MIT Circuits and Electronics Lectures

Embed Size (px)

Citation preview

  • 8/17/2019 MIT Circuits and Electronics Lectures

    1/438

  • 8/17/2019 MIT Circuits and Electronics Lectures

    2/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    Lecturer: Prof. Anant Agarwal Textbook: Agarwal and Lang (A&L)

    Readings are important!

    Handout no. 3 Web site —

    http://web.mit.edu/6.002/www/fall00

    Assignments —

    Homework exercisesLabsQuizzesFinal exam

    ADMINISTRIVIA

  • 8/17/2019 MIT Circuits and Electronics Lectures

    3/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    Two homework assignments canbe missed (except HW11).

    Collaboration policyHomework

    You may collaborate withothers, but do your ownwrite-up.

    LabYou may work in a team oftwo, but do you own write-up.

    Info handout

    Reading for today —Chapter 1 of the book

  • 8/17/2019 MIT Circuits and Electronics Lectures

    4/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    What is engineering?

    What is 6.002 about?

    Purposeful use of science

    Gainful employment ofMaxwell’s equations

    From electrons to digital gatesand op-amps

  • 8/17/2019 MIT Circuits and Electronics Lectures

    5/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    Simple amplifier abstraction

    Instruction set abstractionPentium, MIPS 6.004

    Software systems 6.033Operating systems, Browsers

    Filters

    Operationalamplifier abstractionabstraction

    -

    +

    Digital abstraction

    Programming languages

    Java, C++, Matlab 6.001

    Combinational logic f 

    Lumped circuit abstraction

     R V C L M S+ – 

           6 .

           0       0

           2

    Nature as observed in experiments

    …0.40.30.20.1 I 

    …12963V 

    Physics laws or “abstractions” Maxwell’s

    Ohm’sV = R I 

    abstraction for

    tables of data

    Clocked digital abstraction

    Analog systemcomponents:Modulators,

    oscillators,RF amps,power supplies 6.061

    Mice, toasters, sonar, stereos, doom, space shuttle6.1706.455

  • 8/17/2019 MIT Circuits and Electronics Lectures

    6/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    Consider

    Suppose we wish to answer this question:

    What is the current through the bulb?

     I 

    ?

    The Big Jumpfrom physics

    to EECS

    Lumped Circuit Abstraction

  • 8/17/2019 MIT Circuits and Electronics Lectures

    7/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    We could do it the Hard Way…

    Apply Maxwell’s

    Differential form Integral form

    Faraday’s

    Continuity

    Others

     B E 

    ∂−=×∇

    t  J 

    ∂−=⋅∇

    0

     E ε 

    =⋅∇

    t dl E    B

    ∂−=⋅∫

      φ 

    qdS  J 

    ∂−=⋅∫

    0ε 

    qdS  E    =⋅∫

  • 8/17/2019 MIT Circuits and Electronics Lectures

    8/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    Instead, there is an Easy Way…

    First, let us build some insight:

    Analogy

    I ask you: What is the acceleration?

    You quickly ask me: What is the mass?

    I tell you:   m

    You respond:m

    F a =

    Done!!!

    a ?

  • 8/17/2019 MIT Circuits and Electronics Lectures

    9/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    Instead, there is an Easy Way…

    In doing so, you ignored the object’s shape its temperature

    its color point of force application

    Point-mass discretization

    a ?

    First, let us build some insight:

    Analogy

  • 8/17/2019 MIT Circuits and Electronics Lectures

    10/438

  • 8/17/2019 MIT Circuits and Electronics Lectures

    11/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    The Easy Way…

     A

     B

    Replace the bulb with a

    discrete resistor for the purpose of calculating the current.

     R represents the only property of interestLike with point-mass: replace objects

    with their mass m to findm

    F a =

    and R

    V  I  =

     A

     B

     R

     I +

    –V 

    In EE, we do thingsthe easy way…

  • 8/17/2019 MIT Circuits and Electronics Lectures

    12/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    The Easy Way…

     R represents the only property of interest

    and R

    V  I  =

     A

     B

     R

     I +

    –V 

    In EE, we do thingsthe easy way…

    V  I  =

    relates element v and i R

    called element v-i relationship

  • 8/17/2019 MIT Circuits and Electronics Lectures

    13/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

     R is a lumped element abstraction

    for the bulb.

  • 8/17/2019 MIT Circuits and Electronics Lectures

    14/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

     R is a lumped element abstractionfor the bulb.

    Not so fast, though …

    are definedfor the element

    V   I 

     A

     B

    black box

     AS 

     BS 

     I 

    +

    Although we will take the easy wayusing lumped abstractions for the restof this course, we must make sure (atleast the first time) that ourabstraction is reasonable. In this case,ensuring that

  • 8/17/2019 MIT Circuits and Electronics Lectures

    15/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    must be definedfor the element

    V   I 

     A

     B

    black box

     AS 

     BS 

     I 

    +

  • 8/17/2019 MIT Circuits and Electronics Lectures

    16/438

  • 8/17/2019 MIT Circuits and Electronics Lectures

    17/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    defined when ABV    0=∂

     Bφ 

    outside elementsdl E V  AB AB  ⋅= ∫

     s e e

    A  &  L

    Must also be defined.

    So let’s assume this too

    So

  • 8/17/2019 MIT Circuits and Electronics Lectures

    18/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    Lumped circuit abstraction applies when

    elements adhere to the lumped matterdiscipline.

    Lumped Matter Discipline (LMD)

    0=∂

    t  B

    φ outside

    0=∂

    qinside elementsbulb, wire, battery

    Or self imposed constraints:

    More inChapter 1of A & L

  • 8/17/2019 MIT Circuits and Electronics Lectures

    19/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    Lumped element exampleswhose behavior is completelycaptured by their V – I relationship.

    Demo only for thesorts ofquestions we

    as EEs wouldlike to ask!

    Exploding resistor democan’t predict that!

    Pickle demo

    can’t predict light, smell

    Demo 

  • 8/17/2019 MIT Circuits and Electronics Lectures

    20/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    Replace the differential equationswith simple algebra using lumped

    circuit abstraction (LCA).

    For example —

    What can we say about voltages in a loopunder the lumped matter discipline?

    + – 

    1 R

    2 R

    4 R

    5 R

    3 R

    a

    b d 

    c

    So, what does this buy us?

  • 8/17/2019 MIT Circuits and Electronics Lectures

    21/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    What can we say about voltages in a loopunder LMD?

