Mit Convolution

Embed Size (px)

Citation preview

  • 7/27/2019 Mit Convolution

    1/76

    6.003: Signals and Systems Convolution

    March2,2010

  • 7/27/2019 Mit Convolution

    2/76

    Mid-term Examination #1 Tomorrow,Wednesday,March3,No recitations tomorrow.Coverage: RepresentationsofCTandDTSystems

    Lectures17Recitations18Homeworks14

    Homework4willnotcollectedorgraded. Solutionsareposted. Closedbook: 1pageofnotes (81

    211 inches; frontandback).

    Designedas1-hourexam; twohours tocomplete.

    7:30-9:30pm.

  • 7/27/2019 Mit Convolution

    3/76

    Multiple Representations of CT and DT Systems

    Verbaldescriptions:

    preserve

    the

    rationale.

    Difference/differential equations: mathematicallycompact.

    y[n] = x[n] + z0y[n1] y(t) = x(t) + s0y(t)Block diagrams: illustrate signalflowpaths.

    X + Y XR

    A Y+s0z0

    Operator representations: analyze systemsaspolynomials.Y 1 Y A= =X 1z0R X 1s0A

    Transforms: representingdiff. equationswithalgebraicequations. z 1H(z) = H(s) = zz0 ss0

  • 7/27/2019 Mit Convolution

    4/76

    Convolution Representinga systembya single signal.

  • 7/27/2019 Mit Convolution

    5/76

    Responses to arbitrary signals Althoughwehave focusedon responses to simple signals ([n], (t))wearegenerallyinterestedinresponsestomorecomplicatedsignals.Howdowecomputeresponsestoamorecomplicated inputsignals?Noproblem fordifferenceequations/blockdiagrams.use step-by-stepanalysis.

  • 7/27/2019 Mit Convolution

    6/76

    Check Yourself

    Example: Find y[3]+ +

    R RX Y

    when the input isx[n]

    n1. 1 2. 2 3. 3 4. 4 5. 5

    0. noneof theabove

  • 7/27/2019 Mit Convolution

    7/76

    Responses to arbitrary signals Example.

    + +R

    R

    0

    0 00

    x[n] y[n] n n

  • 7/27/2019 Mit Convolution

    8/76

    Responses to arbitrary signals Example.

    + +R

    R

    1

    0 01

    x[n] y[n] n n

  • 7/27/2019 Mit Convolution

    9/76

    Responses to arbitrary signals Example.

    + +R

    R

    1

    1 02

    x[n]n

    y[n]n

  • 7/27/2019 Mit Convolution

    10/76

    Responses to arbitrary signals Example.

    + +R

    R

    1

    1 13

    x[n]n

    y[n]n

  • 7/27/2019 Mit Convolution

    11/76

    Responses to arbitrary signals Example.

    + +R

    R

    0

    1 12

    x[n]n

    y[n]n

  • 7/27/2019 Mit Convolution

    12/76

    Responses to arbitrary signals Example.

    + +R

    R

    0

    0 11

    x[n]n

    y[n]n

  • 7/27/2019 Mit Convolution

    13/76

    Responses to arbitrary signals Example.

    + +R

    R

    0

    0 00

    x[n]n

    y[n]n

  • 7/27/2019 Mit Convolution

    14/76

  • 7/27/2019 Mit Convolution

    15/76

    Alternative: Superposition Break input intoadditivepartsand sum the responses to theparts.

    x[n]n y[n]n= n

    ++

    ++=

    n1 0 1 2 3 4 5 n

    n

    n

    n1 0 1 2 3 4 5

  • 7/27/2019 Mit Convolution

    16/76

    Superposition Break input intoadditivepartsand sum the responses to theparts.

    x[n]n y[n]n= n

    ++

    ++=

    n1 0 1 2 3 4 5 n

    n

    n

    n1 0 1 2 3 4 5

    Superpositionworks if the system is linear.

