79
Nano-Materials Characterization Yoram Shapira, EE Nano-bio- electronics 18.12.01 Growth and Processing Characterization and Analysis Design and Modeling Nano Systems

Nano-Materials Characterization

  • Upload
    shamus

  • View
    115

  • Download
    0

Embed Size (px)

DESCRIPTION

Nano-Materials Characterization. Nano. Systems. Characterization. Design and. Growth and. Modeling. Processing. and Analysis. Yoram Shapira, EE Nano-bio-electronics 18.12.01. Nano-Materials Characterization. Nano-Materials Characterization. - PowerPoint PPT Presentation

Citation preview

Page 1: Nano-Materials Characterization

Nano-Materials Characterization

Yoram Shapira, EE Nano-bio-electronics 18.12.01

Growth and

Processing

Characterization

and Analysis

Design and

Modeling

Nano

Systems

Page 2: Nano-Materials Characterization

Nano-Materials Characterization

Analytical Technique

Typical Application

Signal Detected Elements

Detection Limits

Depth Resolution

Lateral Probe Size

TXRF Metal contamination

X-rays S - U 109-1012

Atoms/cm2 10 mm

RBS Thin film composition

He atoms Li - U 1 - 10 at% (Z<20) 0.01 - 1 (Z>20)

2-20 nm 2 mm

XPS Surface analysis Depth profiling

Photo- electrons

Li - U 0.01 - 1 at% 1-10 nm 10 m – 2 mm

EDAX (EDS)

elemental microanalysis

X-rays B - U 0.1 - 1 at% 1 – 5 m 1 m

Quad SIMS

Dopant profiling Surface microanalysis

Secon- dary ions

H - U 1014-1017

Atoms/cm3 <5 nm 1 m (Imaging)

30 m (D Profiling)

TOF SIMS

Surface microanalysis

Secon- dary ions

H - U 108

Atoms/cm2 <1 monolayer

0.1 m (Imaging)

Page 3: Nano-Materials Characterization

Nano-Materials CharacterizationAnalyticalTechnique

TypicalApplication

Signal DetectedElements

DetectionLimits

DepthResolution

Lateral ProbeSize

AES Surface analysisand depthprofiling

Augerelectrons

Li U 0.1 - 1 at% <2 nm 100 nm

HRAES Surfaceanalysis, microarea depthprofiling

---“--- Li U 0.01 - 1 at% 2 - 6 nm <15 nm

SEM Surface imaging Secondary &backscatteredelectrons

3 nm

AFM Surface imaging Atomic forces 0.01 nm 1.5 5 nm

HRSEM High resolutionsurface imaging

Secondary &backscatteredelectrons

0.7 nm

STM Surface imaging Tunnelingcurrents

0.01 nm 0.1 nm

Page 4: Nano-Materials Characterization

Nano-Materials Characterization

Analytical Technique

Typical Application

Signal Detection Limits

Depth Resolution

Lateral Probe Size

FTIR Dopants and contamination

Infrared photons

1011-1012

Atoms/cm3 1-10 mm 2 mm

PL Dopants and contamination

Photons 1011-1012

Atoms/cm3 1 - 3 m >5 m

Raman Dopants and contamination

Photons 1019

Atoms/cm3 1 m 1 m

XRD Structure and contamination

X-rays

1020

Atoms/cm3 3 mm 15 m

HEED Structure and contamination

X-rays

1020

Atoms/cm3 5 nm 0.1-10 m

ION micro- probe

Dopants and contamination

Ions

5x1017

Atoms/cm3 5 nm 0.1 mm

HRTEM [TED] [EDS]

Nano-structure [Xtal structure] [element analysis]

Electrons [Electrons]

1m-1nm

10m-0.5nm

Page 5: Nano-Materials Characterization
Page 6: Nano-Materials Characterization

Nano-Materials Characterization

Analytical Technique

Typical Application

Signal Depth Resolution

Probe Size

HRTEM [TED] [EDS]

Nano-structure Xtal structure Element analysis]

Electrons Electrons

1m-1nm

10m-0.5nm

Page 7: Nano-Materials Characterization

Courtesy Yossi LEREAH

Transmission Electron Microscope

• Electron source: W, LaB6, FEG• Condenser Lenses (Electromagnetic)• Sample• Objective Lens (determine the point resolution)• Post Sample Lenses• Detector: electron- light converter

• Chemical analysis: EDS, GIF

Wavelength at 200KV - 0.0025nm

Page 8: Nano-Materials Characterization

Bragg’s Law2dsinq=lL

Nano-Materials Characterization

Courtesy Yossi LEREAH

Page 9: Nano-Materials Characterization

Objective Lens The Core of TEM

• Back Focal Plane: Diffraction Pattern• Image Plane• Diffraction Contrast: Bright Field or Dark Field by

excluding one of the beams (in the back focal plane)• Phase Contrast by including all beams

Courtesy Yossi LEREAH

Page 10: Nano-Materials Characterization

Crystallization of Ge:Al (1)

A branched Morphology in Material Science that is relevant to Life Science

Contrast: Mass thickness, Bragg Conditions

Diffraction: Polycrystalline, Preferred orientation

Yossi LEREAH TEL AVIV University

Page 11: Nano-Materials Characterization

Yossi LEREAH TEL AVIV University

Crystallization of Ge:Al (2)

• Phase Contrast reveals the periodicity of the atoms.

