Mecanica Solidos Beer-11

Embed Size (px)

Citation preview

  • 8/20/2019 Mecanica Solidos Beer-11

    1/31

    MECHANICS OFMATERIALS

    Third Edition

    Ferdinand P. Beer

    E. Russell Johnston, Jr.

     

    CHAPTER

    11Energy Methods

      .

    Lecture Notes:

    J. Walt Oler

    Texas Tech University

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved.

  • 8/20/2019 Mecanica Solidos Beer-11

    2/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Energy Methods

    Strain Energy

    Strain Energy Density

    Elastic Strain Energy for Normal Stresses

    Strain Energy For Shearing Stresses

    Sample Problem 11.2

    Strain Energy for a General State of Stress

    Impact Loading

     

    Sample Problem 11.4

    Work and Energy Under Several Loads

    Castigliano’s Theorem

    Deflections by Castigliano’s TheoremSample Problem 11.5

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 2

    xamp e .

    Example 11.07

    Design for Impact Loads

    Work and Energy Under a Single Load

    Deflection Under a Single Load

  • 8/20/2019 Mecanica Solidos Beer-11

    3/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    • A uniform rod is subjected to a slowly increasing load

    • The elementary work done by the load P as the rod

    elongates by a small dx is

    which is equal to the area of width dx under the load-

    deformation diagram.

    work elementarydxPdU   ==

    Strain Energy

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 3

    • The total work done by the load for a deformation x1,

    which results in an increase of strain energy in the rod.

    energystrainwork totaldxPU 

     x

    === ∫1

    0

    11

    2

    121

    2

    1

    0

    1

     xPkxdxkxU 

     x

    === ∫

    • In the case of a linear elastic deformation,

  • 8/20/2019 Mecanica Solidos Beer-11

    4/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Strain Energy Density

    • To eliminate the effects of size, evaluate the strain-

    energy per unit volume,

    densityenergystraind u

     L

    dx

     A

    P

     x

     x

    ==

    =

    1

    1

    0

    0

    ε 

    ε σ 

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 4

    • As the material is unloaded, the stress returns to zero

    but there is a permanent deformation. Only the strainenergy represented by the triangular area is recovered.

    • Remainder of the energy spent in deforming the material

    is dissipated as heat.

    • The total strain energy density resulting from the

    deformation is equal to the area under the curve to ε 1.

  • 8/20/2019 Mecanica Solidos Beer-11

    5/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Strain-Energy Density

    • The strain energy density resulting from

    setting ε 1  = ε  R is the modulus of toughness.

    • The energy per unit volume required to cause

    the material to rupture is related to its ductility

    as well as its ultimate strength.

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 5

     

    limit,

     E 

     E d  E u  x

    22

    21

    21

    0

    1

    1σ ε 

    ε ε 

    ε 

    === ∫

    • The strain energy density resulting from

    setting σ 1  = σ Y is the modulus of resilience.

    resilienceof modulus E 

    u   Y Y    ==2

    2σ 

  • 8/20/2019 Mecanica Solidos Beer-11

    6/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Elastic Strain Energy for Normal Stresses

    • In an element with a nonuniform stress distribution,

    energystraintotallim0

    ===∆

    ∆= ∫

    →∆dV uU 

    dV 

    dU 

    U u

    • For values of u < uY , i.e., below the proportionallimit,

    energystrainelasticdV U    x  2

    ∫   ==  σ 

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 6

    • Under axial loading,   dx AdV  AP x   ==σ 

    ∫= L

    dx AE 

    PU 

    0

    2

    2

     AE 

     LPU 

    2

    2

    =

    • For a rod of uniform cross-section,

  • 8/20/2019 Mecanica Solidos Beer-11

    7/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Elastic Strain Energy for Normal Stresses

     y M  x  =σ 

    • For a beam subjected to a bending load,

    ∫∫   ==   dV  EI 

     y M dV 

     E U    x

    2

    222

    22

    σ 

    • Setting dV = dA dx,

    dxdA y EI 

     M dxdA

     EI 

     y M U 

     L L

    ∫ ∫∫ ∫    

     

    == 22

    2

    2

    22

    22

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 7

    dx EI 

     M  L

    ∫=0

    2

    2

    • For an end-loaded cantilever beam,

     EI 

     LPdx

     EI 

     xPU 

    Px M 

     L

    62

    32

    0

    22

    ==

    −=

  • 8/20/2019 Mecanica Solidos Beer-11

    8/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Strain Energy For Shearing Stresses