  • 7/27/2019 Mit Convolution

    17/76

    Linearity Asystem is linear if itsresponsetoaweightedsumof inputs isequalto theweighted sumof its responses toeachof the inputs.Given

    system y1[n]x1[n] and

    systemx

    2[n

    ] y

    2[n

    ]

    the system is linear if x1[n] + x2[n] y1[n] + y2[n]system

    is true forall and .

  • 7/27/2019 Mit Convolution

    18/76

    Superposition Break input intoadditivepartsand sum the responses to theparts.

    x[n]n y[n]n= n

    ++

    ++=

    n1 0 1 2 3 4 5 n

    n

    n

    n1 0 1 2 3 4 5

    Superpositionworks if the system is linear.

  • 7/27/2019 Mit Convolution

    19/76

    Superposition Break input intoadditivepartsand sum the responses to theparts.

    x[n]n y[n]n= n

    ++

    ++=

    n1 0 1 2 3 4 5 n

    n

    n

    n1 0 1 2 3 4 5

    Reponses topartsareeasy tocompute if system istime-invariant.

  • 7/27/2019 Mit Convolution

    20/76

    Time-Invariance Asystem istime-invariant ifdelayingthe inputtothesystemsimplydelays theoutputby the sameamountof time.Given

    x[n] system y[n]the system is time invariant if

    x[nn0] system y[nn0]is true forall n0.

    S iti

  • 7/27/2019 Mit Convolution

    21/76

    Superposition Break input intoadditivepartsand sum the responses to theparts.

    x[n]n y[n]n= n

    ++

    ++=

    n1 0 1 2 3 4 5 n

    n

    n

    n1 0 1 2 3 4 5

    Superposition iseasy if the system is linearand time-invariant.

  • 7/27/2019 Mit Convolution

    22/76

    Convolution

  • 7/27/2019 Mit Convolution

    23/76

    Convolution ResponseofanLTI system toanarbitrary input.

    x[n] LTI y[n]

    y[n] = x[k]h[nk](xh)[n]k=

    Thisoperation iscalledconvolution.

    Notation

  • 7/27/2019 Mit Convolution

    24/76

    Notation Convolution is representedwithanasterisk.

    x[k]h[nk](xh)[n]

    k=It iscustomary (butconfusing) toabbreviate thisnotation:

    (xh)[n] = x[n]h[n]

  • 7/27/2019 Mit Convolution

    25/76

    Structure of Convolution

  • 7/27/2019 Mit Convolution

    26/76

    Structure of Convolution

    y[n] = x[k]h[nk]

    k=x[n] h[n]

    n n

    21 0 1 2 3 4 5 21 0 1 2 3 4 5

    Structure of Convolution

  • 7/27/2019 Mit Convolution

    27/76

    Structure of Convolution

    y[0] = x[k]h[0k]

    k=x[n] h[n]

    n n

    21 0 1 2 3 4 5 21 0 1 2 3 4 5

    Structure of Convolution

  • 7/27/2019 Mit Convolution

    28/76

    Structure of Convolution

    y[0] = x[k]h[0k]

    k=x[k] h[k]

    k k

    21 0 1 2 3 4 5 21 0 1 2 3 4 5

    Structure of Convolution

  • 7/27/2019 Mit Convolution

    29/76

    Structure of Convolution

    y[0] = x[k]h[0k]

    k=x[k] flip h[k]

    k k

    21 0 1 2 3 4 5 21 0 1 2 3 4 5h[k]

    k21 0 1 2 3 4 5

    Structure of Convolution

  • 7/27/2019 Mit Convolution

    30/76

    Structure of Convolution

    y[0] = x[k]h[0k]

    k=x[k] shift h[k]

    k k

    21 0 1 2 3 4 5 21 0 1 2 3 4 5h[0k]

    k21 0 1 2 3 4 5

  • 7/27/2019 Mit Convolution

    31/76

    Structure of Convolution

  • 7/27/2019 Mit Convolution

    32/76

    y[0]= x[k]h[0k] k=

    x[k] multiply h[k]