    + – 

    1 R

    2 R

    4 R

    5 R

    3 R

    a

    b d 

    c

    t dl E    B

    ∂∂−=⋅∫

      φ  under DMD0

    Kirchhoff’s Voltage Law (KVL):

    The sum of the voltages in a loop is 0.

    ∫∫∫   =⋅+⋅+⋅bcabca

    dl E dl E dl E    0

    =+++  bcabca

      V V V    0

  • 8/17/2019 MIT Circuits and Electronics Lectures

    22/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    What can we say about currents?

    Consider

    S ca I  da I 

    ba I 

    a

  • 8/17/2019 MIT Circuits and Electronics Lectures

    23/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    What can we say about currents?

    S ca I  da I 

    ba I 

    qdS  J 

    S  ∂

    ∂−=⋅∫ under LMD

    0

    0=++  badaca   I  I  I 

    Kirchhoff’s Current Law (KCL):

    The sum of the currents into a node is 0.

    simply conservation of charge

    a

  • 8/17/2019 MIT Circuits and Electronics Lectures

    24/4386.002 Fall 2000 Lecture 1

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    KVL:0

    loop

    KCL:

    node

    =∑ j   jν 

    0=∑ j   ji

    KVL and KCL Summary

  • 8/17/2019 MIT Circuits and Electronics Lectures

    25/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 2

    6.002   CIRCUITS ANDELECTRONICS

    Basic Circuit Analysis Method(KVL and KCL method)

  • 8/17/2019 MIT Circuits and Electronics Lectures

    26/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 2

    0=∂

     Bφ 

    0=∂

    q

    Outside elements

    Inside elements

    Allows us to create the lumped circuitabstraction

    wires resistors sources

    Review

    Lumped Matter Discipline LMD:Constraints we impose on ourselves to simplifyour analysis

  • 8/17/2019 MIT Circuits and Electronics Lectures

    27/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 2

    LMD allows us to create thelumped circuit abstraction

    Lumped circuit element+

    -

    v

    i

    power consumed by element =   vi

    Review

  • 8/17/2019 MIT Circuits and Electronics Lectures

    28/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 2

    KVL:

    0

    loop

    KCL:

    node

    =∑ j   jν 

    0=∑ j   ji

    ReviewReview

    Maxwell’s equations simplify toalgebraic KVL and KCL under LMD!

  • 8/17/2019 MIT Circuits and Electronics Lectures

    29/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 2

    KVL0=++   bcabca   vvv

    0=++   badaca   iii KCLDEMO 

    1

    2 R

    4 R

    5 R

    3 R

    a

    b d 

    c

    +

     – 

    Review

  • 8/17/2019 MIT Circuits and Electronics Lectures

    30/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 2

    Method 1: Basic KVL, KCL method ofCircuit analysis

    Goal: Find all element v’s and i’s

    write element v-i relationships(from lumped circuit abstraction)

    write KCL for all nodeswrite KVL for all loops

    1.

    2.3.

    lots of unknownslots of equationslots of funsolve

  • 8/17/2019 MIT Circuits and Electronics Lectures

    31/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 2

    Method 1: Basic KVL, KCL method ofCircuit analysis

    For R,

    For voltage source,

    For current source,

    Element Relationships

     IRV  =

    0V V  =

    0 I  I  =

    3 lumped circuit elements

     R

    0V 

    o I 

    + – 

  • 8/17/2019 MIT Circuits and Electronics Lectures

    32/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 2

    KVL, KCL Example

    The Demo Circuit

    + – 

    1 R

    2

     R

    4 R

    5 R

    3 R

    a

    b d 

    c

    00   V =ν +

    1ν +–

    5ν 

    +

    3ν + –

    2ν +

    4ν +–

  • 8/17/2019 MIT Circuits and Electronics Lectures

    33/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 2

    Associated variables discipline

    ν

    i+

    -

    Element e

    Then power consumed

    by element e

    iν = is positive

    Current is taken to be positive goinginto the positive voltage terminal

  • 8/17/2019 MIT Circuits and Electronics Lectures

    34/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 2

    KVL, KCL Example

    The Demo Circuit

    + – 

    1 R

    2

     R

    4 R

    5 R

    3 R

    a

    b d 

    c

    00   V =ν +

    1ν +–

    5ν 

    +

    3ν + –

    1 L

    2 L

    4 L

    3 L2ν 

    +

    4ν +–

    2i

    1i

    0i

    5i

    3i

    4i

  • 8/17/2019 MIT Circuits and Electronics Lectures

    35/438

  • 8/17/2019 MIT Circuits and Electronics Lectures

    36/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 2

    Other Analysis MethodsMethod 2— Apply element combination rules

    B

    C

    D

    ⇔  N  R R R   +++   21

    ⇔1G 2G  N G   NGGG   ++  21

    i

    i R

    G  1=

    ⇔+ –  + –  + – 1

    V 2

    V 21

      V V  +

    1 I  2 I  21   I  I   +

    A  1 R 2 R 3 R   N  R

    Surprisingly, these rules (along with superposition, which you will learn about later) can solve the circuit on page 8

  • 8/17/2019 MIT Circuits and Electronics Lectures

    37/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 2

    Other Analysis MethodsMethod 2— Apply element combination rules

     I 

    32

    32

     R R

     R R

    +

     I 

    32

    32

    1  R R

     R R R R

    ++=

    + – 

    ?= I 

    1 R

    3 R2 R

    + – 

    + –    R

    Example

    1 R

     R

    V  I  =

  • 8/17/2019 MIT Circuits and Electronics Lectures

    38/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 2

    1.

    2.

    3.

    4.

    5.

    Select reference node ( ground)from which voltages are measured.

    Label voltages of remaining nodeswith respect to ground.These are the primary unknowns.

    Write KCL for all but the ground

    node, substituting device laws andKVL.

    Solve for node voltages.

