61
1 Dr. Mauro Iannelli

Microwave Synthesis

  • Upload
    romc

  • View
    17

  • Download
    0

Embed Size (px)

DESCRIPTION

denrimeros sintesis de microondas ariticulo

Citation preview

Page 1: Microwave Synthesis

1

Dr. Mauro Iannelli

Page 2: Microwave Synthesis

2

Milestone

Page 3: Microwave Synthesis

3

• Established in 1989• Organized in six operating units

– Company headquarter based in Bergamo, Italy– Manufacture and R&D facility based in Leutkirch,

Germany– Milestone Inc, Connecticut USA– Milestone General K.K. in Japan– Milestone Korea– Milestone China

• A network of ca. 50 exclusive and non-exclusive distributors worldwide

Milestone

Page 4: Microwave Synthesis

4

Over 30 European and US patents

Milestone Foundation

Page 5: Microwave Synthesis

5

Microwave-Assisted Synthesis

Introduction and General Overview

Page 6: Microwave Synthesis

6

Microwaves

Infrared Radio wavesMicrowaves

300 MHz30 GHz2450 MHz

c

HH

Electric field: Magnetic field: Wavelength (12,2 cm for 2450 MHz)H

Page 7: Microwave Synthesis

7

Energetics

M. Nüchter, B. Ondruschka, W. Bonrath and A. Gumb, G r e e n C h e m . , 2 0 0 4 , 6 , 1 2 8

Microwaves promote kinetic acceleration

Page 8: Microwave Synthesis

8

Advantages of Microwaves

• Reduced reaction time(superheating, closed vessels)

• Reduced side reactions

• Increased yields

• Improved control on reaction

• Improved reproducibility

Page 9: Microwave Synthesis

9

Temperature profilesMicrowaves

Tem

pera

ture

Time

Conv. Heating Reflux

Conv. Heating Autoclave

Page 10: Microwave Synthesis

10

Temperature profiles

Tem

pera

ture

Time

Microwaves

Conv. Heating Reflux

Conv. Heating Autoclave

Page 11: Microwave Synthesis

11

Microwave Instruments

Images adapted from: C.O. Kappe, A. Stadler: Microwaves in Organic and Medicinal Chemistry, Wiley, 2005

Multimode Instruments

wave guide Mono-Mode Instruments

Page 12: Microwave Synthesis

12

• Same Field homogeneity

• Same Chemical performances

• Different Reaction scale

• Different Application versatility

Mono-Mode Vs. Multimode

Page 13: Microwave Synthesis

13

Mono-Mode Vs. Multimode

Page 14: Microwave Synthesis

14

Mono-Mode

SEM Image

Page 15: Microwave Synthesis

15

Multimode

SEM Image

Page 16: Microwave Synthesis

16

Mono-Mode Vs. Multimode.

…nearly identical results could be achieved using single-mode andmultimode instruments if an appropriate control of the temperature ismaintained...

…the combination of mono-mode and multimode instrumentation wasdemonstrated to be a valuable tool for the chemist to quickly optimizereactions and subsequent scale up in parallel

J. Alcazar, G. Diels,B. Schoentjesc, Johnson & Johnson Pharmaceutical Research and Development,

QSAR Comb. Sci. 2004, 23

Reproducibility across Microwave Instruments:First Example of Genuine Parallel Scale up ofCompounds under Microwave Irradiation

Page 17: Microwave Synthesis

17

First Hybrid PlatformMultiSYNTH

Mono and Multi Mode System

Page 18: Microwave Synthesis

18

Mono-Mode Configuration

• Low Minimum Processable Volume (250 l)• High Energy Density• No Standing Waves• Easy Reaction Optimization

14

2 3

1234

Fiber opticInfraredVibrating and Shaking-StirrerAir cooling

Page 19: Microwave Synthesis

19

Multimode Configuration

1234

Fiber opticInfraredShaking-StirrerAir coolingCarousel Rotation5

5

1

2

43

• Easy Scale-Up (parallel fashion)• Parallel Optimization• Open Vessel Reactions (up to 1 L)