    k k21 0 1 2 3 4 5

    h[0k] h[0k]k k

    21 0 1 2 3 4 5x[k]h[0k]

    k21 0 1 2 3 4 5

    Structure of Convolution

  • 7/27/2019 Mit Convolution

    33/76

    y[0]= k=

    x[k]h[0k]

    x[k] sum h[k]

    h[0k] h[0k]k

    k

    k k21 0 1 2 3 4 5

    x[k]h[0k]

    kk=21 0 1 2 3 4 5

    Structure of Convolution

  • 7/27/2019 Mit Convolution

    34/76

    y[0] = k=

    x[k]h[0k]

    x[k] h[k]

    h[0k] h[0k]k

    k

    k k21 0 1 2 3 4 5

    x[k]h[0k]

    k = 1 k=21 0 1 2 3 4 5

    Structure of Convolution

  • 7/27/2019 Mit Convolution

    35/76

    y[1] = k=

    x[k]h[1k]

    x[k] h[k]

    h[1k] h[1k]k

    k

    k k21 0 1 2 3 4 5

    x[k]h[1k]

    k = 2 k=21 0 1 2 3 4 5

    Structure of Convolution

  • 7/27/2019 Mit Convolution

    36/76

    y[2] = k=

    x[k]h[2k]

    x[k] h[k]

    h[2k] h[2k]k

    k

    k k21 0 1 2 3 4 5

    x[k]h[2k]

    k = 3 k=21 0 1 2 3 4 5

    Structure of Convolution

  • 7/27/2019 Mit Convolution

    37/76

    y[3] = k=

    x[k]h[3k]

    x[k] h[k]

    h[3k] h[3k]k

    k

    k k21 0 1 2 3 4 5

    x[k]h[3k]

    k = 2 k=21 0 1 2 3 4 5

    Structure of Convolution

  • 7/27/2019 Mit Convolution

    38/76

    y[4] = k=

    x[k]h[4k]

    x[k] h[k]

    h[4k] h[4k]k

    k

    k k21 0 1 2 3 4 5

    x[k]h[4k]

    k = 1 k=21 0 1 2 3 4 5

    Structure of Convolution

  • 7/27/2019 Mit Convolution

    39/76

    y[5] = k=

    x[k]h[5k]

    x[k] h[k]

    h[5k] h[5k]k

    k

    k k21 0 1 2 3 4 5

    x[k]h[5k]

    k = 0 k=21 0 1 2 3 4 5

    Check Yourself

  • 7/27/2019 Mit Convolution

    40/76

    Which

    plot

    shows

    the

    result

    of

    the

    convolution

    above?

    1. 2.

    3. 4.5. noneof theabove

    Check Yourself

  • 7/27/2019 Mit Convolution

    41/76

    Expressmathematically: n n k nk2 2 2 2

    u[n] u[n] = u[k] u[nk]3 3 3 3k=

    n

    k nk

    2 2=

    3 3k=0n n 2 n 2 n

    = = 13 3

    k=0 k=0 2 n

    = (n + 1) u[n]3 4 4 32 80

    = 1,3

    ,3

    ,27, 81 , . . .

    Check Yourself

  • 7/27/2019 Mit Convolution

    42/76

    Which

    plot

    shows

    the

    result

    of

    the

    convolution

    above?

    3

    1. 2.

    3. 4.5. noneof theabove

  • 7/27/2019 Mit Convolution

    43/76

    CT Convolution

  • 7/27/2019 Mit Convolution

    44/76

    The same sortof reasoningapplies toCT signals. x(t)

    tx(t)= lim x(k)p(tk)

    0k

    where p(t)1

    t

    As 0, k, d,andp(t)(t): x(t) x()(t)d

  • 7/27/2019 Mit Convolution

    45/76

    CT Convolution

  • 7/27/2019 Mit Convolution

    46/76

    ConvolutionofCTsignalsisanalogoustoconvolutionofDTsignals.