• The interface is rough down to atomic scale

Courtesy Yossi LEREAH

Page 12: Nano-Materials Characterization

Melting of Nano-Particles

• Melting temperature depends on the particle size.

• Existence of surface melting.

• Diffraction Contrast between solid and liquid phases

Yossi LEREAH TEL AVIV University

Page 13: Nano-Materials Characterization

Nano-Materials Characterization

Page 14: Nano-Materials Characterization

Nano-Materials Characterization

Courtesy Yossi LEREAH

Page 15: Nano-Materials Characterization
Page 16: Nano-Materials Characterization

Nano-Materials Characterization

Analytical Technique

Typical Application

Signal Probe Size

SEM Surface imaging

Secondary & backscattered electrons

3 nm

HRSEM High resolution imaging

Secondary & backscattered electrons

0.8 nm

Page 17: Nano-Materials Characterization

Collected signals in SEM

Sample

Incident beam

Secondary electrons (SE)

Backscattered electrons (BSE)

Cathodoluminescence(CL)

X-rays

Absorbed current

Courtesy Z. Barkay

Page 18: Nano-Materials Characterization

Energy distribution of SE and BSE

Courtesy Z. Barkay

Page 19: Nano-Materials Characterization

Signal emission from interaction volume

Rp

Courtesy Z. Barkay

Page 20: Nano-Materials Characterization

The origin of high SE spatial resolution

• High resolution SE(1): 1 nm• Lower resolution SE(2): 0.1-1 m

Courtesy Z. Barkay

Page 21: Nano-Materials Characterization

Composition dependenceE=30keV

Usually 0.1, at 30KeV=(z)

Courtesy Z. Barkay

Page 22: Nano-Materials Characterization

Basic SEM modes of operation - summary

(*) usually sizes of 1cm, dependent on SEM configuration

(**) voltage and Z dependent

Additional modes: Voltage contrast (VC) and EBIC - usually used in devices and p-n junctions.

Signal/Mode Information Material Resolution

Secondary electrons (SE)

Morphology All (*) ~1nm

Backscattered electrons (BSE)

Atomic number

All (*) 0.1-0.5m(**)

X-ray (EDS or WDS)

Atomic composition

All (flat) ~1m

(CL)Cathodo- luminescence

Bandgap, impurities, lifetimes

Insulators and semi- conductors

~ 1m

Courtesy Z. Barkay

Page 23: Nano-Materials Characterization

AntHuman hairEye of an ant

Courtesy A. Merson

Page 24: Nano-Materials Characterization

Nano-Materials Characterization

Page 25: Nano-Materials Characterization

Surface, Atomic number, Element imaging

BSE

Cu

SE

Courtesy Z. Barkay

Page 26: Nano-Materials Characterization

Nano-Materials Characterization

Courtesy Z. Barkay

Page 27: Nano-Materials Characterization

Nano-Materials Characterization

Courtesy Z. Barkay

Page 28: Nano-Materials Characterization

Nano-Materials Characterization

Analytical Technique

Typical Application

Signal Detected Elements

Detection Limits

Depth Resolution

Probe Size

EDAX elemental microanalysis

X-rays B - U 0.1 - 1 at% 1 – 5 m 1 m

Page 29: Nano-Materials Characterization

Atomic mapping and analysis

Cl

Brr

Agr

EDS analysis of AgClBr fiber cross section

0102030405060

0 0.2 0.4 0.6 0.8 1

fiber diameter (mm)

% a

tom

ic

BrClAg

Courtesy Z. Barkay

Page 30: Nano-Materials Characterization

Nano-Materials Characterization

Courtesy CEA

Page 31: Nano-Materials Characterization

Nano-Materials Characterization

Analytical Technique

Typical Application

Signal Detected Elements

Detection Limits

Depth Resolution

Probe Size

AES Surface analysis and depth profiling

Auger electrons

Li U 0.1 - 1 at% <2 nm 100 nm

FE-AES Surface analysis, micro area profiling

---“--- Li U 0.01 - 1 at% <2 nm <15 nm

Page 32: Nano-Materials Characterization

Nano-Materials Characterization

Page 33: Nano-Materials Characterization

Auger process

Courtesy A. Merson

Page 34: Nano-Materials Characterization
Page 35: Nano-Materials Characterization

