools.

Proof.• (I3) ⇒ there is a point C not on line AB.• If ∠CAB ∼= ∠CBA, then �ABC is isosceles, by (I.6).• Suppose ∠CAB �∼= ∠CBA.

� Prop. 9.5 ⇒ ∠CAB < ∠CBA or ∠CAB > ∠CBA; say the first.

A B

C

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 49: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

A Replacement For (I.1)

In (I.9)–(I.12) Euclid uses (I.1). To carry over these propositions to Hilbert planes, wewill have to replace (I.1) by a weaker statement that is true in all Hilbert planes.

Theorem. (Existence of isosceles triangles)Given a line segment AB, there exists an isosceles triangle with baseAB; in fact, such a triangle is constructible with Hilbert’s tools.

Proof.• (I3) ⇒ there is a point C not on line AB.• If ∠CAB ∼= ∠CBA, then �ABC is isosceles, by (I.6).• Suppose ∠CAB �∼= ∠CBA.

� Prop. 9.5 ⇒ ∠CAB < ∠CBA or ∠CAB > ∠CBA; say the first.� Def. of < ⇒ there is a ray

−→BE in the interior of ∠CBA

such that ∠CAB ∼= ∠EBA.A B

C

E

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 50: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

A Replacement For (I.1)

In (I.9)–(I.12) Euclid uses (I.1). To carry over these propositions to Hilbert planes, wewill have to replace (I.1) by a weaker statement that is true in all Hilbert planes.

Theorem. (Existence of isosceles triangles)Given a line segment AB, there exists an isosceles triangle with baseAB; in fact, such a triangle is constructible with Hilbert’s tools.

Proof.• (I3) ⇒ there is a point C not on line AB.• If ∠CAB ∼= ∠CBA, then �ABC is isosceles, by (I.6).• Suppose ∠CAB �∼= ∠CBA.

� Prop. 9.5 ⇒ ∠CAB < ∠CBA or ∠CAB > ∠CBA; say the first.� Def. of < ⇒ there is a ray

−→BE in the interior of ∠CBA

such that ∠CAB ∼= ∠EBA.� Crossbar Theorem ⇒ −→

BE meets AC at a point D. A B

C

E

D

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 51: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

A Replacement For (I.1)

In (I.9)–(I.12) Euclid uses (I.1). To carry over these propositions to Hilbert planes, wewill have to replace (I.1) by a weaker statement that is true in all Hilbert planes.

Theorem. (Existence of isosceles triangles)Given a line segment AB, there exists an isosceles triangle with baseAB; in fact, such a triangle is constructible with Hilbert’s tools.

Proof.• (I3) ⇒ there is a point C not on line AB.• If ∠CAB ∼= ∠CBA, then �ABC is isosceles, by (I.6).• Suppose ∠CAB �∼= ∠CBA.

� Prop. 9.5 ⇒ ∠CAB < ∠CBA or ∠CAB > ∠CBA; say the first.� Def. of < ⇒ there is a ray

−→BE in the interior of ∠CBA

such that ∠CAB ∼= ∠EBA.� Crossbar Theorem ⇒ −→

BE meets AC at a point D.� (I.6) ⇒ �ABD is isosceles.

A B

C

E

D

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 52: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

A Replacement For (I.1)

In (I.9)–(I.12) Euclid uses (I.1). To carry over these propositions to Hilbert planes, wewill have to replace (I.1) by a weaker statement that is true in all Hilbert planes.

Theorem. (Existence of isosceles triangles)Given a line segment AB, there exists an isosceles triangle with baseAB; in fact, such a triangle is constructible with Hilbert’s tools.

Proof.• (I3) ⇒ there is a point C not on line AB.• If ∠CAB ∼= ∠CBA, then �ABC is isosceles, by (I.6).• Suppose ∠CAB �∼= ∠CBA.

� Prop. 9.5 ⇒ ∠CAB < ∠CBA or ∠CAB > ∠CBA; say the first.� Def. of < ⇒ there is a ray

−→BE in the interior of ∠CBA

such that ∠CAB ∼= ∠EBA.� Crossbar Theorem ⇒ −→

BE meets AC at a point D.� (I.6) ⇒ �ABD is isosceles.

A B

C

E

D

Construction with Hilbert’s tools: Given AB.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 53: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

A Replacement For (I.1)

In (I.9)–(I.12) Euclid uses (I.1). To carry over these propositions to Hilbert planes, wewill have to replace (I.1) by a weaker statement that is true in all Hilbert planes.

Theorem. (Existence of isosceles triangles)Given a line segment AB, there exists an isosceles triangle with baseAB; in fact, such a triangle is constructible with Hilbert’s tools.