    DT: y[n] = (xh)[n] = x[k]h[nk]k=

    CT: y(t) = (xh)(t) = x()h(t)d

    Check Yourself

  • 7/27/2019 Mit Convolution

    47/76

    t

    etu(

    t)

    t

    etu(

    t)

    Whichplot shows the resultof theconvolutionabove?

    1.t 2. t

    3.t 4. t

    5. noneof theabove

    Check Yourself

  • 7/27/2019 Mit Convolution

    48/76

    Whichplot shows the resultof the followingconvolution? etu(t) etu(t)

    t

    t

    etu(t) etu(t) = eu()e(t)u(t)d t t t t= e e(t)d =e d =te u(t)

    0 0

    t

    Check Yourself

  • 7/27/2019 Mit Convolution

    49/76

    t

    etu(t)

    t

    etu(t)

    Whichplotshowstheresultoftheconvolutionabove? 4

    1.t 2. t

    3.t 4. t

    5. noneof theabove

    Convolution

  • 7/27/2019 Mit Convolution

    50/76

    Convolution isan importantcomputational tool.Example: characterizingLTI systems Determine theunit-sample response h[n].Calculate

    the

    output

    for

    an

    arbitrary

    input

    using

    convolution:

    y[n] = (xh)[n] = x[k]h[nk]

  • 7/27/2019 Mit Convolution

    51/76

  • 7/27/2019 Mit Convolution

    52/76

  • 7/27/2019 Mit Convolution

    53/76

    Microscope A f t l t f h i l f li ht f th t t

  • 7/27/2019 Mit Convolution

    54/76

    A perfect lens transforms a sphericalwave of light from the targetintoa sphericalwave thatconverges to the image.

    target image

    Blurring is inversely related to thediameterof the lens.

    Microscope A perfect lens transforms a spherical wave of light from the target

  • 7/27/2019 Mit Convolution

    55/76

    A perfect lens transforms a sphericalwave of light from the targetintoa sphericalwave thatconverges to the image.

    target image

    Blurring is inversely related to thediameterof the lens.

    Microscope Blurring can be represented by convolving the image with the optical

  • 7/27/2019 Mit Convolution

    56/76

    Blurringcanberepresentedbyconvolvingtheimagewiththeopticalpoint-spread-function (3D impulse response).

    target image

    =

    Blurring is inversely related to thediameterof the lens.

    Microscope Blurring can be represented by convolving the image with the optical

  • 7/27/2019 Mit Convolution

    57/76

    Blurringcanberepresentedbyconvolvingtheimagewiththeopticalpoint-spread-function (3D impulse response).

    target image

    =

    Blurring is inversely related to thediameterof the lens.

  • 7/27/2019 Mit Convolution

    58/76

    Microscope Measuring the impulse response of a microscope

  • 7/27/2019 Mit Convolution

    59/76

    Measuring the impulse response ofamicroscope. Imagediameter6 times targetdiameter: target impulse.

    Courtesy of Anthony Patire. Used with permission.

    Microscope Images at different focal planes can be assembled to form a three-

  • 7/27/2019 Mit Convolution

    60/76

    Images at different focal planes can be assembled to form a threedimensional impulse response (point-spread function).

    Courtesy of Anthony Patire. Used with permission.

    Microscope Blurring along the optical axis is better visualized by resampling the

  • 7/27/2019 Mit Convolution

    61/76

    Blurringalong theopticalaxis isbettervisualizedby resampling thethree-dimensional impulse response.

    Courtesy of Anthony Patire. Used with permission.

    Microscope Blurring ismuchgreateralong theopticalaxis than it isacross the

  • 7/27/2019 Mit Convolution

    62/76

    g g g p

    opticalaxis.

    Courtesy of Anthony Patire. Used with permission.