    • For a material subjected to plane shearing

    stresses,

    ∫= xy

     xy xy d u

    γ 

    γ τ 

    0

    • For values of τ  xy within the proportional limit,

    2

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 8

    GGu  y

     xy xy xy 2212

    21 γ τ γ    ===

    • The total strain energy is found from

    ∫∫

    =

    =

    dV G

    dV uU 

     xy

    2

    2τ 

  • 8/20/2019 Mecanica Solidos Beer-11

    9/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Strain Energy For Shearing Stresses

    ∫∫   ==   dV GJ 

    T dV 

    GU 

      xy

    2

    222

    22

     ρ τ 

    • For a shaft subjected to a torsional load,

    • Setting dV = dA dx,

    ∫ ∫∫ ∫    

     

    ==

     L L

    dxdAT 

    dxdAT 

    U 2

    2

    2

    2

    22

     ρ  ρ 

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 9

     J 

    T  xy

     ρ τ    =

    ∫= L

    dxGJ 

    0

    2

    2

    • In the case of a uniform shaft,

    GJ 

     LT U 

    2

    2

    =

  • 8/20/2019 Mecanica Solidos Beer-11

    10/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Sample Problem 11.2

    SOLUTION:

    • Determine the reactions at A and B

    from a free-body diagram of the

    complete beam.

    • Develop a diagram of the bending

    moment distribution.

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 10

    a) Taking into account only the normal

    stresses due to bending, determine the

    strain energy of the beam for the

    loading shown.

    b) Evaluate the strain energy knowing

    that the beam is a W10x45, P = 40

    kips, L = 12 ft, a = 3 ft, b = 9 ft, and E 

    = 29x106 psi.

    • Integrate over the volume of thebeam to find the strain energy.

    • Apply the particular given

    conditions to evaluate the strainenergy.

  • 8/20/2019 Mecanica Solidos Beer-11

    11/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Sample Problem 11.2

    SOLUTION:

    • Determine the reactions at A and B

    from a free-body diagram of the

    complete beam.

     L

    Pa R

     L

    Pb R  B A   ==

     

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 11

    • eve op a agram o t e en ng

    moment distribution.

    v L

    Pa M  x

     L

    Pb M    == 21

  • 8/20/2019 Mecanica Solidos Beer-11

    12/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Sample Problem 11.2

    Pb

    AD,portionOver the

    • Integrate over the volume of the beam to find

    the strain energy.

    dx x L

    Pa

     EI dx x

     L

    Pb

     EI 

    dv EI 

     M dx

     EI 

     M U 

    ba

    ba

     

      

     +

     

      

     =

    +=

    ∫∫

    ∫∫

    0

    2

    0

    2

    0

    22

    0

    21

    2

    1

    2

    1

    22

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 12

    v L

    Pa M 

     x L

     M 

    =

    =

    2

    1

    BD,portionOver the

    43

    in248ksi1029

    in.108in.36a

    in.144kips45

    =×=

    ==

    ==

     I  E 

    b

     LP

    ( )ba EIL

    baPbaab

     L

    P EI 

    +=  

       +=

    22223232

    22

    63321

     EIL

    baPU 

    6

    222

    =

    ( ) ( ) ( )

    ( )( )( )in144in248ksi10296in108in36kips40

    43

    222

    ×=U 

    kipsin89.3  ⋅=

  • 8/20/2019 Mecanica Solidos Beer-11

    13/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Strain Energy for a General State of Stress

    • Previously found strain energy due to uniaxial stress and plane

    shearing stress. For a general state of stress,

    ( ) zx zx yz yz xy xy z z y y x xu   γ τ γ τ γ τ ε σ ε σ ε σ    +++++= 21

    • With respect to the principal axes for an elastic, isotropic body,

    ( )[ ]22

    1 222 ++−++=   accbbacba E 

    u   σ σ σ σ σ σ ν σ σ σ 

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 13

    ( )

    ( ) ( ) ( )[ ] distortiontodue12

    1

    changevolumetodue6

    21

    222

    2

    =−+−+−=

    =++−

    =

    +=

    accbbad 

    cbav

    d v

    G

    u

     E 

    vu

    uu

    σ σ σ σ σ σ 

    σ σ σ 

    • Basis for the maximum distortion energy failure criteria,

    ( ) specimentesttensileafor

    6

    2

    G

    uu   Y Y d d 

    σ =<

  • 8/20/2019 Mecanica Solidos Beer-11

    14/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Impact Loading

    • To determine the maximum stress σ m

    - Assume that the kinetic energy is

    transferred entirely to the

    structure,202

    1 mvU m  =

    - Assume that the stress-strain

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 14

    • Consider a rod which is hit at its

    end with a body of mass m moving

    with a velocity v0.