Courtesy A. Merson

Page 36: Nano-Materials Characterization

Auger Emission

a. X-ray fluorescenceb. Auger emission

Courtesy A. Merson

Page 37: Nano-Materials Characterization
Page 38: Nano-Materials Characterization
Page 39: Nano-Materials Characterization

Courtesy PHI

Page 40: Nano-Materials Characterization

Courtesy PHI

Page 41: Nano-Materials Characterization

Nano-Materials Characterization

Courtesy PHI

Page 42: Nano-Materials Characterization

Courtesy PHI

Page 43: Nano-Materials Characterization

Nano-Materials Characterization

Courtesy PHI

Page 44: Nano-Materials Characterization

Nano-Materials Characterization

Courtesy PHI

Page 45: Nano-Materials Characterization

Nano-Materials Characterization

Courtesy PHI

Page 46: Nano-Materials Characterization

Nano-Materials Characterization

Page 47: Nano-Materials Characterization

Nano-Materials Characterization

Analytical Technique

Typical Application

Signal Detected Elements

Detection Limits

Depth Resolution

Probe Size

XPS Surface analysis Depth profiling

Photo- electrons

Li - U 0.01 - 1 at% 1-10 nm 10 m – 2 mm

Page 48: Nano-Materials Characterization

Nano-Materials Characterization

Courtesy PHI

Page 49: Nano-Materials Characterization

Nano-Materials Characterization

Courtesy PHI

Page 50: Nano-Materials Characterization

Nano-Materials Characterization

Courtesy PHI

Page 51: Nano-Materials Characterization

Nano-Materials Characterization

Courtesy PHI

Page 52: Nano-Materials Characterization

Nano-Materials Characterization

Courtesy PHI

Page 53: Nano-Materials Characterization

Nano-Materials Characterization

Analytical Technique

Typical Application

Signal Detected Elements

Detection Limits

Depth Resolution

Probe Size

Quad SIMS Dopant profiling Surface microanalysis

Secon- dary ions

H - U 1014-1017

Atoms/cm3 <5 nm 1 m (Imaging)

30 m (D Profiling)

TOF SIMS Surface microanalysis

Secon- dary ions

H - U 108

Atoms/cm2 <1 monolayer

0.1 m (Imaging)

Page 54: Nano-Materials Characterization

Nano-Materials Characterization

Page 55: Nano-Materials Characterization

Courtesy A. Merson

Page 56: Nano-Materials Characterization

Uac

L

מטרהגלאי

vm

2

22L

TUzm ac=

Courtesy A. Merson

Page 57: Nano-Materials Characterization

Nano-Materials Characterization

Courtesy PHI

Page 58: Nano-Materials Characterization

Nano-Materials Characterization

Courtesy PHI

Page 59: Nano-Materials Characterization

Nano-Materials Characterization

Page 60: Nano-Materials Characterization

Courtesy A. Merson

I~exp(-2kd)

Page 61: Nano-Materials Characterization

Courtesy A. Merson

Page 62: Nano-Materials Characterization
Page 63: Nano-Materials Characterization

Non-contact mode

Courtesy A. Merson

Page 64: Nano-Materials Characterization

Nano-Materials Characterization

Courtesy Y. Rosenwaks

Page 65: Nano-Materials Characterization

Nano-Materials Characterization

Page 66: Nano-Materials Characterization

Materials Characterization

Courtesy Dr. Z. Barkai

Page 67: Nano-Materials Characterization

Courtesy Dr. Z. Barkai

Page 68: Nano-Materials Characterization

Nano-Materials Characterization

STM: Si(7x7)

Page 69: Nano-Materials Characterization

Nano-Materials Characterization

A superlattice of alternating GaSb (12 ml) and InAs (14 ml) was MBE grown by W. Barvosa-Carter, B. R. Bennett, and L. J. Whitman. Only every-other lattice plane [Sb (reddish) and As (blueish)] is exposed on the (110) surface.

Page 70: Nano-Materials Characterization

Materials Characterization

Page 71: Nano-Materials Characterization

Iron (on Cu) “Coral”

Page 72: Nano-Materials Characterization

Nano-Materials Characterization

Courtesy Z. Barkay

Page 73: Nano-Materials Characterization

Nano-Materials Characterization

Courtesy Z. Barkay

Page 74: Nano-Materials Characterization

Courtesy Y. Rosenwaks

Page 75: Nano-Materials Characterization

Materials Characterization

Courtesy Y. Rosenwaks

Page 76: Nano-Materials Characterization

Materials Characterization

Courtesy Dr. S. Richter

Page 77: Nano-Materials Characterization

Materials Characterization

Courtesy Dr. S. Richter

Page 78: Nano-Materials Characterization

Materials Characterization

Courtesy Dr. S. Richter

Page 79: Nano-Materials Characterization

Thank you for your attention

Yoram [email protected]

Nano-Materials Characterization