Page 20: Microwave Synthesis

20

Microwave Labstation for Synthesis

MicroSYNTH

Page 21: Microwave Synthesis

21

State-of-the-Art Microwave Technology

Inherent Safety

High FieldHomogeneity

Easy-to-UseControl Terminal

Full Documentation

Page 22: Microwave Synthesis

22

Technical Specifications

T640 Terminal withEasyCONTROL software

Control

Open vessel (reflux)Single closed vesselMultiple closed vesselsHigh temperature vessels

Operation

Compressed airCooling

Built-in magnetic stirrerStirring

1600 W (installed, 2magnetrons)Microwave Power

Multi-mode (pyramid shapedmode diffuser)Microwave Technology

Page 23: Microwave Synthesis

23

T640 Terminal

Page 24: Microwave Synthesis

24

T640 Terminal

• Industrial grade touch-screen controller• 6,5” screen with 65.000 colors• VGA resolution 640 x 480 for sharp process

graphics• 1 USB port for printer, 2 PS2 ports for mouse

and keyboard, 3 RS 232 ports for externaldevices

• Methods and runs saved on a removableWindows™-formatted flash-card

Page 25: Microwave Synthesis

25

EasyCONTROL software

Page 26: Microwave Synthesis

26Open System

ClosedSystem

Scale-Up

ParallelScreening and

Scale-Up

Closed System

Application Versatility

Fusion, Sintering

Page 27: Microwave Synthesis

27

QV-50 Setup

S. Harusawa et al., Chemical and Pharmaceutical Bulletin, 55 (8), 2007, 1245

Optic FiberThermometer

Pressure Sensor

Quartz VesselPEEK Shield

45 ml40 bar250°C

Cooling Port

Page 28: Microwave Synthesis

28

247

262

250 (27 bar)

213

250 (38 bar)

248

244

204

230

201

bp (40 bar)

4680MEK

2082Acetonitrile

3378Ethanol

4277Ethyl Acetate

4765THF

3869Hexane

3465Methanol

36100Water

4656Acetone

4240DCM

Tbp (1 bar)Solvent

QV-50 Setup

Page 29: Microwave Synthesis

29

Organic Chemistry

Oxidation (Mild Conditions)

NHNN

HNN

NCl

OH

NHNN

HNN

NCl

O

OHMnO2 / H2O

180 °C

reflux

Conditions

64 %50 minMW

10 %100 hConventional

YieldTimeSystem

V. Santagada et al., Tetrahedron Letters, 44, 2003, 1149

Page 30: Microwave Synthesis

30

Q20 Rotor

991003d

81993c

94993b

931003a

Yield(%)

Conversion(%)

Amine 1Compound

J. Alcázar, G. Diels, B. Schoentjes, QSAR & Combinatorial Science, 23, 2004

600 ml 40 bar 250°C

Page 31: Microwave Synthesis

31

High Pressure Rotor

X. J. Bi, L. T. Higham, J. L. Scott, C. R. Strauss, Australian Journal of Chemistry, 59, 2006, 883

High Temperature Water Hydrolytic Cleavage

100 ml TFM vessel100 bar250°C

10 X 100 mlTFM vessel

Page 32: Microwave Synthesis

32

Inorganic Chemistry

Adapted from: C.-K. Kim, J.-H. Lee, et al., Materials Research Bullettin 36,. 2001, 2241-2250

Hydrothermal Synthesis of Co-ferrites powders

CoCl2·6H2O FeCl3·6H2O

MW Irradiation

NH3(aq)+ CoFe2O4

2(CuK, Degree)

b)

a)

Conv. Heating

a)120 °C, b)180 °C

b)

a)

2(CuK, Degree)