    Back solve for branch voltages andcurrents (i.e., the secondary unknowns)

    Particular application of KVL, KCL method

    Method 3—Node analysis

  • 8/17/2019 MIT Circuits and Electronics Lectures

    39/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 2

    Example: Old Faithfulplus current source

    0V 

    1 R

    2 R

    4 R

    5 R

    3 R

        1 I 

    0V 

    + –    1e

    2e

    Step 1Step 2

  • 8/17/2019 MIT Circuits and Electronics Lectures

    40/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 2

    Example: Old Faithfulplus current source

    0)()()( 21321101   =+−+−   GeGeeGV eKCL at 1e

    0)()()( 152402312  =−+−+−  I GeGV eGee

    KCL at 2e

    for

    conveniencewrite

    i

    i R

    G  1=

    0V 

    1 R

    2 R

    4 R

    5 R

    3 R

        

    1e

    1 I 

    0V 

    + – 

    2e

    Step 3

  • 8/17/2019 MIT Circuits and Electronics Lectures

    41/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 2

    Example: Old Faithfulplus current source

    0)()()( 21321101   =+−+−   GeGeeGV e

    KCL at 1e

    0)()()( 152402312   =−+−+−   I GeGV eGeeKCL at 2l

    move constant terms to RHS & collect unknowns

    )()()( 10323211   GV GeGGGe   =−+++

    140543231   )()()(   I GV GGGeGe   +=+++−

    i

    i R

    G   1=

    2 equations, 2 unknowns Solve for e’s(compare units)

    0V 

    1 R

    2 R

    4 R

    5 R

    3

        

    1e

    1 I 

    0V 

    + – 

    2e

    Step 4

  • 8/17/2019 MIT Circuits and Electronics Lectures

    42/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 2

    In matrix form:

    ⎤⎢

    +=⎥

    ⎤⎢

    ⎡⎥

    ⎤⎢

    ++−

    −++

    104

    01

    2

    1

    5433

    3321

     I V G

    V G

    e

    e

    GGGG

    GGGG

    conductivitymatrix

    unknownnode

    voltages

    sources

    ( )( )   23543321

    104

    01

    3213

    3543

    2

    1

    GGGGGGG

     I V G

    V G

    GGGG

    GGGG

    e

    e

    −++++

    ⎥⎦

    ⎤⎢⎣

    +⎥⎦

    ⎤⎢⎣

    ++

    ++

    =⎥⎦

    ⎤⎢⎣

    Solve

    5G3G4G3G2

    3G5G2G4G2G3G2G5G1G4G1G3G1G

    1 I 0V 4G3G

    0V 1G5G4G3G

    1e

    ++++++++

    ++++=

    ( )( ) ( )( )

    5343

    2

    3524232514131

    1043210132

    GGGGGGGGGGGGGGGGG

     I V GGGGV GGe

    ++++++++

    ++++=

    (same denominator)

    Notice: linear in , , no negativesin denominator

    0V  1 I 

  • 8/17/2019 MIT Circuits and Electronics Lectures

    43/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 2

    Solve, given

    K 2.8

    1

    G

    G

    5

    1

    =⎭⎬⎫

    K 9.3

    1

    G

    G

    4

    2

    =⎭⎬⎫

    K 5.1

    1G3  =

    01 = I 

    ( ) ( )   23G5G4G3G3G2G1G

    1

     I 

    0

    4

    G

    3

    G

    2

    G

    1

    G

    0

    1

    G

    3

    G

    2e −+++++

    ++++

    =

    15.1

    1

    9.3

    1

    2.8

    1

    3G2G1G   =++=++

    12.81

    9.31

    5.11GGG 543   =++=++

    0

    2

    2   V 

    5.1

    11

    9.3

    115.1

    1

    2.8

    1

    e

    ×+×=

    02   6.0   V e   =

    If , thenV V    30 =   02   8.1   V e   =

    Check out the

    DEMO 

  • 8/17/2019 MIT Circuits and Electronics Lectures

    44/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    6.002   CIRCUITS ANDELECTRONICS

    Superposition, Thévenin and Norton

  • 8/17/2019 MIT Circuits and Electronics Lectures

    45/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    0=∑loop

    iV 

    Review

    Circuit Analysis Methods

    Circuit composition rules

    Node method – the workhorse of 6.002KCL at nodes using V ’s referencedfrom ground(KVL implicit in “ ”) ji   ee  −   G

    KVL: KCL:

    0=∑node

    i I 

    VI

  • 8/17/2019 MIT Circuits and Electronics Lectures

    46/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    Consider

    Linearity

    Write node equations –

    V  I 

    1 R

    2 R

    + – 

        

    021

    =−+−

     I  R

    e

     R

    V e

    Notice:linear in   I V e   ,,

    VI  ,eV No

    terms

    e

  • 8/17/2019 MIT Circuits and Electronics Lectures

    47/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    Consider

    Linearity

    Write node equations --

    Rearrange --

    V  I 

    1 R

    2 R

    + – 

        

    021

    =−+−

     I  R

    e

     R

    V e

     I  R

    V e R R +=⎥⎦

    ⎢⎣

    +121

    11

    e   S 

    conductance

    matrix

    node

    voltages

    linear sum

    of sources

    linear in   IV e   ,,

  • 8/17/2019 MIT Circuits and Electronics Lectures

    48/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    Linearity

    or   I  R R

     R RV 

     R R

     Re

    21

    21

    21

    2

    ++

    +=

    ……   +++++=   22112211   I b I bV aV ae

    Write node equations --

    Rearrange --

    021

    =−+−  I  Re

     RV e

     I 

     R

    V e

     R R

    +=⎥⎦

    ⎤⎢⎣

    ⎡+

    121

    11

    e   S 

    conductance

    matrix

    node

    voltages

    linear sum

    of sources

    linear in   IV e   ,,

    Linear!

  • 8/17/2019 MIT Circuits and Electronics Lectures

    49/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    LinearityHomogeneitySuperposition⇒

  • 8/17/2019 MIT Circuits and Electronics Lectures

    50/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    LinearityHomogeneitySuperposition

    Homogeneity

    1 x2

     x ...   y

    1 xα 2 xα    yα ...

  • 8/17/2019 MIT Circuits and Electronics Lectures

    51/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    LinearityHomogeneitySuperposition

    Superposition

    a x1a x2 a y... ...

    b x1b x2   b y

    ba   x x 11   +

    ba   x x 22   + ba   y y   +

    ...

  • 8/17/2019 MIT Circuits and Electronics Lectures

    52/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    LinearityHomogeneitySuperposition

    Specific superposition example:

    1V 0   1 y 02V    2 y

    01   +V 

    20   V +   21   y y   +

  • 8/17/2019 MIT Circuits and Electronics Lectures

    53/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    Method 4: Superposition method

    The output of a circuit is

    determined by summing theresponses to each sourceacting alone.

     i n d e p e n d e n

     t  s o u rc e s

     o n l y

  • 8/17/2019 MIT Circuits and Electronics Lectures

    54/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    i

    + – 

    0=V 

    +

    -

    v

    i

    short

    +

    -

    v

    i

    0= I   

    +

    -

    v

    i

    open

    +

    -

    v

  • 8/17/2019 MIT Circuits and Electronics Lectures

    55/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    Back to the exampleUse superposition method

    V  I 

    1 R

    2 R+ – 

        

    e

  • 8/17/2019 MIT Circuits and Electronics Lectures

    56/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    Back to the exampleUse superposition method

    V  acting alone

    V 0= I 

    2 R

    + – 

    e

    1 R

     I  acting alone

    0=V   I 

    1 R

    2 R     

    e

    V  R R

     ReV 

    21

    2

    +=

     I  R R

     R R

    e I  21

    21

    +=

     I  R R

     RV 

     R R

     Reee  I V 

    21

    21

    21

    2

    ++

    +=+=

    sum superposition

    Voilà !