Proof.• (I3) ⇒ there is a point C not on line AB.• If ∠CAB ∼= ∠CBA, then �ABC is isosceles, by (I.6).• Suppose ∠CAB �∼= ∠CBA.

� Prop. 9.5 ⇒ ∠CAB < ∠CBA or ∠CAB > ∠CBA; say the first.� Def. of < ⇒ there is a ray

−→BE in the interior of ∠CBA

such that ∠CAB ∼= ∠EBA.� Crossbar Theorem ⇒ −→

BE meets AC at a point D.� (I.6) ⇒ �ABD is isosceles.

A B

C

E

D

Construction with Hilbert’s tools: Given AB.Pick a point C not on line AB.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 54: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

A Replacement For (I.1)

In (I.9)–(I.12) Euclid uses (I.1). To carry over these propositions to Hilbert planes, wewill have to replace (I.1) by a weaker statement that is true in all Hilbert planes.

Theorem. (Existence of isosceles triangles)Given a line segment AB, there exists an isosceles triangle with baseAB; in fact, such a triangle is constructible with Hilbert’s tools.

Proof.• (I3) ⇒ there is a point C not on line AB.• If ∠CAB ∼= ∠CBA, then �ABC is isosceles, by (I.6).• Suppose ∠CAB �∼= ∠CBA.

� Prop. 9.5 ⇒ ∠CAB < ∠CBA or ∠CAB > ∠CBA; say the first.� Def. of < ⇒ there is a ray

−→BE in the interior of ∠CBA

such that ∠CAB ∼= ∠EBA.� Crossbar Theorem ⇒ −→

BE meets AC at a point D.� (I.6) ⇒ �ABD is isosceles.

A B

C

E

D

Construction with Hilbert’s tools: Given AB.Pick a point C not on line AB.1. Draw line AC.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 55: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

A Replacement For (I.1)

In (I.9)–(I.12) Euclid uses (I.1). To carry over these propositions to Hilbert planes, wewill have to replace (I.1) by a weaker statement that is true in all Hilbert planes.

Theorem. (Existence of isosceles triangles)Given a line segment AB, there exists an isosceles triangle with baseAB; in fact, such a triangle is constructible with Hilbert’s tools.

Proof.• (I3) ⇒ there is a point C not on line AB.• If ∠CAB ∼= ∠CBA, then �ABC is isosceles, by (I.6).• Suppose ∠CAB �∼= ∠CBA.

� Prop. 9.5 ⇒ ∠CAB < ∠CBA or ∠CAB > ∠CBA; say the first.� Def. of < ⇒ there is a ray

−→BE in the interior of ∠CBA

such that ∠CAB ∼= ∠EBA.� Crossbar Theorem ⇒ −→

BE meets AC at a point D.� (I.6) ⇒ �ABD is isosceles.

A B

C

E

D

Construction with Hilbert’s tools: Given AB.Pick a point C not on line AB.1. Draw line AC.2. Draw line BC. Suppose ∠CAB < ∠CBA.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 56: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

A Replacement For (I.1)

In (I.9)–(I.12) Euclid uses (I.1). To carry over these propositions to Hilbert planes, wewill have to replace (I.1) by a weaker statement that is true in all Hilbert planes.

Theorem. (Existence of isosceles triangles)Given a line segment AB, there exists an isosceles triangle with baseAB; in fact, such a triangle is constructible with Hilbert’s tools.

Proof.• (I3) ⇒ there is a point C not on line AB.• If ∠CAB ∼= ∠CBA, then �ABC is isosceles, by (I.6).• Suppose ∠CAB �∼= ∠CBA.

� Prop. 9.5 ⇒ ∠CAB < ∠CBA or ∠CAB > ∠CBA; say the first.� Def. of < ⇒ there is a ray

−→BE in the interior of ∠CBA

such that ∠CAB ∼= ∠EBA.� Crossbar Theorem ⇒ −→

BE meets AC at a point D.� (I.6) ⇒ �ABD is isosceles.

A B

C

E

D

Construction with Hilbert’s tools: Given AB.Pick a point C not on line AB.1. Draw line AC.2. Draw line BC. Suppose ∠CAB < ∠CBA.3. Transport ∠CAB to ∠EBA so that E ,C are on the same side of line AB.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 57: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

A Replacement For (I.1)

In (I.9)–(I.12) Euclid uses (I.1). To carry over these propositions to Hilbert planes, wewill have to replace (I.1) by a weaker statement that is true in all Hilbert planes.