Page 33: Microwave Synthesis

33

Synthesis using fractionalproduct distillation

Open System Setup

T. Razzaq, C. O. Kappe, Tetrahedron Letters, 48, 2007, 2513

Page 34: Microwave Synthesis

34

Medicinal Chemistry

J. Schmitz, E. Heller, and U. Holzgrabe, Monatshefte fűr Chemie 138, 2007, 171

Allosteric Modulators of Muscarinic Receptors

Cl

Cl

ON

N+

N+

NO

Cl

Cl

Cl

Cl

ON

N

Br Br

(E,E)-1-10-(1,3-Propanediyl)bis[4-[[(2,6-dichlorobenzyloxy)imino] methyl]pyridinium] dibromideDUO3

CH3CN85 °C

MW: 800 W, 3 h, 54 %Δ: 144 h, 53 %

Page 35: Microwave Synthesis

35

High Temperature Applications

MultiFAST

Page 36: Microwave Synthesis

36

MultiFAST Rotor

• Ceramic muffle with 4-place rotating carousel• Silicon carbide crucibles holders• Standard metal crucibles (Pt or Ni)• IR contact-less temperature control in all crucibles

Page 37: Microwave Synthesis

37

Fast Heating Rate

Page 38: Microwave Synthesis

38

Sintering of TiO2 Nanoparticles

Normal sintering MW sintering

Solar Energy Materials & Solar cells 91 (2007) 6-61

Page 39: Microwave Synthesis

39

Microwaves + UV Light

V. Cirkva, M. Hajek, J. Photochem.Photobiol. A – Chem. 1999, 123, 21–23.

Addition of THF to Perfluorohexylethylene

Yield

Page 40: Microwave Synthesis

40

Microwaves + UV Light

Page 41: Microwave Synthesis

41

Microwaves + UV Light

Page 42: Microwave Synthesis

42

Scaling-Up Microwave Synthesis

Parallel Approach

Reactions in multiple vessels

Batch Approach

Large Batch ?

Page 43: Microwave Synthesis

43

Scaling-Up Microwave Synthesis

Continuous Flow Approach

Improved control of reaction conditions

More efficient mass and heat transfer

Exothermic reaction can be minimized,creating safer and more selective processes

Easy management of poorly stable intermediates

Higher flexibility

Higher safety for reactions under pressure

Page 44: Microwave Synthesis

44

Output (g/h) =Flow rate (ml/min) x Conc (mol/ml) x MW (g/mol) xYield (%) x 0,0006

From Batch to Flow

Batch: Reaction Time, Scale (Yield%)Flow: Residence Time, Output (Productivity)

Residence time (RT)RT = Reactor volume (ml) / Total Flow Rate (ml/min)

Page 45: Microwave Synthesis

45

Back Pressure Valve

Cooling Chamber

ChillerPump

MechanicalStirrer

Tubular MWReactor

FlowSYNTHContinuous-Flow Microwave Reactor

Page 46: Microwave Synthesis

46

Technical Specifications

Up to 6 L/hProductivity

2-15 minResidence time

12-100 ml/minFlow rate

Mechanical stirrer withmagnetic driven motorMixing

Stainless steel cooling jacketwith rotating PTFE coilCooling

30 bar (435 psig) with presetback pressure valveMaximum pressure

200°CMaximum temperature

250 ml (180 ml with paddlestirrer)Reactor Volume

Page 47: Microwave Synthesis

47

• TFM liner 250 ml volume (Chemical Resistant)

• Fibre Glass reinforced PEEK safety shield(Pressure Resistant)

• TFM bottom sealing with double O-ring

Components of the Reactor

Page 48: Microwave Synthesis

48

Mixing Paddle

• Stainless Steel shaft

• PTFE cooling coil

• 3 Weflon® paddle stirrers

Page 49: Microwave Synthesis

49

High-Pressure Pump

• Stainless steel headwith check valves

• PTFE membrane• Programmable speed

control• Adjustable piston run

Page 50: Microwave Synthesis

50

EasyWAVE Software

• Automatic real-time monitoring and feedback control of temperature,pressure, time, power, stirring and pump speed