  • 8/17/2019 MIT Circuits and Electronics Lectures

    57/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    saltwater

    output showssuperposition

    Demo

    constant

    + – 

    sinusoid

    + – 

    ?

  • 8/17/2019 MIT Circuits and Electronics Lectures

    58/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    Consider Yet another method…

    resistors

    nounits

    By setting

    0,0

    ==∀

    i I nn

    0,0

    ==∀

    iV mm

    All

    0,0

    =∀=∀

    mm

    nn

    V  I 

     

      +  –

    mV n I 

    A r b i t r a r y n e t w o r k  N 

    By superposition Ri I V v n

    nnm

    mm   ++=   ∑∑   β α 

    +

    -

    v  

    i

    i

    resistanceunits

    independent of externalexcitation and behaves like avoltage “ ”TH v

    alsoindependentof externalexcitement &behaves like

    a resistor

  • 8/17/2019 MIT Circuits and Electronics Lectures

    59/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    Ori Rvv TH TH  +=

    As far as the external world is concerned(for the purpose of I-V relation),

    “Arbitrary network N” is indistinguishable

    from:

    i+ – 

    TH  R

    TH v     

    +

    -

    v

    Théveninequivalentnetwork

    TH  R

    TH v open circuit voltageat terminal pair (a.k.a. port)

    resistance of network seenfrom port( ’s, ’s set to 0)

    mV    n I 

    N

  • 8/17/2019 MIT Circuits and Electronics Lectures

    60/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    Method 4:

    The Thévenin Method

    Replace network N with its Thévenin

    equivalent, then solve external network E.

    E

    Thévenin equivalent

    + – 

    TH  R

    TH v

    +

    -

    v

    i

    E

    + – 

    + – 

    i

    +

    -

    v

    N

  • 8/17/2019 MIT Circuits and Electronics Lectures

    61/438

  • 8/17/2019 MIT Circuits and Electronics Lectures

    62/438

  • 8/17/2019 MIT Circuits and Electronics Lectures

    63/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    Graphically,   i Rvv TH TH  +=

    i

    Open circuit( )0≡i

    TH vv   =   OC V 

    Short circuit( )0≡v   TH 

    TH 

     R

    vi  −=

      SC  I −

    v

    TH  R

    1

    TH v

    SC  I −

    OC V “ ”

  • 8/17/2019 MIT Circuits and Electronics Lectures

    64/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    Method 5:

    The Norton Method

    in recitation,see text

    + – 

    + – 

    i

    +

    -

    v

    Nortonequivalent

    TH 

    TH  N 

     R

    V  I    =

     N TH    R R   = N  I   

  • 8/17/2019 MIT Circuits and Electronics Lectures

    65/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MITenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 3

    Summary

    … 101100 …

    Discretize matterLMD LCA

    Physics EE

    R, I, V Linear networks

    Analysis methods (linear)KVL, KCL, I — VCombination rulesNode methodSuperpositionThéveninNorton

    NextNonlinear analysis

    Discretize voltage

  • 8/17/2019 MIT Circuits and Electronics Lectures

    66/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    6.002   CIRCUITS ANDELECTRONICS

    The Digital Abstraction

  • 8/17/2019 MIT Circuits and Electronics Lectures

    67/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    Review

    Discretize matter by agreeing toobserve the lumped matter discipline

    Analysis tool kit: KVL/KCL, node method,superposition, Thévenin, Norton

    (remember superposition, Thévenin,Norton apply only for linear circuits)

    Lumped Circuit Abstraction

  • 8/17/2019 MIT Circuits and Electronics Lectures

    68/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    Discretize value Digital abstraction

    Interestingly, we will see shortly that thetools learned in the previous threelectures are sufficient to analyze simpledigital circuits

    Reading: Chapter 5 of Agarwal & Lang

    Today

  • 8/17/2019 MIT Circuits and Electronics Lectures

    69/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    Analog signal processing

    But first, why digital?In the past …

    By superposition,

    The above is an “adder” circuit.

    2

    21

    11

    21

    20

      V  R R

     RV 

     R R

     RV 

    +

    +

    +

    =

    If   ,21   R R   =

    2

    210

    V V V    +=

    1V 

    1 R

    2 R+ – 

    2V  + – 

    0V 

    andmight represent the

    outputs of two

    sensors, for example.

    1V  2V 

  • 8/17/2019 MIT Circuits and Electronics Lectures

    70/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    Noise Problem

    … noise hampers our ability to distinguishbetween small differences in value —e.g. between 3.1V and 3.2V.

    Receiver:

    huh?

    add noise onthis wire

  • 8/17/2019 MIT Circuits and Electronics Lectures

    71/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    Value Discretization

    Why is this discretization useful?

    Restrict values to be one of two

    HIGH

    5V

    TRUE

    1

    LOW

    0V

    FALSE

    0

    …like two digits 0 and 1

    (Remember, numbers larger than 1 can berepresented using multiple binary digits andcoding, much like using multiple decimal digits torepresent numbers greater than 9. E.g., thebinary number 101 has decimal value 5.)

  • 8/17/2019 MIT Circuits and Electronics Lectures

    72/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    Digital System

    sender receiver

    S V 

     RV 

    noise

    S V 

    “0” “0”“1”

    0V 

    2.5V 

    5V  HIGH

    LOW

     RV 

    “0” “0”“1”

    0V 

    2.5V 

    5V 

    t

    V V  N 

      0=

     N V 

    S V 

    “0” “0”“1”

    2.5V    t

    With noiseV V 

     N   2.0=

    S V 

    “0” “0”“1”

    0V 

    2.5V 

    5V 

    0.2V 

  • 8/17/2019 MIT Circuits and Electronics Lectures

    73/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    Digital System

    Better noise immunityLots of “noise margin”

    For “1”: noise margin  5V to 2.5V = 2.5V For “0”: noise margin 0V to 2.5V = 2.5V 

  • 8/17/2019 MIT Circuits and Electronics Lectures

    74/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    Voltage Thresholdsand Logic Values

    1

    0

    1

    0

    sender receiver

    1

    0

    0V 

    2.5V 

    5V 

  • 8/17/2019 MIT Circuits and Electronics Lectures

    75/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    forbiddenregion

    VH

    V L

    3V 

    2V 

    But, but, but …

    What about 2.5V?