Theorem. (Existence of isosceles triangles)Given a line segment AB, there exists an isosceles triangle with baseAB; in fact, such a triangle is constructible with Hilbert’s tools.

Proof.• (I3) ⇒ there is a point C not on line AB.• If ∠CAB ∼= ∠CBA, then �ABC is isosceles, by (I.6).• Suppose ∠CAB �∼= ∠CBA.

� Prop. 9.5 ⇒ ∠CAB < ∠CBA or ∠CAB > ∠CBA; say the first.� Def. of < ⇒ there is a ray

−→BE in the interior of ∠CBA

such that ∠CAB ∼= ∠EBA.� Crossbar Theorem ⇒ −→

BE meets AC at a point D.� (I.6) ⇒ �ABD is isosceles.

A B

C

E

D

Construction with Hilbert’s tools: Given AB.Pick a point C not on line AB.1. Draw line AC.2. Draw line BC. Suppose ∠CAB < ∠CBA.3. Transport ∠CAB to ∠EBA so that E ,C are on the same side of line AB.Get D (where

−→BE meets AC).

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 58: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.9)–(I.12)

Euclid’s proposition In Hilbert planes:

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 59: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.9)–(I.12)

Euclid’s proposition In Hilbert planes:

(I.9)(I.10)(I.11)

To bisect an angle.To bisect a segment.To construct a perpendicular to a lineat a given point of the line.

(I.12) To drop a perpendicular from a point toa line not containing the point.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 60: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.9)–(I.12)

Euclid’s proposition In Hilbert planes:

(I.9)(I.10)(I.11)

To bisect an angle.To bisect a segment.To construct a perpendicular to a lineat a given point of the line.

Euclid’s method yields a construc-tion with Hilbert’s tools, but eachuse of (I.1) has to be replaced byconstructing an isosceles �.

(I.12) To drop a perpendicular from a point toa line not containing the point.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 61: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.9)–(I.12)

Euclid’s proposition In Hilbert planes:

(I.9)(I.10)(I.11)

To bisect an angle.To bisect a segment.To construct a perpendicular to a lineat a given point of the line.

Euclid’s method yields a construc-tion with Hilbert’s tools, but eachuse of (I.1) has to be replaced byconstructing an isosceles �.

(I.12) To drop a perpendicular from a point toa line not containing the point.

Constructible with Hilbert’s tools,but not with Euclid’s method.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 62: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.9)–(I.12)

Euclid’s proposition In Hilbert planes:

(I.9)(I.10)(I.11)

To bisect an angle.To bisect a segment.To construct a perpendicular to a lineat a given point of the line.

Euclid’s method yields a construc-tion with Hilbert’s tools, but eachuse of (I.1) has to be replaced byconstructing an isosceles �.

(I.12) To drop a perpendicular from a point toa line not containing the point.

Constructible with Hilbert’s tools,but not with Euclid’s method.

The constructions can be justified the same way as before, becausethe proof of the Kite Lemma carries over to Hilbert planes. (See below.)

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 63: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.9)–(I.12)

Euclid’s proposition In Hilbert planes:

(I.9)(I.10)(I.11)

To bisect an angle.To bisect a segment.To construct a perpendicular to a lineat a given point of the line.

Euclid’s method yields a construc-tion with Hilbert’s tools, but eachuse of (I.1) has to be replaced byconstructing an isosceles �.

(I.12) To drop a perpendicular from a point toa line not containing the point.

Constructible with Hilbert’s tools,but not with Euclid’s method.

The constructions can be justified the same way as before, becausethe proof of the Kite Lemma carries over to Hilbert planes. (See below.)

Construction for (I.12) with Hilbert’s tools:Given � and A /∈ �.

A

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 64: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.9)–(I.12)

Euclid’s proposition In Hilbert planes:

(I.9)(I.10)(I.11)

To bisect an angle.To bisect a segment.To construct a perpendicular to a lineat a given point of the line.

Euclid’s method yields a construc-tion with Hilbert’s tools, but eachuse of (I.1) has to be replaced byconstructing an isosceles �.

(I.12) To drop a perpendicular from a point toa line not containing the point.

Constructible with Hilbert’s tools,but not with Euclid’s method.

The constructions can be justified the same way as before, becausethe proof of the Kite Lemma carries over to Hilbert planes. (See below.)

Construction for (I.12) with Hilbert’s tools:Given � and A /∈ �. Pick distinct points B,C on �.

A

B C

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 65: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.9)–(I.12)

Euclid’s proposition In Hilbert planes:

(I.9)(I.10)(I.11)

To bisect an angle.To bisect a segment.To construct a perpendicular to a lineat a given point of the line.