    • Rod deforms under impact. Stresses

    reach a maximum value σ m and then

    disappear.

     

    is also valid under impact loading.

    ∫=   dV 

     E U    m

    m 2

    2σ 

    • Maximum value of the strain energy,

    • For the case of a uniform rod,

     E mv

     E U mm

    202 ==σ 

  • 8/20/2019 Mecanica Solidos Beer-11

    15/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Example 11.06

    SOLUTION:

    • Due to the change in diameter, the

    normal stress distribution is nonuniform.

    • Find the static load Pm which produces

    the same strain energy as the impact.

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 15

    Body of mass m with velocity v0 hits

    the end of the nonuniform rod BCD.

    Knowing that the diameter of the

    portion BC is twice the diameter ofportion CD, determine the maximum

    value of the normal stress in the rod.

     

    resulting from the static load Pm

  • 8/20/2019 Mecanica Solidos Beer-11

    16/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Example 11.06

    • Find the static load Pm which produces

    the same strain energy as the impact.

    ( ) ( )

     L

     AE U P

     AE 

     LP

     AE 

     LP

     AE 

     LPU 

    mm

    mmmm

    5

    16

    16

    5

    4

    22 222

    =

    =+=

     

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 16

    SOLUTION:

    • Due to the change in diameter,

    the normal stress distribution is

    nonuniform.

     E 

    V dV 

     E 

    mvU 

    mm

    m

    22

    22

    202

    1

    σ σ ≠=

    =

    • va ua e e max mum s ress resu ng

    from the static load Pm

     AL

     E mv

     AL

     E U 

     A

    P

    m

    mm

    20

    5

    8

    5

    16

    =

    =

    =σ 

  • 8/20/2019 Mecanica Solidos Beer-11

    17/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Example 11.07

    SOLUTION:

    • The normal stress varies linearly along

    the length of the beam as across a

    transverse section.

    • Find the static load Pm which produces

    the same strain energy as the impact.

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 17

    A block of weight W is dropped from a

    height h onto the free end of the

    cantilever beam. Determine the

    maximum value of the stresses in the

    beam.

    • Evaluate the maximum stressresulting from the static load Pm

  • 8/20/2019 Mecanica Solidos Beer-11

    18/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Example 11.07

    • Find the static load Pm which produces

    the same strain energy as the impact.

    For an end-loaded cantilever beam,

    32

    6

    6

     EI U P

     EI 

     LPU 

    m

    mm

    =

    =

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 18

    SOLUTION:

    • The normal stress varies linearly

    along the length of the beam as

    across a transverse section.

     E 

    V dV 

     E 

    WhU 

    mm

    m

    22

    22 σ σ ≠=

    =

     L

    • Evaluate the maximum stress

    resulting from the static load Pm

    ( ) ( )2266

    c I  L

    WhE 

    c I  L

     E U 

     I 

     LcP

     I 

    c M 

    m

    mmm

    ==

    ==σ 

  • 8/20/2019 Mecanica Solidos Beer-11

    19/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Design for Impact Loads

    • For the case of a uniform rod,

     E U mm

    2=σ 

    • For the case of the nonuniform rod,

    ( ) ( )   AL L A L AV 

     AL

     E U mm

    2 / 52 / 2 / 4

    5

    16

    =+=

    =σ 

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 19

    ( )( ) ( ) ( )

     E U 

    V  Lccc Lc I  L

    c I  L

     E U 

    m

    m

    m

    m

    24

     /  / 

    6

    412

    4124

    412

    2

    =

    ===

    =

    σ 

    π π 

    σ 

    • For the case of the cantilever beam

    Maximum stress reduced by:

    • uniformity of stress

    • low modulus of elasticity with

    high yield strength

    • high volume

    V  E U mm 8=σ 

  • 8/20/2019 Mecanica Solidos Beer-11

    20/31

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Work and Energy Under a Single Load

     

    • Strain energy may also be found from

    the work of the single load P1,

    ∫=1

    0

     x

    dxPU 

    • For an elastic deformation,

    11   x x

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 20

    ,

    energy by integrating the energydensity over the volume.