    Microscope Thepoint-spread function (3D impulse response) isausefulway to

  • 7/27/2019 Mit Convolution

    63/76

    p p ( p p ) y

    characterizeamicroscope. Itprovidesadirectmeasureofblurring,which isan importantfigureofmerit foroptics.

    Hubble Space Telescope HubbleSpaceTelescope (1990-)

  • 7/27/2019 Mit Convolution

    64/76

    p p ( )

    http://hubblesite.org

    Hubble Space Telescope Whybuilda space telescope?

    http://hubblesite.org/http://hubblesite.org/
  • 7/27/2019 Mit Convolution

    65/76

    Telescope images are blurred by the telescope lenses AND by atmospheric turbulence.

    ha(x,y) hd(x,y)X Yatmospheric blurdue toblurring mirror size

    ht(x,y) = (hahd)(x,y)X Yground-based

    telescope

    Hubble Space Telescope Telescope blur can be respresented by the convolution of blur due

  • 7/27/2019 Mit Convolution

    66/76

    toatmospheric

    turbulence

    and

    blur

    due

    to

    mirror

    size.

    ha() hd() ht()

    d= 12cm=

    2 1 0 1 2 2 1 0 1 2 2 1 0 1 2

    ha() hd() ht()d= 1m

    =2 1 0 1 2 2 1 0 1 2 2 1 0 1 2

    [arc-seconds]

    Hubble Space Telescope Themain optical components of the Hubble Space Telescope are

  • 7/27/2019 Mit Convolution

    67/76

    twomirrors.

    http://hubblesite.org

    Hubble Space Telescope Thediameterof theprimarymirror is2.4meters.

    http://hubblesite.org/http://hubblesite.org/
  • 7/27/2019 Mit Convolution

    68/76

    http://hubblesite.org

    Hubble Space Telescope Hubbles first pictures of distant stars (May 20, 1990) weremore

    http://hubblesite.org/http://hubblesite.org/
  • 7/27/2019 Mit Convolution

    69/76

    blurred thanexpected.

    expected

    earlyHubble

    point-spread imageoffunction distant star

    http://hubblesite.org

    Hubble Space Telescope Theparabolicmirrorwasground4 m tooflat!

    http://hubblesite.org/http://hubblesite.org/
  • 7/27/2019 Mit Convolution

    70/76

    http://hubblesite.org

    Hubble Space Telescope CorrectiveOpticsSpaceTelescopeAxialReplacement (COSTAR):

    http://hubblesite.org/http://hubblesite.org/
  • 7/27/2019 Mit Convolution

    71/76

    eyeglassesfor

    Hubble!

    Hubble COSTAR

    Hubble Space Telescope Hubble imagesbeforeandafterCOSTAR.

  • 7/27/2019 Mit Convolution

    72/76

    before after

    http://hubblesite.org

    Hubble Space Telescope Hubble imagesbeforeandafterCOSTAR.

    http://hubblesite.org/http://hubblesite.org/
  • 7/27/2019 Mit Convolution

    73/76

    before

    after

    http://hubblesite.org

    Hubble Space Telescope Images fromground-based telescopeandHubble.

    http://hubblesite.org/http://hubblesite.org/
  • 7/27/2019 Mit Convolution

    74/76

    http://hubblesite.org

    Impulse Response: Summary The impulse response is a complete description of a linear, time-

    http://hubblesite.org/http://hubblesite.org/
  • 7/27/2019 Mit Convolution

    75/76

    invariantsystem.

    One can find the output of such a system by convolving the inputsignalwith the impulse response.The impulse response is an especially useful description of sometypes of systems, e.g., optical systems,whereblurring is an importantfigureofmerit.

    MIT OpenCourseWarehttp://ocw.mit.edu

    http://ocw.mit.edu/http://ocw.mit.edu/
  • 7/27/2019 Mit Convolution

    76/76

    6.003 Signals and Systems

    Spring 2010

    For information about citing these materials or our Terms of Use, visit:http://ocw.mit.edu/terms.

    http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/terms