Microbial Community Genomics at the JGI Susannah Green Tringe, PhD JGI Metagenome Program Lead Advancing Science with DNA Sequence

Embed Size (px)

Citation preview

  • Slide 1
  • Microbial Community Genomics at the JGI Susannah Green Tringe, PhD JGI Metagenome Program Lead Advancing Science with DNA Sequence
  • Slide 2
  • Talk outline Metagenomics background and history JGI Metagenome Program Organization Project portfolio JGI Science: Wetlands metagenomics
  • Slide 3
  • Talk outline Metagenomics background and history JGI Metagenome Program Organization Project portfolio JGI Science: Wetlands metagenomics
  • Slide 4
  • Isolate (pure culture) Genomics Microbial community Metagenomics What is metagenomics?
  • Slide 5
  • Why metagenomics? Vast uncultivated phylogenetic diversity hints at a potential reservoir of untapped functional diversity Ecologically important processes nutrient cycling Pharmacologically valuable compounds antibiotics Industrially useful enzymes cellulases
  • Slide 6
  • Metagenomics 110100100010000 Acid mine Sargasso SeaSoil Species complexity ?
  • Slide 7
  • Adaptive gene for habitat A Adaptive gene for habitat B Essential gene A B Environmental Gene Tags (EGTs)
  • Slide 8
  • Comparative metagenomics Tringe et al 2005
  • Slide 9
  • COG3459: Cellobiose phosphorylase COG5524: Bacteriorhodopsin COG1292: Choline- glycine betaine transporter Tringe et al 2005
  • Slide 10
  • Talk outline Metagenomics background and history JGI Metagenome Program Organization Project portfolio JGI Science: Wetlands metagenomics
  • Slide 11
  • User Programs PlantsFungiMicrobesMetagenomes
  • Slide 12
  • Program organization
  • Slide 13
  • Scientific Advisory Board 1. Cameron Currie, University of Wisconsin 2. Ed DeLong, MIT 3. Jed Fuhrman, University of Southern California 4. George Garrity, MSU 5. Steve Hallam, University of British Columbia 6. Bob Landick, Great Lakes BRC 7. Folker Meyer, Argonne National Laboratory 8. Nancy Moran, Yale University 9. Mary Ann Moran, University of Georgia 10. Karen Nelson, JCVI 11. Rich Roberts, NEB 12. Doug Rusch, J. Craig Venter Institute 13. Ramunas Stepanauskas, Bigelow Laboratory 14. Niels van der Lelie, RTI 15. Phil Hugenholtz, University of Queensland 2011- one super program Prokaryote Super Program N. Kyrpides Single Cells Group T. Woyke Omics Group K. Mavrommatis Functional Annotation Group N. Ivanova Microbial Systems Group S. Tringe Metadata Group D. Liolios Comparative Analysis Systems A. Chen LANL P. Chain Metagenome Program S. Tringe Microbial Program T. Woyke Major Collaborators DSMZ BIGELOW Science Programs J. Bristow
  • Slide 14
  • JGI sequence output Sequence output (Gb) Fiscal Year 40 Gb 30 Tb 2012 projected: 47.1 Tb
  • Slide 15
  • JGI Project Portfolio
  • Slide 16
  • FY13 Program Targets YTD
  • Slide 17
  • Genomics for Bioenergy Sugar Cellulose MicrobesEnzymes Plants CO 2 Pre- treatment Biomass Poplar (Science) Sorghum bicolor (Nature) Switchgrass Miscanthus Pinus taeda Foxtail millet Brachypodium distachyon Feedstock improvement Trichoderma reesei (PNAS) Postia placenta (PNAS) Termite gut (Nature) Cow rumen (Science) Leaf cutter ant garden Shipworm mollusk Biomass degradation T. ethanolicus Pichia stipitus Biogas bioreactor Mixed alcohols bioreactor Butanol producing E coli Fuels synthesis
  • Slide 18
  • Termite metagenome Warnecke et al Nature 2007
  • Slide 19
  • Biogeochemistry and bioremediation Enhanced Biological Phosphate Removal Sludge (Nat Biotech) Anammox bioreactors (Env Microbiol) Terephthalate degrading community (ISME) Gulf oil spill (ISME)