    For a uniform rod,

    ( )

     AE 

     LPdx A

     E 

     AP

    dV  E 

    dV uU 

     L

    22

    2

    21

    0

    21

    2

    ==

    ==

    ∫ ∫

    σ 

    1121200

     xP xk dxkxdxPU    ====

    • Knowing the relationship between

    force and displacement,

     AE 

     LP

     AE 

     LPPU 

     AE 

     LP x

    2

    211

    121

    11

      

     =

    =

    T E 

  • 8/20/2019 Mecanica Solidos Beer-11

    21/31

     Th i    r   d 

    E d i     t   i     on

    Beer • Johnston • DeWolf

    Work and Energy Under a Single Load

    • Strain energy may be found from the work of other types

    of single concentrated loads.

    • Transverse load • Bending couple • Torsional couple

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 21

     EI 

     LP

     EI 

     LPP

     yPdyPU 

     y

    63

    321

    31

    121

    1121

    0

    1

    =

     

     

     

     =

    == ∫

     EI 

     L M 

     EI 

     L M  M 

     M d  M U 

    2

    211

    121

    1121

    0

    1

      

     =

    == ∫   θ θ θ 

     JG

     LT 

     JG

     LT T 

    T d T U 

    2

    211

    121

    1121

    0

    1

      

     =

    == ∫   φ φ φ 

    T E 

  • 8/20/2019 Mecanica Solidos Beer-11

    22/31

     Th i    r   d 

    E d i     t   i     on

    Beer • Johnston • DeWolf

    Deflection Under a Single Load

    • If the strain energy of a structure due to a

    single concentrated load is known, then the

    equality between the work of the load and

    energy may be used to find the deflection.

    • Strain energy of the structure,

     LF  LF U    BD BD BC  BC 

    22

    +=

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 22

    l Ll L  BD BC  8.06.0   ==

    From statics,

    PF PF   BD BC  8.06.0   −=+=

    From the given geometry,

    ( ) ( )[ ] AE 

    lP

     AE 

    lP 2332364.0

    2

    8.06.0=

    +=

    • Equating work and strain energy,

     AE 

    Pl y

     yP AE 

     LPU 

     B

     B

    728.0

    364.021

    2

    =

    ==

    T E 

  • 8/20/2019 Mecanica Solidos Beer-11

    23/31

     Th i    r   d 

    E d i     t   i     on

    Beer • Johnston • DeWolf

    Sample Problem 11.4

    SOLUTION:

    • Find the reactions at A and B from a

    free-body diagram of the entire truss.

    • Apply the method of joints to

    determine the axial force in each

    member.

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 23

    Members of the truss shown consist of

    sections of aluminum pipe with the

    cross-sectional areas indicated. Using

     E = 73 GPa, determine the vertical

    deflection of the point E caused by the

    load P.

    • Evaluate the strain energy of thetruss due to the load P.

    • Equate the strain energy to the work

    of P and solve for the displacement.

    T E 

  • 8/20/2019 Mecanica Solidos Beer-11

    24/31

     Th i    r   d 

    E d i     t   i     on

    Beer • Johnston • DeWolf

    Sample Problem 11.4

    SOLUTION:

    • Find the reactions at A and B from a free-body

    diagram of the entire truss.

    821821   P BP AP A y x

      ==−=

    • Apply the method of joints to determine the

    axial force in each member.

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 24

    PF 

    PF 

    CE 

     DE 

    815

    817

    +=

    −=

    0

    815

    =

    +=

    CD

     AC 

    PF 

    PF 

    PF 

    CE 

     DE 

    821

    45

    −=

    = 0= ABF 

    T  

  • 8/20/2019 Mecanica Solidos Beer-11

    25/31

     hi    r   d 

    E d i     t   i     on

    Beer • Johnston • DeWolf

    Sample Problem 11.4

     

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 25

    • va uate t e stra n energy o t e

    truss due to the load P.

    ( )2

    22

    297002

    1

    2

    1

    2

    P E 

     A

     LF 

     E  E  A

     LF U 

    i

    ii

    i

    ii

    =

    ==   ∑∑

    • quate t e stra n energy to t e wor y

    and solve for the displacement.

    ( )( )9

    33

    2

    21

    1073

    1040107.29

    2

    2970022

    ×

    ××=

     

     

     

     

    ==

    =

     E 

     E 

     E 

     y

     E 

    P

    PP

     y

    U Py

    ↓= mm27.16 E  y

    T h 

    E  d 

  • 8/20/2019 Mecanica Solidos Beer-11

    26/31

     hi    r   d 

    di     t   i     on

    Beer • Johnston • DeWolf

    Work and Energy Under Several Loads

    • Deflections of an elastic beam subjected to twoconcentrated loads,

    22212122212

    21211112111

    PP x x x

    PP x x x

    α α 

    α α 

    +=+=

    +=+=

    • Compute the strain energy in the beam by

    evaluating the work done by slowly applying

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 26

    • Reversing the application sequence yields

    21111221

    22222

    1

    2   PPPPU    α α α    ++=

    • Strain energy expressions must be equivalent.