    Hmmm… create “no man’s land”

    or forbidden region

    For example,

    sender receiver

    0V 

    5V 

    1 1

    0 0

    “1” V 5V

    “0” 0V V

    H

    L

  • 8/17/2019 MIT Circuits and Electronics Lectures

    76/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    sender receiver

    But, but, but …Where’s the noise margin?

    What if the sender sent 1: ?VHHold the sender to tougher standards!

    5V

    0V

    11

    00

    V

    0H

    V0L

    VIH

    VIL

  • 8/17/2019 MIT Circuits and Electronics Lectures

    77/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    sender receiver

    5V

    0V

    VH

    But, but, but …Where’s the noise margin?

    What if the sender sent 1: ?

    Hold the sender to tougher standards!

    “1” noise margin:

    “0” noise margin:

    VIH

    - V0H

    VIL

    - V0L

    1 1

    00

    V0H

    V0L

    VIH

    V

    IL

    Noise margins

  • 8/17/2019 MIT Circuits and Electronics Lectures

    78/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    Digital systems follow static discipline: ifinputs to the digital system meet valid inputthresholds, then the system guarantees itsoutputs will meet valid output thresholds.

    sender

    receiver

    0 1 0 1

    5VV

    0H

    V0L

    0V

    VIHV

    IL

    0 1 0 1

    5VV

    0H

    V0L

    0V

    VIH

    VIL

  • 8/17/2019 MIT Circuits and Electronics Lectures

    79/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    Processing digital signals

    Recall, we have only two values —

    Map naturally to logic: T, F

    Can also represent numbers

    1,0

  • 8/17/2019 MIT Circuits and Electronics Lectures

    80/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    Processing digital signalsBoolean Logic

    If X is true and  Y is trueThen Z is true else Z is false.

    Z = X AND YX, Y, Z

    are digital signals“0” , “1”

    Z = X • YBoolean equation

    Enumerate all input combinations

    Truth table representation:

    ZX Y

    AND gateZX

    Y

    0 0 0

    0 1 01 0 0

    1 1 1

  • 8/17/2019 MIT Circuits and Electronics Lectures

    81/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    Adheres to static discipline Outputs are a function of

    inputs alone.

    Combinational gateabstraction

    Digital logic designers do not

    have to care about what is

    inside a gate.

  • 8/17/2019 MIT Circuits and Electronics Lectures

    82/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    Demo

    Noise

    ZXY

    Z = X • Y

    Z

    Y

    X

  • 8/17/2019 MIT Circuits and Electronics Lectures

    83/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    Z = X • Y

    Examples for recitation

    X

    Y

    Z

  • 8/17/2019 MIT Circuits and Electronics Lectures

    84/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    In recitation…

    Another example of a gateIf (A is true) OR (B is true)

    then C is true

    else C is false

    C = A + B Boolean equation

    OR

    OR gate

    CA

    B

    ZX

    Y NAND

    Z = X • Y

    More gates

    B B

    Inverter

  • 8/17/2019 MIT Circuits and Electronics Lectures

    85/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 4

    Boolean Identities

    AB + AC = A • (B + C)

    X • 1 = XX • 0 = XX + 1 = 1X + 0 = X

    1 = 0

    0 = 1

    output

    BC B • C

    A

    Digital Circuits

    Implement: output = A + B • C

  • 8/17/2019 MIT Circuits and Electronics Lectures

    86/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 5

    6.002   CIRCUITS ANDELECTRONICS

    Inside the Digital Gate

  • 8/17/2019 MIT Circuits and Electronics Lectures

    87/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 5

    Review

    Discretize value 0, 1

    Static disciplinemeet voltage thresholds

    Specifies how gates must be designed

    sender receiver

    forbiddenregion

    OLV 

    OH V 

     ILV 

     IH V 

    The Digital Abstraction

  • 8/17/2019 MIT Circuits and Electronics Lectures

    88/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 5

    Review

    C  A B

    0 0 10 1 11 0 11 1 0

     A

     B  C 

    NAND

    Combinational gate abstractionoutputs function of input alonesatisfies static discipline

  • 8/17/2019 MIT Circuits and Electronics Lectures

    89/438

  • 8/17/2019 MIT Circuits and Electronics Lectures

    90/438

  • 8/17/2019 MIT Circuits and Electronics Lectures

    91/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 5

    How to build a digital gate

    C

    B

    A

    OR gate

  • 8/17/2019 MIT Circuits and Electronics Lectures

    92/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 5

    Electrical Analogy

    + – 

    Bulb C is ON if A AND B are ON,else C is off

    Key: “switch” device

     A   BC 

  • 8/17/2019 MIT Circuits and Electronics Lectures

    93/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 5

    Electrical Analogy

    Key: “switch” device

    in

    out

    control

    3-Terminal deviceif C = 0

    short circuit between in and outelse

    open circuit between in and out

    For mechanical switch,control mechanical pressure

    in

    out

    1=C 

    equivalent ck

    0=C 

    in

    out

  • 8/17/2019 MIT Circuits and Electronics Lectures

    94/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 5

    Consider

    =S 

    V  “1”

    + –    S V 

     L R

     IN 

    OUT 

    OUT V 

    S V 

    0=C 

    OUT V 

    S V 

    1=C 

    OUT V 

    S V 

     L R

    OUT V 

    Truth table for

    0 1

    1 0

    OUT V 

  • 8/17/2019 MIT Circuits and Electronics Lectures

    95/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 5

    What about?Truth table for

    OV 2c

    0 0 10 1 11 0 1

    1 1 0

    1c

    Truth table for

    OV 2c

    0 0 1

    0 1 01 0 01 1 0

    1c

    S V 

    OUT V 

    1c

    2c

    S V 

    OUT V 

    1c 2c

  • 8/17/2019 MIT Circuits and Electronics Lectures

    96/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 5

    What about?

    can also build compound gates

    S V 

     D

     A

     B

    C  ( )   C  B A D   +⋅=

  • 8/17/2019 MIT Circuits and Electronics Lectures

    97/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 5

    The MOSFET DeviceMetal-OxideSemiconductorField-EffectTransistor

    3 terminal lumped elementbehaves like a switch

    : control terminal: behave in a symmetricmanner (for our needs)

    G

    S  D,

    gate≡

    source

     D

    G

    drain

  • 8/17/2019 MIT Circuits and Electronics Lectures

    98/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 5

    The MOSFET Device

    Understand its operation by viewing it

    as a two-port element —

    “Switch” model (S model) of the MOSFET

     D

    Gi

    G

    GS v+

     – 

     DS v

     DS i +

     – 

    Ch ec k  o u t

    th e  t e x t b

     o o k

    f o r  i t s  i n

     t e r n a l

    s t r uc t u r

     e.