Euclid’s method yields a construc-tion with Hilbert’s tools, but eachuse of (I.1) has to be replaced byconstructing an isosceles �.

(I.12) To drop a perpendicular from a point toa line not containing the point.

Constructible with Hilbert’s tools,but not with Euclid’s method.

The constructions can be justified the same way as before, becausethe proof of the Kite Lemma carries over to Hilbert planes. (See below.)

Construction for (I.12) with Hilbert’s tools:Given � and A /∈ �. Pick distinct points B,C on �.1. Draw line AB. �

A

B C

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 66: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.9)–(I.12)

Euclid’s proposition In Hilbert planes:

(I.9)(I.10)(I.11)

To bisect an angle.To bisect a segment.To construct a perpendicular to a lineat a given point of the line.

Euclid’s method yields a construc-tion with Hilbert’s tools, but eachuse of (I.1) has to be replaced byconstructing an isosceles �.

(I.12) To drop a perpendicular from a point toa line not containing the point.

Constructible with Hilbert’s tools,but not with Euclid’s method.

The constructions can be justified the same way as before, becausethe proof of the Kite Lemma carries over to Hilbert planes. (See below.)

Construction for (I.12) with Hilbert’s tools:Given � and A /∈ �. Pick distinct points B,C on �.1. Draw line AB.2. Transport ∠ABC to ∠XBC on the opposite sides of line �.

A

B C

X

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 67: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.9)–(I.12)

Euclid’s proposition In Hilbert planes:

(I.9)(I.10)(I.11)

To bisect an angle.To bisect a segment.To construct a perpendicular to a lineat a given point of the line.

Euclid’s method yields a construc-tion with Hilbert’s tools, but eachuse of (I.1) has to be replaced byconstructing an isosceles �.

(I.12) To drop a perpendicular from a point toa line not containing the point.

Constructible with Hilbert’s tools,but not with Euclid’s method.

The constructions can be justified the same way as before, becausethe proof of the Kite Lemma carries over to Hilbert planes. (See below.)

Construction for (I.12) with Hilbert’s tools:Given � and A /∈ �. Pick distinct points B,C on �.1. Draw line AB.2. Transport ∠ABC to ∠XBC on the opposite sides of line �.3. Transport BA to BA� on

−→BX .

A

B C

X

A�

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 68: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.9)–(I.12)

Euclid’s proposition In Hilbert planes:

(I.9)(I.10)(I.11)

To bisect an angle.To bisect a segment.To construct a perpendicular to a lineat a given point of the line.

Euclid’s method yields a construc-tion with Hilbert’s tools, but eachuse of (I.1) has to be replaced byconstructing an isosceles �.

(I.12) To drop a perpendicular from a point toa line not containing the point.

Constructible with Hilbert’s tools,but not with Euclid’s method.

The constructions can be justified the same way as before, becausethe proof of the Kite Lemma carries over to Hilbert planes. (See below.)

Construction for (I.12) with Hilbert’s tools:Given � and A /∈ �. Pick distinct points B,C on �.1. Draw line AB.2. Transport ∠ABC to ∠XBC on the opposite sides of line �.3. Transport BA to BA� on

−→BX .

4. Draw line AA�.

A

B C

X

A�

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 69: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.9)–(I.12)

Euclid’s proposition In Hilbert planes:

(I.9)(I.10)(I.11)

To bisect an angle.To bisect a segment.To construct a perpendicular to a lineat a given point of the line.

Euclid’s method yields a construc-tion with Hilbert’s tools, but eachuse of (I.1) has to be replaced byconstructing an isosceles �.

(I.12) To drop a perpendicular from a point toa line not containing the point.

Constructible with Hilbert’s tools,but not with Euclid’s method.

The constructions can be justified the same way as before, becausethe proof of the Kite Lemma carries over to Hilbert planes. (See below.)

Construction for (I.12) with Hilbert’s tools:Given � and A /∈ �. Pick distinct points B,C on �.1. Draw line AB.2. Transport ∠ABC to ∠XBC on the opposite sides of line �.3. Transport BA to BA� on

−→BX .

4. Draw line AA�.

A

B C

X

A�Justification. B,C exist by (I2).

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 70: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.9)–(I.12)

Euclid’s proposition In Hilbert planes:

(I.9)(I.10)(I.11)

To bisect an angle.To bisect a segment.To construct a perpendicular to a lineat a given point of the line.

Euclid’s method yields a construc-tion with Hilbert’s tools, but eachuse of (I.1) has to be replaced byconstructing an isosceles �.

(I.12) To drop a perpendicular from a point toa line not containing the point.