  • Slide 20
  • Terephthalate-degrading community Lykidis et al, ISME 2011
  • Slide 21
  • Carbon Cycling & Environment Picoprymnesiophytes Lake Washington Methylotrophs Prairie soil metagenome Deep subsurface ecosystem (Science) (PNAS) (Nat Biotech) Permafrost metagenome (Nature) Wetlands metagenome
  • Slide 22
  • Talk outline Metagenomics background and history JGI Metagenome Program Organization Project portfolio JGI Science: Wetlands metagenomics
  • Slide 23
  • Why study wetlands? Wetlands store a lot of carbon (IPCC, 2000) but their sequestration potential is uncertain (USGS, 2010)
  • Slide 24
  • Peat island subsidence
  • Slide 25
  • Wetland carbon farming CO 2 O2O2 CH 4 Lisamarie Windham-Myers
  • Slide 26
  • Major microbial processes in wetland sediments Plant biomass decomposition Denitrification Mn(IV) reduction Fe(III) reduction Sulfate reduction Methanogenesis Methane oxidation (aerobic or anaerobic) Laanbroek, Annals of Botany How do these processes impact carbon farming?
  • Slide 27
  • Sampling site gradients Peat accretion Oxygen, Nitrate, Sulfate Methane flux Water inlet Water outflow Site ABC/L Does microbial community composition change with nutrient gradients, primary production and methane release?
  • Slide 28
  • Sample Collection Caffrey & Kemp 1991
  • Slide 29
  • Illumina shotgun sequencing Shotgun Metagenome Community composition 454 Titanium Pyrotag sequencing Functional analysis Sequencing strategy
  • Slide 30
  • Wetland microbial communities -Sampling site is major driver of community composition -Sample type is next largest factor -Depth effect is subtle Site L High biomass accumulation Site A Low biomass accumulation Site B Medium biomass accumulation February 2011 Shaomei He -Similar results in August
  • Slide 31
  • Indicator OTUs Dechloromonas OTUMethanoregula OTU Archaeal methanogen Correlates with CH 4 production 170X coverage in one metagenome dataset Denitrifying Betaproteobacterium Correlates with nitrate abundance A Rhizobiales OTU Alphaproteobacterium Known plant-associated bacteria A Crenarchaeota subphylum 2 OTU Uncharacterized crenarchaeote A, B, L Rhizome Bulk Shaomei He
  • Slide 32
  • Metagenome Sequencing and Assembly More complex community, less assembly Shotgun data Assembly Contigs Singlets Shaomei He
  • Slide 33
  • Relative gene family abundances Samples with more methanogenesis genes have less dissimilatory sulfate/nitrate reduction genes Methane oxidation genes were more abundant in rhizomes Shaomei He
  • Slide 34
  • Metagenome assembly G+C content 1005001000 Average read depth 5 10 50 Alphaproteobacteria ~850X Methanoregula ~170X Clostridia Draft methanogen genome
  • Slide 35
  • Single-copy phylogenetic marker COGs in finished Methanomicrobial genomes M. boonei Wetland OTU High coverage and low redundancy of the draft genome
  • Slide 36
  • Methanogenesis Pathways HydrogenotrophicAcetoclasticMethylotrophic Red: present in wetland Methanoregula Grey: absent in wetland Methanoregula
  • Slide 37
  • Conclusions Metagenomics provides a means to study uncultivated communities of microbes Recent advances in sequencing technologies allow us to explore these communities at unprecedented depth Complex communities found in soils and sediments still present significant challenges to genome reconstruction Appropriate library construction, sequencing and analysis methods enable greater functional insight into complex communities
  • Slide 38
  • Questions?
  • Slide 39