    T GS   V v   <

    T GS   V v   ≥

    V V T  1≈ typically

    onG

     D

     DS i

    G off

     D

  • 8/17/2019 MIT Circuits and Electronics Lectures

    99/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 5

    Check the MOS deviceon a scope.

    Demo

    GS v+

     – 

     DS v

     DS i

    +

     – 

    T GS   V v   ≥

     DS i

     DS v

    T GS   V v   <

     DS i

     DS vvs

  • 8/17/2019 MIT Circuits and Electronics Lectures

    100/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 5

    A MOSFET Inverter

    S V 

     L R

     A   IN 

     B

     A   B

    V 5=

    Note the power of abstraction.

    The abstract inverter gate representationhides the internal details such as powersupply connections, , , etc.

    (When we build digital circuits, theand are common across all gates!)

     L R GND

    vOUT 

  • 8/17/2019 MIT Circuits and Electronics Lectures

    101/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 5

    The T1000 model laptop desires gates that satisfythe static discipline with voltage thresholds. Doesout inverter qualify?

     IN v

    OUT v

    OUT v

     IN v

    5V

    5V

    0V=1VT V 

    = 0.5VOL

    = 4.5VOH V 

    = 0.9V IL

    = 4.1V IH V 

    Our inverter satisfies this.

    receiver

    OLV 

    OH V 

     ILV 

     IH V 

    54.5

    0.5

    0

    sender

    5

    4.1

    0.9

    0

    1:

    0:

    1

    0

    Example

  • 8/17/2019 MIT Circuits and Electronics Lectures

    102/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 5

    E.g.:

    Does our inverter satisfy the staticdiscipline for these thresholds:

    = 0.2VOL

    = 4.8VOH V 

    = 0.5V IL

    = 4.5V IH V 

    = 0.5VOL

    = 4.5VOH V 

    = 1.5V IL

    = 3.5V IH V 

     yes

    no

    x

  • 8/17/2019 MIT Circuits and Electronics Lectures

    103/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 5

    Switch resistor (SR) modelof MOSFET 

    …more accurate MOS model

     D

    G

     D

    S T GS 

      V v   <

    G

    T GS   V v   ≥

    ON  R

     D

    G

    e.g.   Ω=   K  RON 

    5

  • 8/17/2019 MIT Circuits and Electronics Lectures

    104/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 5

    SR Model of MOSFET 

    MOSFET S model

    T GS   V v   ≥

    T GS   V v   <

     DS i

     DS v

    MOSFET SR model

    T GS    V v   ≥

    T GS   V v   <

     DS i

     DS v

    ON  R

    1

     D

    G

     D

    S T GS 

      V v   <

    G

    T GS   V v   ≥

    ON  R

     D

    G

  • 8/17/2019 MIT Circuits and Electronics Lectures

    105/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 5

    Using the SR model

    =S 

    V  “1”

    + –    S V 

     L R

     IN 

    OUT 

    OUT v

    S V 

    0=C 

    OUT v

    S V 

    1=C OUT 

    v

    S V 

     L R

    OUT v

    Truth table for

    0 11 0

    OUT V 

    T GS   V v   ≥

    ON  R

    ON  R

    OLV 

     L R

    ON  R

    ON  R

    S V 

    OUT v   ≤

    +=

     L R

     L R Choose RL, RON, VS such that:

  • 8/17/2019 MIT Circuits and Electronics Lectures

    106/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 6

    6.002   CIRCUITS ANDELECTRONICS

    Nonlinear Analysis

  • 8/17/2019 MIT Circuits and Electronics Lectures

    107/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 6

    Discretize matter LCA

    m1   KVL, KCL, i-v

    m2 Composition rules

    m3

    Node methodm4 Superposition

    m5 Thévenin, Norton

    anycircuit

    linearcircuits

    Review

  • 8/17/2019 MIT Circuits and Electronics Lectures

    108/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 6

    Discretize value

    Digital abstraction Subcircuits for given “switch”

    setting are linear! So, all 5methods (m1 – m5) can be

    applied

    1

    1

    =

    =

     B

     A

     B

    S V 

     L R

    S V 

     L R

    ON  R ON  R

    SR MOSFET Model

    Review

  • 8/17/2019 MIT Circuits and Electronics Lectures

    109/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 6

    Today

    Nonlinear Analysis

    Analytical methodbased on m1, m2, m3

    Graphical method

    Introduction to incremental analysis

  • 8/17/2019 MIT Circuits and Electronics Lectures

    110/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 6

    How do we analyze nonlinearcircuits, for example:

     Dv+   -

     D

     Di

     Dv

     Di

    0,0

     Dbv

     D   aei   =

    a

     Dv+

    -V    +

     – 

    Hypotheticanonlineardevice D

     Di

    (Expo Dweeb ☺)

    (Curiously, the device supplies power when v D  is negative)

  • 8/17/2019 MIT Circuits and Electronics Lectures

    111/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 6

    Method 1: Analytical Method

    Using the node method,(remember the node method applies for linear ornonlinear circuits)

     Dbv

     D   aei   = 2

    0=+−

     D D i

     R

    V v1

    2 unknowns 2 equations

    Solve the equation by trial and error numerical methods

  • 8/17/2019 MIT Circuits and Electronics Lectures

    112/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 6

    Method 2: Graphical Method

    Notice: the solution satisfies equations

    and 21

     Dv

     Di

    a

     Dbv D   aei   =2

     Dv

     Di 1  R

    v

     R

    V i   D D   −=

     R

     R

    slope  1−=

  • 8/17/2019 MIT Circuits and Electronics Lectures

    113/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 6

    Combine the two constraints

    1

    4

    1

    1

    1

    =

    =

    =

    =

    b

    a

     R

    V e.g.