Constructible with Hilbert’s tools,but not with Euclid’s method.

The constructions can be justified the same way as before, becausethe proof of the Kite Lemma carries over to Hilbert planes. (See below.)

Construction for (I.12) with Hilbert’s tools:Given � and A /∈ �. Pick distinct points B,C on �.1. Draw line AB.2. Transport ∠ABC to ∠XBC on the opposite sides of line �.3. Transport BA to BA� on

−→BX .

4. Draw line AA�.

A

B C

X

A�Justification. B,C exist by (I2).From the construction and (C6), �ABC ∼= �A�BC (so ABA�C is a kite).

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 71: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.9)–(I.12)

Euclid’s proposition In Hilbert planes:

(I.9)(I.10)(I.11)

To bisect an angle.To bisect a segment.To construct a perpendicular to a lineat a given point of the line.

Euclid’s method yields a construc-tion with Hilbert’s tools, but eachuse of (I.1) has to be replaced byconstructing an isosceles �.

(I.12) To drop a perpendicular from a point toa line not containing the point.

Constructible with Hilbert’s tools,but not with Euclid’s method.

The constructions can be justified the same way as before, becausethe proof of the Kite Lemma carries over to Hilbert planes. (See below.)

Construction for (I.12) with Hilbert’s tools:Given � and A /∈ �. Pick distinct points B,C on �.1. Draw line AB.2. Transport ∠ABC to ∠XBC on the opposite sides of line �.3. Transport BA to BA� on

−→BX .

4. Draw line AA�.

A

B C

X

A�

D

Justification. B,C exist by (I2).From the construction and (C6), �ABC ∼= �A�BC (so ABA�C is a kite).AA� meets � at a point D, because A,A� are on opposite sides of �.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 72: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.9)–(I.12)

Euclid’s proposition In Hilbert planes:

(I.9)(I.10)(I.11)

To bisect an angle.To bisect a segment.To construct a perpendicular to a lineat a given point of the line.

Euclid’s method yields a construc-tion with Hilbert’s tools, but eachuse of (I.1) has to be replaced byconstructing an isosceles �.

(I.12) To drop a perpendicular from a point toa line not containing the point.

Constructible with Hilbert’s tools,but not with Euclid’s method.

The constructions can be justified the same way as before, becausethe proof of the Kite Lemma carries over to Hilbert planes. (See below.)

Construction for (I.12) with Hilbert’s tools:Given � and A /∈ �. Pick distinct points B,C on �.1. Draw line AB.2. Transport ∠ABC to ∠XBC on the opposite sides of line �.3. Transport BA to BA� on

−→BX .

4. Draw line AA�.

A

B C

X

A�

D

Justification. B,C exist by (I2).From the construction and (C6), �ABC ∼= �A�BC (so ABA�C is a kite).AA� meets � at a point D, because A,A� are on opposite sides of �.D is different from at least one of B,C; say D �= B.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry

Page 73: MATH 3210: Euclidean and Non-Euclidean Geometryspot.colorado.edu/~szendrei/Geom_S20/lec-03-13.pdf · Euclidean and Non-Euclidean Geometry Hilbert Planes: Euclid’s Propositions (I.1)–(I.12)

Propositions (I.9)–(I.12)

Euclid’s proposition In Hilbert planes:

(I.9)(I.10)(I.11)

To bisect an angle.To bisect a segment.To construct a perpendicular to a lineat a given point of the line.

Euclid’s method yields a construc-tion with Hilbert’s tools, but eachuse of (I.1) has to be replaced byconstructing an isosceles �.

(I.12) To drop a perpendicular from a point toa line not containing the point.

Constructible with Hilbert’s tools,but not with Euclid’s method.

The constructions can be justified the same way as before, becausethe proof of the Kite Lemma carries over to Hilbert planes. (See below.)

Construction for (I.12) with Hilbert’s tools:Given � and A /∈ �. Pick distinct points B,C on �.1. Draw line AB.2. Transport ∠ABC to ∠XBC on the opposite sides of line �.3. Transport BA to BA� on

−→BX .

4. Draw line AA�.

A

B C

X

A�

D

Justification. B,C exist by (I2).From the construction and (C6), �ABC ∼= �A�BC (so ABA�C is a kite).AA� meets � at a point D, because A,A� are on opposite sides of �.D is different from at least one of B,C; say D �= B.By (C6), �ABD ∼= �A�BD, therefore ∠ADB ∼= ∠A�DB, and hence AA� ⊥ BD = �.

Hilbert Planes: MATH 3210: Euclidean and Non-Euclidean Geometry