• Multiple access levels with passwords

• Methods and process reports can be stored and exported

• Full documentation for quality assurance

Page 51: Microwave Synthesis

51

Application Example

Methylation Using DMC

W.-C. Shieh, S. Dell, O. Repic (Novartis Pharma), Organic Letters, 2001

NN

O

O

O O

O

NO

OO

O

NO

O

cat

H

ContinuousFlow

Batch

Conditions

97 %12 minMW

90 %16 hConventional

YieldTimeSystem

Page 52: Microwave Synthesis

52

Process Chemistry

Suzuki reaction

M. D. Bowman, J. L. Holcomb, C. M. Kormos, N. E. Leadbeater, V. A. Williams, Organic Process Research &Development, 12, 41-57, 2008

140°C

Temperature

40 ml/min

Flow rate

83 %5 min1:1.3

YieldResidence

TimeRatio

Page 53: Microwave Synthesis

53

Limitations

1. High viscosity2. Heterogeneous reaction mixtures3. Catalysts4. Precipitations during the reactions

Page 54: Microwave Synthesis

54

Large Batch Scale-Up

Page 55: Microwave Synthesis

55

1 vessel Up to 3.5 L

6 vessels

Up to 77 vessels

Up to 200 bar

UltraCLAVE

Page 56: Microwave Synthesis

56

Alkoxycarbonylation

MW, Pd(OAc)2

DBU, EtOH

I O

O

+ CO

1 mmol scale, 0.1 mol% Pd, 10 bar CO (excess CO used):

2 mmol scale, 0.1 mol% Pd, 1 bar CO (1.1 eq):

8 vessels of 32 mmol, total quantity 256 mmol, 0.1 mol% Pd, 17 bar CO (1.4 eq):

100 mmol scale, 0.1 mol% Pd, 17.2 bar CO (1.1 eq):

1 mol scale, 0.1 mol% Pd, 34 bar CO (excess CO used):

1 mol scale, 0.1 mol% Pd, 27 bar CO (1.1 eq):

91% isolated yield [Reference 5]

84% isolated yield [Reference 6]

81% isolated yield [Reference 8]

86 % isolated yield [Reference 10]

79% isolated yield

80% isolated yield

heat to 125 °C and hold for 30 min

MW, Pd(OAc)2

DBU, EtOH

I O

O

+ CO

1 mmol scale, 0.1 mol% Pd, 10 bar CO (excess CO used):

2 mmol scale, 0.1 mol% Pd, 1 bar CO (1.1 eq):

8 vessels of 32 mmol, total quantity 256 mmol, 0.1 mol% Pd, 17 bar CO (1.4 eq):

100 mmol scale, 0.1 mol% Pd, 17.2 bar CO (1.1 eq):

1 mol scale, 0.1 mol% Pd, 34 bar CO (excess CO used):

1 mol scale, 0.1 mol% Pd, 27 bar CO (1.1 eq):

91% isolated yield [Reference 5]

84% isolated yield [Reference 6]

81% isolated yield [Reference 8]

86 % isolated yield [Reference 10]

79% isolated yield

80% isolated yield

heat to 125 °C and hold for 30 min

M. Iannelli, F. Bergamelli, C. M. Kormos, S. Paravisi, N. E. Leadbeater, Org. Proc. Res. Dev., 2009, In Press.

Page 57: Microwave Synthesis

57

Alkoxycarbonylation

MW, Pd(OAc)2

DBU, EtOH

I O

O

+ CO

R R

I COMe

I I

I

OMe

I

OMe

I

99 % 99 % 99 %

97 % 94 % 91 %

M. Iannelli, F. Bergamelli, C. M. Kormos, S. Paravisi, N. E. Leadbeater, Org. Proc. Res. Dev., 2009, In Press.

Page 58: Microwave Synthesis

58

“In 10-15 years, we will see a microwavereactor in every academic and industriallaboratory.They will be the Bunsen burners of the 21stcentury.”

A.K. Bose and coll., Chemtech, 1997, 27, 18.

Conclusions

Page 59: Microwave Synthesis

59

Milestone’s Commitment

l LHelping Chemists

Research Process

Page 60: Microwave Synthesis

60

Thanks for your attention!

www.milestonesrl.com

[email protected]

ChinaChinaLabtechLabtech

Page 61: Microwave Synthesis

61