     Ai

    V v

     D

     D

    4.0

    5.0

    =

    =

     Dv

     Di

    5.0~

    4.0~

     R

    V 1

    1

    called “loadline”for reasons youwill see later

  • 8/17/2019 MIT Circuits and Electronics Lectures

    114/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 6

    Method 3: Incremental AnalysisMotivation: music over a light beam

    Can we pull this off?

    LED: LightEmittingexpoDweep ☺

     Dv+

    -

    )(t I + – 

     Di

    LED Ri

    AMP

    light intensity  I  Rin photoreceiver

     R R   I i   ∝

    light

    intensity D D   i I    ∝

     I v

    music signal

    )(t v I  light sound)(t i R)(t i D

    nonlinearlinear

    problem! will result in distortion

  • 8/17/2019 MIT Circuits and Electronics Lectures

    115/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 6

    Problem:The LED is nonlinear distortion

     I  D   vv   = Dv

     Di

     vD

     t  

     Di v D

     Di

  • 8/17/2019 MIT Circuits and Electronics Lectures

    116/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 6

    If only it were linear …

     vD

     t  

     Di

     Dv

     Di

    it would’ve been ok.

    What do we do?

    Zen is the answer

    … next lecture!

  • 8/17/2019 MIT Circuits and Electronics Lectures

    117/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 7

    6.002   CIRCUITS ANDELECTRONICS

    Incremental Analysis

  • 8/17/2019 MIT Circuits and Electronics Lectures

    118/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 7

    Nonlinear Analysis

    Analytical method

    Graphical method

    Today

    Incremental analysis

    Reading: Section 4.5

    Review

  • 8/17/2019 MIT Circuits and Electronics Lectures

    119/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 7

    Method 3: Incremental AnalysisMotivation: music over a light beam

    Can we pull this off?

    LED: Light

    EmittingexpoDweep ☺

     Dv+

    -

    )(t I + – 

     Di

    LED

     Ri

    AMP

    light intensity I  Rin photoreceiver

     R R   I i   ∝

    light

    intensity D D   i I    ∝

     I v

    music signal

    )(t v I 

    light sound)(t i R

    )(t i D

    nonlinearlinear

    problem! will result in distortion

  • 8/17/2019 MIT Circuits and Electronics Lectures

    120/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 7

    Problem:The LED is nonlinear distortion

     I  D   vv   = Dv

     Di

     vD

     t  

     Di v D

     Di

  • 8/17/2019 MIT Circuits and Electronics Lectures

    121/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 7

    Insight:

     D

    v

     Di

     D I 

     DV 

    DC offsetor DC bias

    Trick:

    d  D D   i I i   +=

     I V 

     Dv+

    -

    )(t vi+ – 

    LED+ – 

     I v

    d  D D   vV v   +=

     I V  iv

    small regionlooks linear(about V  D , I  D)

  • 8/17/2019 MIT Circuits and Electronics Lectures

    122/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 7

    Result

     v d  very small

     Di

     Dv

    d i

     D I 

     DV 

  • 8/17/2019 MIT Circuits and Electronics Lectures

    123/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 7

    Result

     Dv DV 

     I  D   vv   =

     D I 

     Di

    ~linear!

    Demo

    d v

    d i Di

  • 8/17/2019 MIT Circuits and Electronics Lectures

    124/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 7

    total

    variable

    DC

    offset

    small

    superimposedsignal

    The incremental method:(or small signal method)

    1. Operate at some DC offsetor bias point V  D, I  D .

    2. Superimpose small signal vd (music) on top of V  D .

    3. Response id  to small signal vd is approximately linear.

    Notation:

    d  D D   i I i   +=

  • 8/17/2019 MIT Circuits and Electronics Lectures

    125/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 7

    ( ) D D   v f i   =

    What does this meanmathematically?Or, why is the small signal responselinear?

    We replaced

     D D D

      vV v   Δ+=

    using Taylor’s Expansion to expand f(v D) near v D=V  D :

    ( )   DV v D

     D D D   v

    dv

    vdf V  f i

     D D

    Δ⋅+=

    =

    )(

    +Δ⋅+

    =

    2

    2

    2 )(

    !2

    1 D

    V v D

     D v

    dv

    v f d 

     D D

    large DC

    incrementabout V  D

    nonlinear

    d v

    neglect higher order terms

    because is small DvΔ

  • 8/17/2019 MIT Circuits and Electronics Lectures

    126/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 7

    ( )   DV v D

     D D D   v

    vd 

    v f d V  f i

     D D

    Δ⋅+≈

    =

    )(

    equating DC and time-varying parts,

     D

    V v D

     D D   v

    vd 

    v f d i

     D D

    Δ⋅=Δ

    =

    )(

    constantw.r.t. Δv D

    constant w.r.t. Δv Dslope at V  D, I  D

    ( ) D D  V  f  I    =

    operating point

    constant w.r.t.Δ

    v D

    X :

    We can write

    ( )   DV v D

     D D D D   vvd 

    v f d V  f i I 

     D D

    Δ⋅+≈Δ+=

    )(

    so, D D   vi   Δ∝Δ

    By notation,

    d  D   ii   =Δ

    d  D   vv   =Δ

  • 8/17/2019 MIT Circuits and Electronics Lectures

    127/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 7

    Equate DC and incremental terms,

     Dbv

     D   eai   =

    In our example,

    From X : d bV bV 

    d  D   vbeaeai I    D D ⋅⋅

    constant

    +≈+

     DbV 

     D   ea I    =

    bV 

    d    vbeai  D ⋅⋅=

    operating point

    d  Dd    vb I i  ⋅⋅=

    small signalbehaviorlinear!

    aka bias pt.aka DC offset

  • 8/17/2019 MIT Circuits and Electronics Lectures

    128/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 Fall 2000 Lecture 7

     DbV 

     D   ea I    = operating point

    d  Dd    vb I i   ⋅⋅=

     Dv

     Di

     D I 

     DV 

    slope at

    V  D, I  D

    operating

    point

    we areapproximatingA with B

    A

    B

    d v

    d i

    Graphical interpretation

  • 8/17/2019 MIT Circuits and Electronics Lectures

    129/438

  • 8/17/2019 MIT Circuits and Electronics Lectures

    130/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    6.002   CIRCUITS ANDELECTRONICS

    Dependent Sources

    and Amplifiers

  • 8/17/2019 MIT Circuits and Electronics Lectures

    131/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    Nonlinear circuits — can use thenode method