    It follows that α 12=α 

    21( Maxwell’s reciprocal

    theorem).

    22222112

    21112

    1 2   PPPPU    α α α    ++=

    1   2,

    T h 

    E  d 

  • 8/20/2019 Mecanica Solidos Beer-11

    27/31

     hi    r   d 

    di     t   i     on

    Beer • Johnston • DeWolf

    Castigliano’s Theorem

    22222112

    21112

    1 2   PPPPU    α α α    ++=

    • Strain energy for any elastic structure

    subjected to two concentrated loads,

    • Differentiating with respect to the loads,

    1212111   xPPU 

    =+=∂

    α α 

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 27

    22221122

     xPPP

    U =+=

    ∂α α 

    • Castigliano’s theorem: For an elastic structure

    subjected to n loads, the deflection x j of the

    point of application of P j can be expressed as

     and  j

     j j

     j j

     jT 

     M 

    P

    U  x

    ∂=

    ∂=

    ∂=   φ θ 

    T h 

    E  d 

  • 8/20/2019 Mecanica Solidos Beer-11

    28/31

     hi    r   d 

    di     t   i     on

    Beer • Johnston • DeWolf

    Deflections by Castigliano’s Theorem

    • Application of Castigliano’s theorem issimplified if the differentiation with respect to

    the load P j is performed before the integration

    or summation to obtain the strain energy U .

    • In the case of a beam,

    ∫∫   ∂∂

    =∂

    ∂==

     L

     j

     L

    dxP

     M 

     EI 

     M 

    P

    U  xdx

     EI 

     M U 

    2

    2

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 28

    • For a truss,

     j

    in

    i  i

    ii

     j j

    n

    i  i

    ii

    P

     E  A

     LF 

    P

    U  x

     E  A

     LF U 

    ∂=

    ∂==   ∑∑

    == 11

    2

    2

    T h 

    E  d 

  • 8/20/2019 Mecanica Solidos Beer-11

    29/31

     hi    r   d 

    di     t   i     on

    Beer • Johnston • DeWolf

    Sample Problem 11.5

    • A l the method of oints to determine

    SOLUTION:

    • For application of Castigliano’s theorem,

    introduce a dummy vertical load Q at C .

    Find the reactions at A and B due to thedummy load from a free-body diagram of

    the entire truss.

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 29

    Members of the truss shownconsist of sections of aluminum

    pipe with the cross-sectional areas

    indicated. Using E = 73 GPa,

    determine the vertical deflection ofthe joint C caused by the load P.

     

    the axial force in each member due to Q.• Combine with the results of Sample

    Problem 11.4 to evaluate the derivative

    with respect to Q of the strain energy of

    the truss due to the loads P and Q.

    • Setting Q = 0, evaluate the derivative

    which is equivalent to the desired

    displacement at C .

    T h     

    E  d 

    B J h t D W lf

  • 8/20/2019 Mecanica Solidos Beer-11

    30/31

     ir   d i     t   i     on

    Beer • Johnston • DeWolf

    Sample Problem 11.5

    SOLUTION:

    • Find the reactions at A and B due to a dummy load Q

    at C from a free-body diagram of the entire truss.

    Q BQ AQ A  y x 43

    43

    ==−=

    • Apply the method of joints to determine the axial

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 30

      .

    QF F 

    QF F 

    F F 

     BD AB

    CD AC 

     DE CE 

    43;0

    ;0

    0

    −==

    −==

    ==

    T h i    

    E  d i    

    Beer Johnston DeWolf

  • 8/20/2019 Mecanica Solidos Beer-11

    31/31

     ir   d i t   i     on

    Beer • Johnston • DeWolf

    Sample Problem 11.5

    • Combine with the results of Sam le Problem 11.4 to evaluate the derivative

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 11 - 31

     

    with respect to Q of the strain energy of the truss due to the loads P and Q.

    ( )QP E Q

     E  A

     LF  y   i

    i

    iiC  42634306

    1+=

    ∂ 

     

     = ∑

    • Setting Q = 0, evaluate the derivative which is equivalent to the desireddisplacement at C .

    Pa1073

    104043069

    3

    ×

    ×=

      N  yC    ↓=  mm36.2C  y