    Small signal trick resulted in linearresponse

    Today

    Dependent sources

    Reading: Chapter 7.1, 7.2

    Review

    Amplifiers

  • 8/17/2019 MIT Circuits and Electronics Lectures

    132/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    Dependent sources

    +   – v

    i

    vi  =Resistor

    2-terminal 1-port devices

    +   – v

    i  i  = I 

    IndependentCurrent source

    Seen previously

    controlport

    outputport

     I i

    v

    Oi

    Ov

    +

     – 

    +

     – 

    New type of device: Dependent source

    2-port device

    E.g., Voltage Controlled Current SourceCurrent at output port is a function of voltageat the input port

     )v(  f    I 

  • 8/17/2019 MIT Circuits and Electronics Lectures

    133/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    Dependent Sources: Examples

    independentcurrentsource

    Example 1: Find V

    0=

    +

     – V 

    V 0

    =

  • 8/17/2019 MIT Circuits and Electronics Lectures

    134/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    voltagecontroledcurrent

    source

    Example 2: Find V

    ( ) V  K 

    V  f  I    ==

    +

     – V 

     I i

    v

    Oi

    Ov

    +

     – 

    +

     – 

    +

     – V 

    ( ) I 

     I v

     K v f    =

    Dependent Sources: Examples

  • 8/17/2019 MIT Circuits and Electronics Lectures

    135/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    voltagecontroledcurrentsource

     RV 

     K  IRV    ==

     KRV    =2

     KRV   =33

    1010   ⋅=  −

    Volt 1=

    oror

    Example 2: Find V

    ( ) V  K 

    V  f  I    ==

    +

     – V 

    e.g. K = 10-3 Amp·Volt  R = 1k Ω

    Dependent Sources: Examples

  • 8/17/2019 MIT Circuits and Electronics Lectures

    136/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    Another dependent source example

     I v  + – 

    ( ) IN  D   v f i   =

     L

    + – S 

    e.g. ( ) N  D   v f i   =

    ( )2 IN    1v2

     K −= for v IN ≥  1

     IN i

     IN v

     Di

    Ov

    +

     – 

    +

     – 

    otherwise0i D   =

    Find vO as a function of v I .

  • 8/17/2019 MIT Circuits and Electronics Lectures

    137/438

  • 8/17/2019 MIT Circuits and Electronics Lectures

    138/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    Another dependent source example

    Find vO as a function of v I .

     I v   + – 

     I v

    S V 

    Ov

     L

    ( )2 IN  D   1v2

     K i   −= for v IN ≥  1

    otherwise0i D   =

  • 8/17/2019 MIT Circuits and Electronics Lectures

    139/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    Another dependent source example

    0=++− O L DS    viV 

    KVL

     L DS O   iV v   −=

    ( )   L I S O   Rv K 

    V v  2

    12

    −−= for v I ≥  1

    S O   V v   = for v I < 1

     I v   + – 

     I v

    S V 

    Ov

     L

    ( )2 IN  D   1v2

     K i   −= for v IN ≥  1

    otherwise0i D   =

    Hold that thought

  • 8/17/2019 MIT Circuits and Electronics Lectures

    140/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    Next, Amplifiers

  • 8/17/2019 MIT Circuits and Electronics Lectures

    141/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    Why amplify?Signal amplification key to both analogand digital processing.

    Analog:

    Besides the obvious advantages of being

    heard farther away, amplification is keyto noise tolerance during communcation

     AMP IN OUT 

    InputPort

    OutputPort

  • 8/17/2019 MIT Circuits and Electronics Lectures

    142/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    Why amplify?

    Amplification is key to noise toleranceduring communcation

    usefulsignal

    huh?

    1 mV   n o i

     s e10 mV 

    No amplification

  • 8/17/2019 MIT Circuits and Electronics Lectures

    143/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

     AMP

    Try amplification

    not bad!

     n o i s e

  • 8/17/2019 MIT Circuits and Electronics Lectures

    144/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    Why amplify?

    Digital:

     IN    OUT 

    Digital System

     LV  IH V 

    5V 

    0V   OLV 

    OH V 5V 

    0V 

    5V 

    0V 

     ILV 

     IH V 

     IN    OUT 

    5V 

    0V OL

    OH V 

    Valid region

  • 8/17/2019 MIT Circuits and Electronics Lectures

    145/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    Why amplify?

    Digital:

    Static discipline requires amplification!

    Minimum amplification needed:

     ILV  H V 

    OLV 

    OH V 

     L IH 

    OLOH 

    V V 

    V V 

  • 8/17/2019 MIT Circuits and Electronics Lectures

    146/438

  • 8/17/2019 MIT Circuits and Electronics Lectures

    147/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    Remember?

    0=++− O L DS    viV 

    KVL

     L DS O   iV v   −=

    ( )   L I S O   Rv K 

    V v  2

    12

    −−= for v I ≥  1

    S O   V v   = for v I < 1

    Claim: This is an amplifier

     I v   + – 

     I v

    S V 

    Ov

     L

    ( )2 IN  D   1v2

     K i   −= for v IN ≥  1

    otherwise0i D   =

  • 8/17/2019 MIT Circuits and Electronics Lectures

    148/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    So, where’s the amplification?

    Let’s look at the vO versus v I  curve.

    amplification1>Δ

    Δ O

    v

    v

    Ω===   k 5 R ,

    mA2 K  ,V 10V   L2S e.g.

    OvΔ

    ( )212

    −−=  I  LS O   v R K 

    V v

    ( )21510   −−=  I O   vv

    ( )233 1105102

    210   −⋅⋅⋅−=

      −

     I v

    1  I v

    S V 

    Ov

  • 8/17/2019 MIT Circuits and Electronics Lectures

    149/438

  • 8/17/2019 MIT Circuits and Electronics Lectures

    150/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    One nit …

    1 I v

    Ov

    Mathematically,

    ( )212

    −−=  I  LS O   v R K V v

    Whathappenshere?

    So is mathematically predicted behavior

  • 8/17/2019 MIT Circuits and Electronics Lectures

    151/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    One nit …

     Di

    S V 

    Ov L

    VCCS 

    1 I v

    Ov

    For vO>0, VCCS  consumes power: vO i DFor vO

  • 8/17/2019 MIT Circuits and Electronics Lectures

    152/438

    e as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT

    enCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY

    6.002 – Fall 2002: Lecture 8

    If VCCS is a device that can sourcepower, then the mathematicallypredicted behavior will be observed —

    ( )212

    −−=  I  LS O   v R K 

    V vi.e.

    where vO goes -vev

    Ov